Files
lammps/lib/gpu/lal_base_amoeba.h

326 lines
12 KiB
C++

/***************************************************************************
base_amoeba.h
-------------------
Trung Dac Nguyen (Northwestern)
Base class for pair styles needing per-particle data for position,
charge, and type.
__________________________________________________________________________
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
__________________________________________________________________________
begin :
email : trung.nguyen@northwestern.edu
***************************************************************************/
#ifndef LAL_BASE_AMOEBA_H
#define LAL_BASE_AMOEBA_H
#include "lal_device.h"
#include "lal_balance.h"
#include "mpi.h"
#if defined(USE_OPENCL)
#include "geryon/ocl_texture.h"
#elif defined(USE_CUDART)
#include "geryon/nvc_texture.h"
#elif defined(USE_HIP)
#include "geryon/hip_texture.h"
#else
#include "geryon/nvd_texture.h"
#endif
//#define ASYNC_DEVICE_COPY
#if !defined(USE_OPENCL) && !defined(USE_HIP)
// temporary workaround for int2 also defined in cufft
#ifdef int2
#undef int2
#endif
#include "cufft.h"
#endif
namespace LAMMPS_AL {
template <class numtyp, class acctyp>
class BaseAmoeba {
public:
BaseAmoeba();
virtual ~BaseAmoeba();
/// Clear any previous data and set up for a new LAMMPS run
/** \param max_nbors initial number of rows in the neighbor matrix
* \param cell_size cutoff + skin
* \param gpu_split fraction of particles handled by device
* \param k_name name for the kernel for force calculation
*
* Returns:
* - 0 if successful
* - -1 if fix gpu not found
* - -3 if there is an out of memory error
* - -4 if the GPU library was not compiled for GPU
* - -5 Double precision is not supported on card **/
int init_atomic(const int nlocal, const int nall, const int max_nbors,
const int maxspecial, const int maxspecial15, const double cell_size,
const double gpu_split, FILE *screen, const void *pair_program,
const char *kname_multipole, const char *kname_udirect2b,
const char *kname_umutual2b, const char *kname_polar,
const char *kname_fphi_uind, const char *kname_fphi_mpole,
const char *kname_short_nbor, const char* kname_special15);
/// Estimate the overhead for GPU context changes and CPU driver
void estimate_gpu_overhead(const int add_kernels=0);
/// Check if there is enough storage for atom arrays and realloc if not
/** \param success set to false if insufficient memory **/
inline void resize_atom(const int inum, const int nall, bool &success) {
if (atom->resize(nall, success)) {
pos_tex.bind_float(atom->x,4);
q_tex.bind_float(atom->q,1);
}
ans->resize(inum,success);
}
/// Check if there is enough storage for neighbors and realloc if not
/** \param nlocal number of particles whose nbors must be stored on device
* \param host_inum number of particles whose nbors need to copied to host
* \param current maximum number of neighbors
* \note olist_size=total number of local particles **/
inline void resize_local(const int inum, const int max_nbors, bool &success) {
nbor->resize(inum,max_nbors,success);
}
/// Check if there is enough storage for neighbors and realloc if not
/** \param nlocal number of particles whose nbors must be stored on device
* \param host_inum number of particles whose nbors need to copied to host
* \param current maximum number of neighbors
* \note host_inum is 0 if the host is performing neighboring
* \note nlocal+host_inum=total number local particles
* \note olist_size=0 **/
inline void resize_local(const int inum, const int host_inum,
const int max_nbors, bool &success) {
nbor->resize(inum,host_inum,max_nbors,success);
}
/// Clear all host and device data
/** \note This is called at the beginning of the init() routine **/
void clear_atomic();
/// Returns memory usage on device per atom
int bytes_per_atom_atomic(const int max_nbors) const;
/// Total host memory used by library for pair style
double host_memory_usage_atomic() const;
/// Accumulate timers
inline void acc_timers() {
if (device->time_device()) {
nbor->acc_timers(screen);
time_pair.add_to_total();
atom->acc_timers();
ans->acc_timers();
}
}
/// Zero timers
inline void zero_timers() {
time_pair.zero();
atom->zero_timers();
ans->zero_timers();
}
/// Copy neighbor list from host
int * reset_nbors(const int nall, const int inum, int *ilist, int *numj,
int **firstneigh, bool &success);
/// Build neighbor list on device
int build_nbor_list(const int inum, const int host_inum,
const int nall, double **host_x, int *host_type,
double *sublo, double *subhi, tagint *tag, int **nspecial,
tagint **special, int *nspecial15, tagint **special15,
bool &success);
/// Reallocate per-atom arrays if needed, and build neighbor lists once, if needed
virtual int** precompute(const int ago, const int inum_full, const int nall,
double **host_x, int *host_type, int *host_amtype,
int *host_amgroup, double **host_rpole, double **host_uind,
double **host_uinp, double *host_pval, double *sublo, double *subhi,
tagint *tag, int **nspecial, tagint **special,
int *nspecial15, tagint **special15,
const bool eflag, const bool vflag,
const bool eatom, const bool vatom, int &host_start,
int **&ilist, int **&numj, const double cpu_time, bool &success,
double *charge, double *boxlo, double *prd);
/// Compute multipole real-space with device neighboring
virtual void compute_multipole_real(const int ago, const int inum_full, const int nall,
double **host_x, int *host_type, int *host_amtype,
int *host_amgroup, double **host_rpole, double *host_pval,
double *sublo, double *subhi, tagint *tag,
int **nspecial, tagint **special, int *nspecial15, tagint **special15,
const bool eflag, const bool vflag, const bool eatom, const bool vatom,
int &host_start, int **ilist, int **numj, const double cpu_time,
bool &success, const double aewald, const double felec,
const double off2_mpole, double *charge, double *boxlo,
double *prd, void **tep_ptr);
/// Compute the real space part of the permanent field (udirect2b) with device neighboring
virtual void compute_udirect2b(int *host_amtype, int *host_amgroup, double **host_rpole,
double **host_uind, double **host_uinp, double *host_pval,
const double aewald, const double off2_polar, void **fieldp_ptr);
/// Compute the real space part of the induced field (umutual2b) with device neighboring
virtual void compute_umutual2b(int *host_amtype, int *host_amgroup, double **host_rpole,
double **host_uind, double **host_uinp, double *host_pval,
const double aewald, const double off2_polar, void **fieldp_ptr);
/// Allocate/resize per-atom arrays before the kspace parts in induce() and polar
virtual void precompute_kspace(const int inum_full, const int bsorder,
double ***host_thetai1, double ***host_thetai2,
double ***host_thetai3, int** igrid,
const int nzlo_out, const int nzhi_out,
const int nylo_out, const int nyhi_out,
const int nxlo_out, const int nxhi_out);
/// Interpolate the induced potential from the grid
virtual void compute_fphi_uind(double ****host_grid_brick,
void **host_fdip_phi1, void **host_fdip_phi2,
void **host_fdip_sum_phi);
/// Interpolate the multipolar potential from the grid
virtual void compute_fphi_mpole(double ***host_grid_brick, void **host_fphi,
const double felec);
/// Compute polar real-space with device neighboring
virtual void compute_polar_real(int *host_amtype, int *host_amgroup, double **host_rpole,
double **host_uind, double **host_uinp, double *host_pval,
const bool eflag, const bool vflag,
const bool eatom, const bool vatom,
const double aewald, const double felec, const double off2_polar,
void **tep_ptr);
// copy field and fieldp from device to host after umutual2b
virtual void update_fieldp(void **fieldp_ptr) {
*fieldp_ptr=_fieldp.host.begin();
// _fieldp store both arrays, one after another
_fieldp.update_host(_max_fieldp_size*6,false);
}
/// setup a plan for FFT, where size is the number of elements
void setup_fft(const int size, const int element_type=0);
/// compute forward/backward FFT on the device
void compute_fft1d(void* in, void* out, const int numel, const int mode);
// -------------------------- DEVICE DATA -------------------------
/// Device Properties and Atom and Neighbor storage
Device<numtyp,acctyp> *device;
/// Geryon device
UCL_Device *ucl_device;
/// Device Timers
UCL_Timer time_pair;
/// Host device load balancer
Balance<numtyp,acctyp> hd_balancer;
/// LAMMPS pointer for screen output
FILE *screen;
// --------------------------- ATOM DATA --------------------------
/// Atom Data
Atom<numtyp,acctyp> *atom;
UCL_Vector<numtyp,numtyp> polar1, polar2, polar3, polar4, polar5;
/// cast host arrays into a single array for atom->extra
void cast_extra_data(int* amtype, int* amgroup, double** rpole,
double** uind, double** uinp, double* pval=nullptr);
/// Per-atom arrays
UCL_Vector<acctyp,acctyp> _tep, _fieldp;
int _nmax, _max_tep_size, _max_fieldp_size;
int _bsorder;
UCL_Vector<numtyp4,numtyp4> _thetai1, _thetai2, _thetai3;
UCL_Vector<int,int> _igrid;
UCL_Vector<numtyp2,numtyp2> _cgrid_brick;
UCL_Vector<acctyp,acctyp> _fdip_phi1, _fdip_phi2, _fdip_sum_phi;
int _max_thetai_size;
int _nzlo_out, _nzhi_out, _nylo_out, _nyhi_out, _nxlo_out, _nxhi_out;
int _ngridx, _ngridy, _ngridz, _num_grid_points;
int _end_command_queue;
// ------------------------ FORCE/ENERGY DATA -----------------------
Answer<numtyp,acctyp> *ans;
// --------------------------- NBOR DATA ----------------------------
/// Neighbor data
Neighbor *nbor;
/// Device storage for 1-5 special neighbor counts
UCL_D_Vec<int> dev_nspecial15;
/// Device storage for special neighbors
UCL_D_Vec<tagint> dev_special15, dev_special15_t;
int add_onefive_neighbors();
UCL_D_Vec<int> dev_short_nbor;
// ------------------------- DEVICE KERNELS -------------------------
UCL_Program *pair_program;
UCL_Kernel k_multipole, k_udirect2b, k_umutual2b, k_polar;
UCL_Kernel k_fphi_uind, k_fphi_mpole;
UCL_Kernel k_special15, k_short_nbor;
inline int block_size() { return _block_size; }
inline void set_kernel(const int /*eflag*/, const int /*vflag*/) {}
// --------------------------- TEXTURES -----------------------------
UCL_Texture pos_tex;
UCL_Texture q_tex;
protected:
bool _compiled;
int _block_size, _block_bio_size, _threads_per_atom;
int _extra_fields;
double _max_bytes, _max_an_bytes, _maxspecial, _maxspecial15, _max_nbors;
double _gpu_overhead, _driver_overhead;
bool short_nbor_polar_avail;
UCL_D_Vec<int> *_nbor_data;
numtyp _aewald,_felec;
numtyp _off2_hal,_off2_repulse,_off2_disp,_off2_mpole,_off2_polar;
int _eflag, _vflag;
void compile_kernels(UCL_Device &dev, const void *pair_string,
const char *kname_multipole, const char *kname_udirect2b,
const char *kname_umutual2b, const char *kname_polar,
const char *kname_fphi_uind, const char *kname_fphi_mpole,
const char *kname_short_nbor, const char* kname_special15);
virtual int multipole_real(const int eflag, const int vflag) = 0;
virtual int udirect2b(const int eflag, const int vflag) = 0;
virtual int umutual2b(const int eflag, const int vflag) = 0;
virtual int fphi_uind();
virtual int fphi_mpole();
virtual int polar_real(const int eflag, const int vflag) = 0;
#if !defined(USE_OPENCL) && !defined(USE_HIP)
cufftHandle plan;
#endif
bool fft_plan_created;
};
}
#endif