Compare commits

...

311 Commits

Author SHA1 Message Date
4339379948 patch 6Jul17 2017-07-06 13:58:26 -06:00
87af3b1fd9 Merge pull request #564 from lammps/fix-external
bugfix for fix msst
2017-07-06 08:58:20 -06:00
0423971205 whitespace cleanup 2017-07-06 00:24:00 -04:00
4ee7c6f5ca remove code without effect 2017-07-06 00:23:50 -04:00
7f63c09667 correct comment for Fix::ev_setup() 2017-07-05 22:35:58 -04:00
a5234d7aea fix bug reported by richard berger via https://ci.lammps.org/job/lammps/job/master/job/regression/160/testReport/junit/examples/msst/msst/ 2017-07-05 22:34:34 -04:00
be8360ac4b Merge pull request #562 from lammps/fix-external
additional fix external hooks for calling programs
2017-07-05 14:46:10 -06:00
4de9cec1b6 make old_velocities allocation safer while retaining the test for nlocal 2017-07-05 16:22:39 -04:00
09ad293425 remove dead code 2017-07-05 15:04:35 -04:00
e625e79171 safer handling of processors w/o local atoms 2017-07-05 15:04:27 -04:00
f1088a5003 changes requested by @sjplimp 2017-07-05 15:03:58 -04:00
ea4f16bd79 additional fix external hooks for calling programs 2017-07-05 10:01:19 -06:00
d0a397d6cb Merge pull request #559 from lammps/fortran3
3rd variant of Fortran wrapper for DFTB+ calling LAMMPS
2017-07-03 14:50:33 -06:00
f670dba3d0 3rd variant of Fortran wrapper for DFTB+ calling LAMMPS 2017-07-03 14:24:16 -06:00
6fc0a94e87 Merge pull request #524 from martok/package-meamc
Package USER-MEAMC
2017-07-03 12:30:01 -06:00
5c0c8bb4cd Merge pull request #558 from lammps/intel
memory allocation bugfix for USER-INTEL pppm from M Brown
2017-07-03 12:25:12 -06:00
9eeb97b039 Merge pull request #544 from akohlmey/tip4p-triclinic
Correct handling of triclinic box support in pppm/tip4p and pppm/tip4p/omp
2017-07-03 12:24:18 -06:00
9ca9b5e2ff add authors tag to pull request template 2017-07-03 12:06:36 -04:00
db73eca29f correct example inputs for recent changes to create_bonds command 2017-07-03 11:43:55 -04:00
2d1941ed9b make USER-INTEL compilable again with gcc and without OpenMP active 2017-07-03 11:33:08 -04:00
e634c5a2de memory allocation bugfix for USER-INTEL pppm from M Brown 2017-07-03 08:53:53 -06:00
22f3db4723 remove some dead code and prune argument lists accordingly 2017-07-01 18:16:36 -04:00
a1574fc03d remove unused variables 2017-07-01 17:55:13 -04:00
d68fb1cbb8 avoid repeated computation of deltaik and deltajk, calls to pow() 2017-07-01 17:49:14 -04:00
060e32973e another speedup by folding dsij() into meam_force() 2017-07-01 17:07:56 -04:00
a4a15f24bd fold screen() function into getscreen() and avoid some repeated operations 2017-06-30 18:44:51 -04:00
883b7aaa0e Merge pull request #557 from lammps/create-bonds
add single options to create_bonds command
2017-06-30 14:18:15 -06:00
1fff30af90 update or create example outputs for meam and meam/c 2017-06-30 15:30:06 -04:00
a490e04d24 add backward compatibility item to pull request template 2017-06-30 15:07:43 -04:00
b445f8eadf spell-check new additions to create_bonds doc page 2017-06-30 14:59:08 -04:00
b79044d4f6 Merge pull request #554 from jewettaij/master
Have extra/XXX/per/atom set by keyword to the read_data command
2017-06-30 11:47:46 -06:00
711afe5062 add single options to create_bonds command 2017-06-30 11:30:43 -06:00
3bf2c60276 Merge pull request #553 from Pakketeretet2/USER-MANIFOLD-gaussian-bump
Update to USER-MANIFOLD gaussian bump
2017-06-30 11:08:47 -06:00
d5119b2d75 Merge pull request #550 from stanmoore1/kokkos_leakfix
Fix Memory Leak in Kokkos NeighList
2017-06-30 11:08:30 -06:00
b2b621a2e1 Merge pull request #547 from akohlmey/collected-bugfixes
Collected small bugfixes and updates
2017-06-30 11:08:02 -06:00
b5250d11f6 Merge pull request #545 from akohlmey/issue-and-pull-request-templates
Add folder .github containing administrative files for use with GitHub
2017-06-30 11:06:58 -06:00
9dad95d101 performance improvement through moving inlinable functions to header file 2017-06-30 13:04:09 -04:00
f6faad335c update documentation for nb3/harmonic pair style according to e-mail to lammps-users 2017-06-30 11:37:18 -04:00
5548704700 Move stateless functions to separate module, improve style
- use static/const
- return instead of ptr-parameter, &ref if more than one return
- replace macros from header with inline functions
- remove useless/old comments
2017-06-30 15:37:26 +02:00
e0939ac795 Re-Run clang-format 2017-06-30 12:28:22 +02:00
d5921e9fb9 consolidate and update error message and read_data documentation for the updated read_data command 2017-06-29 16:30:49 -04:00
aa3f4b7690 change the handling of reading "extra XXX per atom", so that the final choice is the larger of the value in the file and the keyword 2017-06-29 16:09:23 -04:00
38075455b6 new keywords for read_data: extra/X/per/atoms + changes to docs 2017-06-28 17:55:30 -07:00
fa30635465 Revert "added feature to write_data.cpp to support "extra bonds" (angles,dihedrals,impropers,special)."
This reverts commit 0c2f7c74be.
2017-06-28 17:48:32 -07:00
0c2f7c74be added feature to write_data.cpp to support "extra bonds" (angles,dihedrals,impropers,special). 2017-06-28 14:12:03 -07:00
91bce7ccf9 Replaced std::fabs with fabs. 2017-06-28 09:48:00 -04:00
d0470799ac consistently check for all per-atom-type masses being set only when per-atom masses are not set
rather than placing an if statement around every incidence of calling atom->check_mass() to ensure it is only called when per atom masses are not set, we place that check _inside_ Atom::check_mass(). This avoids unexpected error messages.
2017-06-28 06:26:21 -04:00
076990c28a Updated Gaussian bump so that it has a better taper function. 2017-06-27 16:48:33 -04:00
661e51b607 remove non-ascii characters and spell check 2017-06-27 00:38:53 -04:00
d076040471 use itemized list instead of paragraphs for links at the top 2017-06-27 00:24:04 -04:00
2f9c0a3b8e more formatting issues addressed 2017-06-27 00:23:10 -04:00
b9d213ee2b update formatting for contributing ToC 2017-06-27 00:21:29 -04:00
fa3c7727e1 contributing guidelines, issue and pull request template are now feature complete
This is still a draft and in need of editing, proofreading and testing for formatting.
2017-06-27 00:17:37 -04:00
9fec8a0470 Remove clean_copy function from pair_vashishta_kokkos 2017-06-26 10:56:03 -06:00
b889776557 Fixing memory leak in Kokkos neighborlist 2017-06-26 10:51:26 -06:00
8fca667e4b Change indexing of remaining variables and locals
- Voigt index tables
- local variables
- remove shims from header
2017-06-26 18:09:11 +02:00
f7077d9672 Merge branch 'collected-bugfixes' of github.com:akohlmey/lammps into collected-bugfixes 2017-06-26 11:27:31 -04:00
f89a7266bf make USER-INTEL compilable again with gcc and without OpenMP active 2017-06-25 23:57:42 -04:00
1257955662 Merge branch 'master' of https://www.github.com/lammps/lammps 2017-06-23 19:31:43 -04:00
1370385c8c patch 23Jun17 2017-06-23 17:10:59 -06:00
2240c3d7d3 Merge pull request #548 from lammps/doc-update
doc page clarifications for CHARMM energy and dipole pre-factors
2017-06-23 16:48:37 -06:00
4fcbd58d5a doc page clarifications for CHARMM energy and dipole pre-factors 2017-06-23 15:54:14 -06:00
c2c6dc1458 remove spurious comment line 2017-06-23 16:24:37 -04:00
18983c307e fix qeq/reax/omp bugfix from metin 2017-06-23 16:24:00 -04:00
25a5d12af3 Merge pull request #541 from lammps/charmm
use CHARMM energy conversion factor with new CHARMM pair styles
2017-06-23 09:10:04 -06:00
05fbf93455 skip deleting internal data before setup has been run 2017-06-23 10:37:00 -04:00
73b948dcfc pppm must be fully reinitialized after switching to triclinic box to avoid memory corruption 2017-06-23 10:01:45 -04:00
374eef2b17 add first draft of issue template 2017-06-23 01:13:10 -04:00
dc7243838b first draft of a contributor's guide file 2017-06-23 00:54:20 -04:00
57d5cfede3 add first draft of a pull request template 2017-06-22 23:07:09 -04:00
feb500b526 reword the kspace_modify fftbench keyword docs to reflect the current state (i.e. off by default) of code 2017-06-22 19:17:41 -04:00
a714b57741 make neighbor list reset message for minimization more explicit 2017-06-22 19:07:57 -04:00
c5430b0a26 print info messages when changing qqr2e constant in fully CHARMM compatible pair styles 2017-06-22 18:41:44 -04:00
c081d383d1 Merge branch 'master' of https://www.github.com/lammps/lammps 2017-06-22 18:37:37 -04:00
f8364342c2 port corrected triclinic handling from pppm/tip4p to pppm/tip4p/omp 2017-06-22 18:12:28 -04:00
488d1b7a79 correct find_M() function in pppm/tip4p to properly account for ghost atoms not being in lamda space with triclinic cells 2017-06-22 17:36:18 -04:00
dadd1c8b4d Remove neigh_f2c/c2f, related cleanup
- neighbour lists now use C indexing
- removed many arr*v() macros
- removed some unneccessary pointers
- minor reformatting
2017-06-22 19:02:14 +02:00
60c3f3d64c use CHARMM energy conversion factor with new CHARMM pair styles 2017-06-22 09:15:15 -06:00
7a4a569859 Merge pull request #540 from lammps/neighrespa
fix issue with rRESPA inner/middle neighbor lists
2017-06-22 07:54:12 -06:00
4fc3f4f7e5 Merge pull request #538 from akohlmey/collected-small-changes
Collected small changes and bugfixes
2017-06-22 07:52:21 -06:00
f092da80a9 Fix some shadowing warnings 2017-06-22 13:28:12 +02:00
b0ddabbcde update examples for fix filter/corotate to comply with new CHARMM restrictions 2017-06-22 00:19:21 -04:00
b9029ada77 fix bug in incorrect use of O coordinate instead of M coordinate in pppm/tip4p 2017-06-22 00:07:59 -04:00
de3157f720 document new restrictions to CHARMM compatible dihedral styles 2017-06-21 19:31:40 -04:00
0c6a751751 may check for 1-4 scaling factors in CHARMM dihedral styles only when "weightflag" is set, since they may be used with amber 2017-06-21 19:29:31 -04:00
612b44a895 enforce using 'special_bonds charmm' for dihedral styles charmm and charmmfsw 2017-06-21 19:15:52 -04:00
684b7334a5 enforce that CHARMM dihedral styles are run at the same r-RESPA level as pair 2017-06-21 19:08:02 -04:00
1fc2eb1e3e fix issue with rRESPA inner/middle neighbor lists 2017-06-21 15:12:51 -06:00
e69ef56f10 Merge pull request #539 from lammps/neighsize
insure compute pair/property local will use a copy of granular neighbor list
2017-06-21 15:03:12 -06:00
7dc380b113 insure compute pair/property local will use a copy of granular neigh list 2017-06-21 12:44:35 -06:00
f47aaa5f3c Merge branch 'master' of https://www.github.com/lammps/lammps 2017-06-21 14:11:12 -04:00
5e165e6782 fix array bounds issue due to typo. spotted by GCC. 2017-06-21 13:33:26 -04:00
02625b2855 fix typos introduced in original translation: results are correct again 2017-06-21 18:54:21 +02:00
1a77135ed6 whitespace cleanup in docs 2017-06-21 09:38:10 -04:00
f45c7e1fb0 update fix ti/spring docs to reflect it is part of USER-MISC 2017-06-21 09:36:30 -04:00
0cfe8980d4 dead code removal 2017-06-20 22:07:40 -04:00
2988508cee correct indexing bug in pair style lj/long/tip4p/long 2017-06-20 17:53:45 -04:00
15c596153a remove dead code 2017-06-20 17:38:28 -04:00
e13c94ed4f fix uninitialized variable bug spotted by coverity scan 2017-06-20 17:25:01 -04:00
812f1a8fab remove local variables shadowing global ones in BondsOMP() 2017-06-20 17:20:57 -04:00
218bc92c82 make pre-processor defines for using libc's qsort() consistent 2017-06-20 17:13:42 -04:00
ffa906de6f add C++ format identifiers to .h files 2017-06-20 16:18:34 -04:00
cccf72a21d make certain class member list is initialized to NULL before assigned to a neighbor list 2017-06-20 16:09:11 -04:00
87c028ed02 patch 20Jun17 2017-06-20 12:06:02 -06:00
bb47fa8783 Change indexing of all MEAM element arrays
- arrays in MEAM class
- eltind setting
- remove fmap translation
2017-06-20 19:56:14 +02:00
c79dc53c6a code improvement, less pointer params 2017-06-20 19:36:07 +02:00
72a1364d85 Merge branch 'master' into package-meamc 2017-06-20 13:21:46 -04:00
198fe7ecd7 fix storing of invalid memory pointer 2017-06-20 19:00:57 +02:00
84b530cca1 Merge pull request #537 from lammps/neb
minor changes to NEB doc pages and examples
2017-06-20 09:38:32 -06:00
50c9167913 small formatting correction in fix neb docs 2017-06-20 10:36:30 -04:00
d2610d9e7c minor changes to NEB doc pages and examples 2017-06-20 08:19:23 -06:00
326a8a1289 Merge pull request #536 from akohlmey/fix-nvcc-openmp-conflicts
Implement workaround for NVCC incompatibilities with OpenMP directives
2017-06-20 07:44:40 -06:00
b5300724bb Merge pull request #533 from lammps/user-intel
Updates for USER-INTEL package and NEB command flags/docs updates and issues
2017-06-20 07:44:17 -06:00
e129f18e6f Merge pull request #530 from akohlmey/no_static_sort_in_dump
Refactor Dump and Irregular classes to remove static class members
2017-06-20 07:43:49 -06:00
8c54fcd1b6 cleanup from aidan for fix reax/c/species and its KOKKOS version
this version eliminates the need for the PBCconnected list and avoids having to access the spec_atom array for ghost atoms
2017-06-19 17:31:54 -04:00
f5047ac3c7 augment fix shardlow check for ordering fixes to be KOKKOS compatible 2017-06-19 17:23:23 -04:00
164cedf353 protect all OpenMP pragmas with ifdefs and add special conditions for nvcc to ignore unsupported directives 2017-06-19 15:31:20 -04:00
3c329d1707 massive whitespace cleanup in USER-INTEL
removed are:
- DOS/Windows text format carriage return characters (^M)
- tabs replaced with spaces (tabs are evil!!)
- trailing whitespace
2017-06-19 13:23:01 -04:00
b687d16177 insert C++ file format indicator comments 2017-06-19 13:03:23 -04:00
9d3e34e492 add missing reference for lj/smooth/linear 2017-06-19 11:23:30 -04:00
8988b692a3 modified the documentation, first and last freeend can have different spring constants 2017-06-19 16:30:42 +02:00
c97415aefa corrected the initial free end 2017-06-19 14:57:39 +02:00
a9f3f90025 fix uninitialized members 2017-06-19 12:51:18 +02:00
9b8de3ba29 remove ifdefs for selecting between plain and hybrid merge sort. use hybrid only. 2017-06-17 09:30:41 -04:00
cd88b31450 same PR, also has cosmetic changes to new fix neb options 2017-06-16 17:02:05 -06:00
9b9f6d6fe2 USER-INTEL upgrade from M Brown 2017-06-16 16:56:28 -06:00
c1b0b1b3f9 restore old qsort() based code and add preprocessor directives to switch
-DLMP_USE_LIBC_QSORT will use qsort() from libc to sort (requires static/global variables).
-DLMP_USE_MERGE_SORT will use a plain merge sort. slightly slower for expensive comparisons.
-DLMP_USE_HYBRID_SORT will use hybrid merge sort. faster than merge sort (no static/global variables)
2017-06-16 18:17:48 -04:00
bc0241576f Merge pull request #532 from akohlmey/restore-heuristics-in-fix-shardlow
recover running USER-DPD with USER-OMP and suffixes
2017-06-16 09:46:58 -06:00
2a6f026853 mergesort performance improvements
- use insertion sort to pre-sort data in 32-element chunks
- swap pointers between merge runs instead of copying the data
2017-06-16 08:05:55 -04:00
8728a8ddae restore heuristics for checking against integrators that broke after PR #499 was merged 2017-06-15 15:16:50 -04:00
9aa450b832 Merge pull request #528 from akohlmey/no_static_in_ring_comm
Refactor ring communication to no longer require static class variables
2017-06-15 11:13:07 -06:00
0588c382f0 Merge pull request #513 from v0i0/bugfix-airebo-nconj-kronecker
Bugfix in AIREBO as reported in #59 by @KammIma
2017-06-15 11:12:29 -06:00
d3c90f3c14 Merge pull request #510 from akohlmey/collected-small-changes
Collected small changes
2017-06-15 11:12:14 -06:00
b62d526cc9 Revert "avoid undesired negative forces for high particle velocities in granular models"
This reverts commit 066123007c.
2017-06-15 11:01:36 -04:00
1a29048940 Merge pull request #531 from ohenrich/user-cgdna
Affiliation Update for USER-CGDNA
2017-06-15 08:54:52 -06:00
0a6b3f8790 Merge pull request #527 from dstelter92/master
Added compute_scalar to fix_grem
2017-06-15 08:54:22 -06:00
7227bc415d Merge pull request #526 from andeplane/vashishta_gpu
Implemented pair style vashishta in GPU package
2017-06-15 08:52:13 -06:00
a4bc233d86 Merge pull request #525 from akohlmey/user-tally-refactor
Refactoring of USER-TALLY computes to handle sparse/hybrid system for many processors plus bugfixes
2017-06-15 08:51:24 -06:00
5c5b4ffadb Merge pull request #522 from akohlmey/tip4p-cleanup-refactor
Refactor and bugfix for some TIP4P pair styles
2017-06-15 08:48:52 -06:00
30177c4eae Merge pull request #521 from pastewka/17_dump_nc
Updated NetCDF dump style (dump netcdf)
2017-06-15 08:47:29 -06:00
178eff237b Merge pull request #520 from stanmoore1/kokkos_update
Kokkos library update to v2.03.05
2017-06-15 08:47:09 -06:00
576b7f1d97 Merge pull request #519 from Pakketeretet2/USER-MANIFOLD-gaussian-bump
Some extensions/cleanup in USER-MANIFOLD
2017-06-15 08:46:55 -06:00
86369fec6b Merge pull request #517 from akohlmey/select-rigid-reinit-option
Add `reinit` keyword to rigid body fixes
2017-06-15 08:46:29 -06:00
79341ac5d1 Merge pull request #516 from akohlmey/check-rigid-overlap
Implement check whether commands or styles try to change cached properties in rigid body integrators
2017-06-15 08:44:05 -06:00
66945294a9 Merge pull request #515 from stanmoore1/remove_fences
Remove unnecessary thread fences in Kokkos package
2017-06-15 08:40:43 -06:00
9a7207e34c Merge pull request #511 from akohlmey/add-compute-cnp
Integrate compute cnp/atom contributed by Paulo Branicio (USC)
2017-06-15 08:38:05 -06:00
d41c617d1d Merge pull request #509 from akohlmey/add-atomonly-npair-for-omp
add "atomonly" optimized neighbor list build styles to USER-OMP
2017-06-15 08:24:44 -06:00
1ec9e588ff Merge pull request #504 from andeplane/hexorder_fix
Using correct ndegree instead of nnn
2017-06-15 08:24:25 -06:00
3c7417fb59 Merge pull request #497 from lammps/add-user-reaxc-omp
Add USER-OMP compatible OpenMP support to USER-REAXC
2017-06-15 08:24:03 -06:00
34cfc7bd51 Merge pull request #490 from EmileMaras/NEB-Change
added several features to the NEB
2017-06-15 08:23:04 -06:00
c98bb7fa5f Corrected minor bug in utility script 2017-06-15 12:57:44 +01:00
77ca68a2b4 Changed affiliation 2017-06-15 12:52:19 +01:00
06fe703eed add missing mergesort header 2017-06-14 23:22:49 -04:00
8500a197ae whitespace cleanup 2017-06-14 23:13:10 -04:00
1f17e8ebbb remove need for static class member variables in Dump and Irregular
The dump and irregular classes were using qsort() from the C-library
for sorting lists through custom comparison functions, which required
access to additional data, which was passed via static class variables,
i.e. globals. This collides with having multiple LAMMPS instances in
the same address space.

the calls to qsort() are replaced with a custom merge sort, which passes
a void pointer to the comparison functions, which can contain any kind
of desired information, e.g. a class handle or a list
2017-06-14 23:10:53 -04:00
fcc387f232 change ring communication API to no longer require a static variable pointing to 'this' of the caller 2017-06-14 17:01:06 -04:00
e7634a44f4 updated thermo_modify in example 2017-06-14 13:11:54 -04:00
3214d639aa removed unneeded .gitignore 2017-06-14 12:26:52 -04:00
0ad66ecb89 Added compute_scalar to fix_grem for easier output managment, updated example to show use 2017-06-14 12:18:22 -04:00
e139a7fd45 Updated docs for vashishta/gpu 2017-06-14 13:52:03 +02:00
d7646aeeed Fixed opencl error 2017-06-14 12:03:47 +02:00
5f9341813d Removed debug output 2017-06-14 10:57:54 +02:00
8441307185 Removed non-general CUDA-dir in makefile 2017-06-14 10:28:46 +02:00
720af5c360 Added vashishta to OpenCL makefile 2017-06-14 10:27:52 +02:00
eeff0b8633 Added vashishta GPU package for NVidia 2017-06-14 10:24:16 +02:00
32b967ed9c add rigid body overlap warnings to change_box and delete_atoms 2017-06-13 16:26:49 -04:00
3d066283b6 fix compilation, move meam_cleanup to destructor 2017-06-13 19:41:29 +02:00
29e60fa53a Move rho/gamma arrays to fields of MEAM, remove arguments and arrdim macros 2017-06-13 18:39:40 +02:00
11751521e7 remove dead code 2017-06-12 22:49:31 -04:00
7a05d87f7c update USER-TALLY examples 2017-06-12 22:20:36 -04:00
b01143102d refactoring of USER-TALLY computes to handle sparse and hybrid systems
with sparse and hybrid systems, Pair::ev_tally() may not be called on
every processor and thus the computes in USER-TALLY may hang during
reverse communication because of the error->all() call after checking
whether callback from Pair::ev_tally() has been called at least once.
To address this cleanly, a second callback function needs to be added,
which is run during Pair::ev_setup() and will now handle all memory
re-allocation and clearing of accumulators, just like it is done for
regular tallied data.
2017-06-12 22:12:12 -04:00
e530ba46f4 cleanup and bugfix for compute heat/flux/tally
- make heatj a pointer instead of a static array
- fix memory leaks for eatom, stress
- simplify and streamline computation
2017-06-12 21:46:00 -04:00
420db44596 print incompatible pair style warnings in USER-TALLY only on MPI rank 0 2017-06-12 20:05:15 -04:00
cfeb9b5ba5 Merge branch 'collected-small-changes' of github.com:akohlmey/lammps into collected-small-changes 2017-06-12 14:20:50 -04:00
0c805d0b70 correctly skip over point particles and point dipoles when counting extendend particles in fix rigid/small 2017-06-12 14:20:38 -04:00
6b289b0794 change incorrect EINERTIA constant in rigid body integrators from 4.0 to 2.0 (same as in other integrators) 2017-06-12 14:07:40 -04:00
078f2a0a47 Convert/Reindex phir* arrays 2017-06-12 17:41:09 +02:00
bdd908c303 update documentation for USER-MEAMC package and pair style meam/c 2017-06-11 21:54:18 -04:00
b45a95107d remove ambiguous access conflict to fm_exp() in pair style agni/omp after moving fm_exp() to math_special.h 2017-06-11 18:45:40 -04:00
9f852f5f58 Improve C++-ness, eliminate some macros
- fm_exp moved to math_special (exp2 was already there)
- use std::min/max template instead of macros
- use memory->create for dynamic arrays (still 1-indexed with macro)
- remove _ from function names, adjust method visibility
2017-06-11 16:55:41 +02:00
fea28d8028 ensure that allocatable_double_2d types are initialized 2017-06-11 07:29:44 -04:00
afed8bb978 make changes to pass compilation test
- move MEAM class into LAMMPS_NS namespace
- move inclusion of meam.h header to pair_meamc.cpp to reduce namespace pollution
- use forward declaration for MEAM class reference
- make that class reference a pointer and add a destructor
- replace MAX/MIN macros with versions compatible with older compilers
2017-06-11 07:18:13 -04:00
03c93b31d6 Convert to C++, allow multiple instances 2017-06-11 11:29:24 +02:00
d3f31547f9 Reformat code with clang-format (Mozilla style guide) 2017-06-11 11:29:24 +02:00
7c7468ffc2 Change c->cpp for better integration with makefile 2017-06-11 11:29:23 +02:00
bab292b551 Create package USER-MEAMC
Step 1: very literal translation of lib/meam
2017-06-11 11:29:23 +02:00
daa77176ad add restart support to fix deform. only "initial" data is restored and some consistency check performed 2017-06-10 17:28:17 -04:00
8f18c284d3 add crude check to print warning when using compute cnp/atom on multi-type system 2017-06-10 17:08:07 -04:00
06915162b0 whitespace cleanup 2017-06-10 16:56:54 -04:00
a849f35dcd adjust compute cnp/atom to match the documentation. need to skip atoms not in compute group. 2017-06-10 16:55:42 -04:00
4c69bbcf5c apply rigid body check to displace_atoms command 2017-06-10 11:37:54 -04:00
dd44189d1f fix bug in compute orientorder/atom argument parsing 2017-06-10 04:35:11 -04:00
2f6bbcfbbc output detailed multi-thread performance data only with "timer full" 2017-06-09 15:11:40 -04:00
2686b7f830 simplify compatibility check for fix reax/c/bonds with pair styles 2017-06-09 14:39:52 -04:00
d3a863e7af when identifying molecules/clusters fall back to unfiltered coordinates for ghost atoms 2017-06-09 14:35:12 -04:00
64e8000720 expand error message requiring a reax/c derived pair style 2017-06-09 11:42:35 -04:00
c160d0cd5e fix reax/c/species/omp doesn't is not needed anymore 2017-06-09 11:04:11 -04:00
9222278fb5 match reax/c pair style variants against prefix and not full name 2017-06-09 11:00:16 -04:00
bdf03757e6 MAINT: Simplified GPL headers. 2017-06-08 23:20:21 +02:00
c81bc108f9 DOC: Updated dump_modify and dump netcdf documentation. 2017-06-08 23:19:38 +02:00
10d2e7c380 MAINT: DumpNetCDF and DumpNetCDFMPIIO need access to thermo output. 2017-06-08 23:18:54 +02:00
bd83c7c7f9 MAINT: Updated contact data and fixed typos. 2017-06-08 23:02:22 +02:00
d51cee1b82 MAINT: Turned 'global' options into a 'thermo yes'/'thermo no' option that enables dumping of thermo data to the netcdf file (for parallel NetCDF/MPIIO variant). 2017-06-08 22:58:27 +02:00
be476c9e1d MAINT: Turned 'global' options into a 'thermo yes'/'thermo no' option that enables dumping of thermo data to the netcdf file. 2017-06-08 22:43:10 +02:00
0ecdb99885 fix uninitialized data access as reported by @martok in #174 2017-06-08 13:50:17 -04:00
00ce15d043 Remove tpls dir 2017-06-08 10:43:19 -06:00
5c1d17d1c0 Updating Kokkos lib to v2.03.05 2017-06-08 10:42:08 -06:00
afd4f5b0a6 Merge branch 'collected-small-changes' of github.com:akohlmey/lammps into collected-small-changes 2017-06-07 17:37:13 -04:00
31a734b03d sbmask function should be flagged as const indicating no side effects 2017-06-07 17:10:33 -04:00
2e728972e2 make pair styles lj/cut/tip4p/long/omp, lj/long/tip4p/long and lj/long/tip4p/long/omp consistent with the reset of tip4p styles 2017-06-07 17:09:45 -04:00
36c8b26fef BUG: DumpNCMPIIO is now called DumpNetCDFMPIIO 2017-06-07 14:01:36 +02:00
99ef36f440 MAINT: Switched NetCDF from 64BIT_OFFSET to 64BIT_DATA which can handle frames (of unlimited dimension) > 2 GB. This becomes important for system sizes 100 Mio atoms and upwards. 2017-06-07 13:52:33 +02:00
a2edef7c9c local variable fp in pair style eam/cd was shadowing class member. renamed local variable to fptr 2017-06-07 00:23:53 -04:00
1f9504c546 some more bookkeeping updates triggered by the lj/sf style removal 2017-06-06 17:31:45 -04:00
04ebd81ac5 minor whitespace cleanup 2017-06-06 17:26:18 -04:00
5cb56796a2 alias pair style lj/sf to lj/smooth/linear and remove/update related files 2017-06-06 17:26:06 -04:00
0c1b87c8cf Merge branch 'collected-small-changes' of github.com:akohlmey/lammps into collected-small-changes 2017-06-06 16:27:07 -04:00
cd67eaa5f4 update e-mail and affiliation for stefan paquay in USER-MANIFOLD related files 2017-06-06 16:26:57 -04:00
18dee3f78e Added Gaussian bump. Updated e-mail address. 2017-06-06 16:03:09 -04:00
13643e185c Merge branch 'USER-MANIFOLD-gaussian-bump' 2017-06-06 15:47:41 -04:00
06c8e95774 corrected the fix_neb documentation 2017-06-06 14:20:54 +02:00
d437650c77 make certain Domain::box_change is initialized before use 2017-06-06 08:08:10 -04:00
46c5cbae8f update rigid fix documentation for added reinit keyword 2017-06-05 18:04:09 -04:00
deff6c666e add flag "reinit" with args "yes" / "no" to fixes rigid & rigid/small 2017-06-05 17:31:43 -04:00
3a01836325 simplify code for rigid body overlap checks 2017-06-05 16:39:17 -04:00
0034d2db35 apply the rigid body checks to some more example codes 2017-06-05 16:30:30 -04:00
ed50bd2254 Removing unnecessary fences 2017-06-05 13:54:13 -06:00
90ca0852c7 use "body" list via Fix::extract() to correctly identify atoms in bodies 2017-06-05 15:48:23 -04:00
968de8548c apply test for overlap with rigid bodies to set and velocity command 2017-06-05 13:06:53 -04:00
95d6f05a76 add 3 APIs to Modify for checking if atoms overlap with any rigid fixes 2017-06-05 12:41:37 -04:00
ff58ccac28 add clarification to impact of special bonds to manybody potentials 2017-06-04 21:21:32 -04:00
e03cc99467 made the command options more lammps standard style 2017-06-02 23:42:16 +02:00
f59ee5bd62 enable support for dynamic groups in fix planeforce and fix lineforce 2017-06-02 08:45:15 -04:00
af5f19604c remove no longer correct sentence from set command docs 2017-05-31 23:36:39 -04:00
3025996407 Merge branch 'master' into add-user-reaxc-omp
This updates the code base with several required updates from master
2017-05-31 12:53:38 -04:00
d2b6559039 Fixing issue in fix_qeq_reax 2017-05-31 10:52:03 -06:00
3c0cef9927 Merge branch 'fix_domain_pointer' of https://github.com/andeplane/lammps into collected-small-changes 2017-05-31 07:10:16 -04:00
937cf0b996 Bugfix: Kronecker term ignored in spline forces.
The code ignored the kronecker(ktype, 0) or kronecker(ltype, 0)
terms in the contributing terms to NconjtmpI and NconjtmpJ.
The issue was present both in ::bondorder and ::bondorderLJ and
led to energy conservation issues.
It has been fixed by checking for the atom type before entering
the offending calculations and adding clarifying comments.
2017-05-31 12:20:12 +02:00
f57f1efdff Setting lattice to NULL before creating 2017-05-31 00:34:26 -07:00
2b3c124e61 add example input for compute cnp/atom 2017-05-31 00:43:53 -04:00
85e917ae52 integrate compute cnp/atom contributed by Paulo Branicio (USC) 2017-05-31 00:38:44 -04:00
0be2cd3d43 fix bug reported on lammps-users, when not using the first molecule template 2017-05-30 23:58:56 -04:00
066123007c avoid undesired negative forces for high particle velocities in granular models 2017-05-30 21:54:16 -04:00
167a51538e support atom style variables for assigning image flags with the set command 2017-05-30 21:52:32 -04:00
5c6f63d8b4 Merge branch 'fix_adapt_doc_fix' of https://github.com/Pakketeretet2/lammps into collected-small-changes 2017-05-30 17:06:25 -04:00
03ab8d0f48 major neighbor list style whitespace cleanup 2017-05-30 17:04:48 -04:00
75b567a457 add "atomonly" optimized neighbor list build styles to USER-OMP 2017-05-30 16:50:38 -04:00
cace3e3530 Added missing :pre to doc/src/fix_adapt.txt 2017-05-30 16:08:32 -04:00
286d4f2743 Merge pull request #506 from lammps/snap
SNAP changes by Aidan
2017-05-30 13:32:00 -06:00
952b18fc02 Merge pull request #494 from rbberger/small_updates
Collection of minor updates
2017-05-30 10:51:24 -06:00
816fa93429 Merge pull request #499 from akohlmey/add-fix-compute-style-bugfix
Fix bug where fix/compute style names were not correctly set with suffixes
2017-05-30 10:49:27 -06:00
f4f975edd6 Merge pull request #495 from akohlmey/doc-fixes
Collected small updates and bugfixes
2017-05-30 10:48:57 -06:00
cff4e4a837 Merge pull request #468 from andeplane/gcmc_fix_nlocal
Using correct value for atom->nlocal in translate/rotate in fix_gcmc.cpp
2017-05-30 10:45:39 -06:00
32db4660bd Merge pull request #460 from andeplane/gcmc_fix
Setting molecule COM to 0 after moving atoms
2017-05-30 10:45:23 -06:00
22fdb1fc14 SNAP changes by Aidan 2017-05-30 10:21:07 -06:00
412cb8f089 avoid hang in fix reax/c/species when multiple atoms have the exact same x-coordinate 2017-05-30 08:15:55 -04:00
092806ad4f no need for special whitespace handling in library interface 2017-05-30 07:55:48 -04:00
4ae314731d must not use strtok() in library function as it is not re-entrant and may be used inside LAMMPS commands 2017-05-30 07:42:10 -04:00
4b8d2e829c triclinic member variable is referenced in destructor and thus must be initialized in constructor 2017-05-30 07:41:01 -04:00
d93938f7e1 displace_atom rotate needs to operate on unwrapped coordinates with image flags set to zero 2017-05-29 16:57:35 -04:00
c904cfb8bc removed a bug in fix_neb.cpp which prevented the freeend to work properly, plus added an example for the neb freeend 2017-05-29 15:49:04 +02:00
32c87f3131 removed a bug in fix_neb.cpp which prevented the freeend to work properly, plus added an example for the neb freeend 2017-05-29 14:00:13 +02:00
ba0ddea5e1 Using correct ndegree instead of nnn 2017-05-28 15:44:12 -07:00
c0339120d2 add missing neighbor list class definitions to USER-OMP 2017-05-26 21:28:41 -04:00
5a23d2d1da fix bug in computing mixed EAM potentials introduced by TI modifications 2017-05-26 20:28:45 -04:00
de446ace2f Merge branch 'user-manifold-doc-fix' of https://github.com/Pakketeretet2/lammps into doc-fixes 2017-05-26 18:44:29 -04:00
2055110e05 Fixed typo in dox. 2017-05-26 17:38:21 -04:00
5b1e582f03 prevent segfault when defining pair_style comb3 without arguments 2017-05-26 10:52:20 -04:00
f1ec6dc41a dead code removal and reformatting 2017-05-25 18:55:07 -04:00
c3f6e27bfe augment documentation for newly added multi-threaded reax/c styles 2017-05-25 17:00:19 -04:00
0a2fe70511 remove redundant code from fix qeq/reax and qeq/reax/omp 2017-05-25 16:31:31 -04:00
53e7fee5b7 Merge branch 'doc-fixes' of github.com:akohlmey/lammps into doc-fixes 2017-05-25 10:11:31 -04:00
5291f2ed6e fix bug in fix shear/history reported by kevin hanley. see #500 2017-05-25 10:11:24 -04:00
99a68e487f fix suffix style handling bug for adding fixes and computes 2017-05-25 02:01:04 -04:00
271431ab18 clean up code so it can be compiled with and without OpenMP enabled regardless of whether the USER-OMP package is installed 2017-05-24 17:25:57 -04:00
88d4150d2b remove trailing whitespace 2017-05-24 16:29:56 -04:00
0e3cfbc007 remove trailing whitespace 2017-05-24 16:29:26 -04:00
5345ad2da7 merge in the remainder of the USER-REAXC-OMP code. still a lot of work to do. compiles only with -fopenmp active 2017-05-24 16:24:43 -04:00
ead05f81c0 Merge branch 'pair_morse_soft-doc-fix' of https://github.com/Pakketeretet2/lammps into doc-fixes 2017-05-24 13:56:54 -04:00
4f9e7cbd16 Cleaned up docs for pair_mores, a missing :pre ruined formatting. 2017-05-24 13:36:14 -04:00
bb890941ca first chunk of code from USER-REAXC-OMP imported and adapted into USER-REAXC 2017-05-24 00:19:36 -04:00
4002dce639 restore explicit NAN constants in output 2017-05-22 22:39:52 -04:00
c801cdd81f some more formatting cleanup in fix neb 2017-05-22 22:33:14 -04:00
9008a31190 more formatting cleanup
This cleans up and simplifies the neb command code some more
2017-05-22 21:55:55 -04:00
bdfb7c69ea Remove unused code detected by coverity CID 177700 2017-05-22 17:51:40 -04:00
084626e60b Fixes coverity issue CID 179426 2017-05-22 17:36:16 -04:00
a7d790a827 Fixes coverity issue CID 179439 2017-05-22 17:33:47 -04:00
8a630ff4ec Fixes coverity issue CID 179440 2017-05-22 17:32:07 -04:00
617ca4e0c8 Fixes coverity issue CID 179436 2017-05-22 17:30:46 -04:00
62601678cd when growing arrays with reallocate, always check against atom->nmax and not atom->nlocal or else these arrays may be of inconsistent size and communication can lead to data corruption 2017-05-22 17:16:19 -04:00
081910adbc do not try to free null communicators 2017-05-22 17:15:14 -04:00
f73fd0625d rename nall class member to numall to avoid confusion with the common convention nall = atom->nlocal+atom->nghost 2017-05-22 17:14:38 -04:00
06a4f47a4c Merge remote-tracking branch 'upstream/master' into small_updates 2017-05-22 17:14:29 -04:00
7185db98b4 NEBLongRange was incorrectly set to false by default. revert to true. 2017-05-22 17:13:38 -04:00
4780d72809 use '&&' and '||' instead of 'and' and 'or' operators for consistency 2017-05-22 14:42:42 -04:00
3fd91a239f avoid use '&&' and '||' instead of 'and' and 'or' for consistency 2017-05-22 14:41:01 -04:00
8bc829c7f1 change example inputs to be backward compatible 2017-05-22 14:40:01 -04:00
97d3c843c4 small documentation fixes to fix typos and formatting issues 2017-05-21 11:13:47 -04:00
546aed7ccd plug some memory leaks 2017-05-19 16:14:59 -04:00
6ef79d3715 silence several compiler warnings 2017-05-19 15:13:19 -04:00
c2bf3269ac formatting cleanup. combine 8 MPI_Allreduce() calls into 1 2017-05-19 15:02:29 -04:00
aca16745e4 restore spelling fix and semantic fix from upstream 2017-05-19 12:17:19 -04:00
a5110d81ea correct a bunch of documentation formatting issues for updated neb and fix neb commands 2017-05-19 12:13:23 -04:00
9593e05c9e Force PDF documentation build to fail on first error 2017-05-18 19:37:08 -04:00
d4ee03c778 changed doc links 2017-05-18 21:31:39 +02:00
069f3e746b small formating changes 2017-05-18 21:23:29 +02:00
8daba01151 some small formating change but does not work anymore 2017-05-18 16:48:20 +02:00
640edbc1d4 added several features to the NEB 2017-05-18 11:08:08 +02:00
7adc7f02e0 Stopped working on gaussian bump. 2017-05-03 11:21:18 -04:00
914848433a Using correct value for atom->nlocal 2017-05-01 00:02:57 +02:00
67fced37c8 Setting molecule COM to 0 after moving atoms 2017-04-26 20:10:18 +02:00
1115 changed files with 90559 additions and 24875 deletions

112
.github/CONTRIBUTING.md vendored Normal file
View File

@ -0,0 +1,112 @@
# Contributing to LAMMPS via GitHub
Thank your for considering to contribute to the LAMMPS software project.
The following is a set of guidelines as well as explanations of policies and workflows for contributing to the LAMMPS molecular dynamics software project. These guidelines focus on submitting issues or pull requests on the LAMMPS GitHub project.
Thus please also have a look at:
* [The Section on submitting new features for inclusion in LAMMPS of the Manual](http://lammps.sandia.gov/doc/Section_modify.html#mod-15)
* [The LAMMPS GitHub Tutorial in the Manual](http://lammps.sandia.gov/doc/tutorial_github.html)
## Table of Contents
[I don't want to read this whole thing, I just have a question!](#i-dont-want-to-read-this-whole-thing-i-just-have-a-question)
[How Can I Contribute?](#how-can-i-contribute)
* [Discussing How To Use LAMMPS](#discussing-how-to-use-lammps)
* [Reporting Bugs](#reporting-bugs)
* [Suggesting Enhancements](#suggesting-enhancements)
* [Contributing Code](#contributing-code)
[GitHub Workflows](#github-workflows)
* [Issues](#issues)
* [Pull Requests](#pull-requests)
__
## I don't want to read this whole thing I just have a question!
> **Note:** Please do not file an issue to ask a general question about LAMMPS, its features, how to use specific commands, or how perform simulations or analysis in LAMMPS. Instead post your question to the ['lammps-users' mailing list](http://lammps.sandia.gov/mail.html). You do not need to be subscribed to post to the list (but a mailing list subscription avoids having your post delayed until it is approved by a mailing list moderator). Most posts to the mailing list receive a response within less than 24 hours. Before posting to the mailing list, please read the [mailing list guidelines](http://lammps.sandia.gov/guidelines.html). Following those guidelines will help greatly to get a helpful response. Always mention which LAMMPS version you are using.
## How Can I Contribute?
There are several ways how you can actively contribute to the LAMMPS project: you can discuss compiling and using LAMMPS, and solving LAMMPS related problems with other LAMMPS users on the lammps-users mailing list, you can report bugs or suggest enhancements by creating issues on GitHub (or posting them to the lammps-users mailing list), and you can contribute by submitting pull requests on GitHub or e-mail your code
to one of the [LAMMPS core developers](http://lammps.sandia.gov/authors.html). As you may see from the aforementioned developer page, the LAMMPS software package includes the efforts of a very large number of contributors beyond the principal authors and maintainers.
### Discussing How To Use LAMMPS
The LAMMPS mailing list is hosted at SourceForge. The mailing list began in 2005, and now includes tens of thousands of messages in thousands of threads. LAMMPS developers try to respond to posted questions in a timely manner, but there are no guarantees. Please consider that people live in different timezone and may not have time to answer e-mails outside of their work hours.
You can post to list by sending your email to lammps-users at lists.sourceforge.net (no subscription required), but before posting, please read the [mailing list guidelines](http://lammps.sandia.gov/guidelines.html) to maximize your chances to receive a helpful response.
Anyone can browse/search previous questions/answers in the archives. You do not have to subscribe to the list to post questions, receive answers (to your questions), or browse/search the archives. You **do** need to subscribe to the list if you want emails for **all** the posts (as individual messages or in digest form), or to answer questions yourself. Feel free to sign up and help us out! Answering questions from fellow LAMMPS users is a great way to pay back the community for providing you a useful tool for free, and to pass on the advice you have received yourself to others. It improves your karma and helps you understand your own research better.
If you post a message and you are a subscriber, your message will appear immediately. If you are not a subscriber, your message will be moderated, which typically takes one business day. Either way, when someone replies the reply will usually be sent to both, your personal email address and the mailing list. When replying to people, that responded to your post to the list, please always included the mailing list in your replies (i.e. use "Reply All" and **not** "Reply"). Responses will appear on the list in a few minutes, but it can take a few hours for postings and replies to show up in the SourceForge archive. Sending replies also to the mailing list is important, so that responses are archived and people with a similar issue can search for possible solutions in the mailing list archive.
### Reporting Bugs
While developers writing code for LAMMPS are careful to test their code, LAMMPS is such a large and complex software, that it is impossible to test for all combinations of features under all normal and not so normal circumstances. Thus bugs do happen, and if you suspect, that you have encountered one, please try to document it and report it as an [Issue](https://github.com/lammps/lammps/issues) on the LAMMPS GitHub project web page. However, before reporting a bug, you need to check whether this is something that may have already been corrected. The [Latest Features and Bug Fixes in LAMMPS](http://lammps.sandia.gov/bug.html) web page lists all significant changes to LAMMPS over the years. It also tells you what the current latest development version of LAMMPS is, and you should test whether your issue still applies to that version.
When you click on the green "New Issue" button, you will be provided with a text field, where you can enter your message. That text field with contain a template with several headlines and some descriptions. Keep the headlines that are relevant to your reported potential bug and replace the descriptions with the information as suggested by the descriptions.
You can also attach small text files (please add the file name extension `.txt` or it will be rejected), images, or small compressed text files (using gzip, do not use RAR or 7-ZIP or similar tools that are uncommon outside of Windows machines). In many cases, bugs are best illustrated by providing a small input deck (do **not** attach your entire production input, but remove everything that is not required to reproduce the issue, and scale down your system size, that the resulting calculation runs fast and can be run on small desktop quickly).
To be able to submit an issue on GitHub, you have to register for an account (for GitHub in general). If you do not want to do that, or have other reservations against submitting an issue there, you can - as an alternative and in decreasing preference - either send an e-mail to the lammps-users mailing list, the original authors of the feature that you suspect to be affected, or one or more of the core LAMMPS developers.
### Suggesting Enhancements
The LAMMPS developers welcome suggestions for enhancements or new features. These should be submitted using the [GitHub Issue Tracker](https://github.com/lammps/lammps/issues) of the LAMMPS project. This is particularly recommended, when you plan to implement the feature or enhancement yourself, as this allows to coordinate in case there are other similar or conflicting ongoing developments.
The LAMMPS developers will review your submission and consider implementing it. Whether this will actually happen depends on many factors: how difficult it would be, how much effort it would take, how many users would benefit from it, how well the individual developer would understand the underlying physics of the feature, and whether this is a feature that would fit into a software like LAMMPS, or would be better implemented as a separate tool. Because of these factors, it matters how well the suggested enhancement is formulated and the overall benefit is argued convincingly.
To be able to submit an issue on GitHub, you have to register for an account (for GitHub in general). If you do not want to do that, or have other reservations against submitting an issue there, you can - as an alternative - send an e-mail to the lammps-users mailing list.
### Contributing Code
We encourage users to submit new features or modifications for LAMMPS to the core developers so they can be added to the LAMMPS distribution. The preferred way to manage and coordinate this is by submitting a pull request at the LAMMPS project on GitHub. For any larger modifications or programming project, you are encouraged to contact the LAMMPS developers ahead of time, in order to discuss implementation strategies and coding guidelines, that will make it easier to integrate your contribution and result in less work for everybody involved. You are also encouraged to search through the list of open issues on GitHub and submit a new issue for a planned feature, so you would not duplicate the work of others (and possibly get scooped by them) or have your work duplicated by others.
How quickly your contribution will be integrated depends largely on how much effort it will cause to integrate and test it, how much it requires changes to the core code base, and of how much interest it is to the larger LAMMPS community. Please see below for a checklist of typical requirements. Once you have prepared everything, see [this tutorial](http://lammps.sandia.gov/doc/tutorial_github.html)
for instructions on how to submit your changes or new files through a GitHub pull request
Here is a checklist of steps you need to follow to submit a single file or user package for our consideration. Following these steps will save both you and us time. See existing files in packages in the source directory for examples. If you are uncertain, please ask on the lammps-users mailing list.
* All source files you provide must compile with the most current version of LAMMPS with multiple configurations. In particular you need to test compiling LAMMPS from scratch with `-DLAMMPS_BIGBIG` set in addition to the default `-DLAMMPS_SMALLBIG` setting. Your code will need to work correctly in serial and in parallel using MPI.
* For consistency with the rest of LAMMPS and especially, if you want your contribution(s) to be added to main LAMMPS code or one of its standard packages, it needs to be written in a style compatible with other LAMMPS source files. This means: 2-character indentation per level, no tabs, no lines over 80 characters. I/O is done via the C-style stdio library, class header files should not import any system headers outside <stdio.h>, STL containers should be avoided in headers, and forward declarations used where possible or needed. All added code should be placed into the LAMMPS_NS namespace or a sub-namespace; global or static variables should be avoided, as they conflict with the modular nature of LAMMPS and the C++ class structure. Header files must not import namespaces with using. This all is so the developers can more easily understand, integrate, and maintain your contribution and reduce conflicts with other parts of LAMMPS. This basically means that the code accesses data structures, performs its operations, and is formatted similar to other LAMMPS source files, including the use of the error class for error and warning messages.
* If you want your contribution to be added as a user-contributed feature, and it is a single file (actually a `<name>.cpp` and `<name>.h` file) it can be rapidly added to the USER-MISC directory. Include the one-line entry to add to the USER-MISC/README file in that directory, along with the 2 source files. You can do this multiple times if you wish to contribute several individual features.
* If you want your contribution to be added as a user-contribution and it is several related features, it is probably best to make it a user package directory with a name like USER-FOO. In addition to your new files, the directory should contain a README text file. The README should contain your name and contact information and a brief description of what your new package does. If your files depend on other LAMMPS style files also being installed (e.g. because your file is a derived class from the other LAMMPS class), then an Install.sh file is also needed to check for those dependencies. See other README and Install.sh files in other USER directories as examples. Send us a tarball of this USER-FOO directory.
* Your new source files need to have the LAMMPS copyright, GPL notice, and your name and email address at the top, like other user-contributed LAMMPS source files. They need to create a class that is inside the LAMMPS namespace. If the file is for one of the USER packages, including USER-MISC, then we are not as picky about the coding style (see above). I.e. the files do not need to be in the same stylistic format and syntax as other LAMMPS files, though that would be nice for developers as well as users who try to read your code.
* You **must** also create or extend a documentation file for each new command or style you are adding to LAMMPS. For simplicity and convenience, the documentation of groups of closely related commands or styles may be combined into a single file. This will be one file for a single-file feature. For a package, it might be several files. These are simple text files with a specific markup language, that are then auto-converted to HTML and PDF. The tools for this conversion are included in the source distribution, and the translation can be as simple as doing "make html pdf" in the doc folder. Thus the documentation source files must be in the same format and style as other `<name>.txt` files in the lammps/doc/src directory for similar commands and styles; use one or more of them as a starting point. A description of the markup can also be found in `lammps/doc/utils/txt2html/README.html` As appropriate, the text files can include links to equations (see doc/Eqs/*.tex for examples, we auto-create the associated JPG files), or figures (see doc/JPG for examples), or even additional PDF files with further details (see doc/PDF for examples). The doc page should also include literature citations as appropriate; see the bottom of doc/fix_nh.txt for examples and the earlier part of the same file for how to format the cite itself. The "Restrictions" section of the doc page should indicate that your command is only available if LAMMPS is built with the appropriate USER-MISC or USER-FOO package. See other user package doc files for examples of how to do this. The prerequisite for building the HTML format files are Python 3.x and virtualenv, the requirement for generating the PDF format manual is the htmldoc software. Please run at least "make html" and carefully inspect and proofread the resulting HTML format doc page before submitting your code.
* For a new package (or even a single command) you should include one or more example scripts demonstrating its use. These should run in no more than a couple minutes, even on a single processor, and not require large data files as input. See directories under examples/USER for examples of input scripts other users provided for their packages. These example inputs are also required for validating memory accesses and testing for memory leaks with valgrind
* If there is a paper of yours describing your feature (either the algorithm/science behind the feature itself, or its initial usage, or its implementation in LAMMPS), you can add the citation to the *.cpp source file. See src/USER-EFF/atom_vec_electron.cpp for an example. A LaTeX citation is stored in a variable at the top of the file and a single line of code that references the variable is added to the constructor of the class. Whenever a user invokes your feature from their input script, this will cause LAMMPS to output the citation to a log.cite file and prompt the user to examine the file. Note that you should only use this for a paper you or your group authored. E.g. adding a cite in the code for a paper by Nose and Hoover if you write a fix that implements their integrator is not the intended usage. That kind of citation should just be in the doc page you provide.
Finally, as a general rule-of-thumb, the more clear and self-explanatory you make your documentation and README files, and the easier you make it for people to get started, e.g. by providing example scripts, the more likely it is that users will try out your new feature.
If the new features/files are broadly useful we may add them as core files to LAMMPS or as part of a standard package. Else we will add them as a user-contributed file or package. Examples of user packages are in src sub-directories that start with USER. The USER-MISC package is simply a collection of (mostly) unrelated single files, which is the simplest way to have your contribution quickly added to the LAMMPS distribution. You can see a list of the both standard and user packages by typing "make package" in the LAMMPS src directory.
Note that by providing us files to release, you are agreeing to make them open-source, i.e. we can release them under the terms of the GPL, used as a license for the rest of LAMMPS. See Section 1.4 for details.
With user packages and files, all we are really providing (aside from the fame and fortune that accompanies having your name in the source code and on the Authors page of the LAMMPS WWW site), is a means for you to distribute your work to the LAMMPS user community, and a mechanism for others to easily try out your new feature. This may help you find bugs or make contact with new collaborators. Note that you are also implicitly agreeing to support your code which means answer questions, fix bugs, and maintain it if LAMMPS changes in some way that breaks it (an unusual event).
To be able to submit an issue on GitHub, you have to register for an account (for GitHub in general). If you do not want to do that, or have other reservations or difficulties to submit a pull request, you can - as an alternative - contact one or more of the core LAMMPS developers and ask if one of them would be interested in manually merging your code into LAMMPS and send them your source code. Since the effort to merge a pull request is a small fraction of the effort of integrating source code manually (which would usually be done by converting the contribution into a pull request), your chances to have your new code included quickly are the best with a pull request.
If you prefer to submit patches or full files, you should first make certain, that your code works correctly with the latest patch-level version of LAMMPS and contains all bug fixes from it. Then create a gzipped tar file of all changed or added files or a corresponding patch file using 'diff -u' or 'diff -c' and compress it with gzip. Please only use gzip compression, as this works well on all platforms.
## GitHub Workflows
This section briefly summarizes the steps that will happen **after** you have submitted either an issue or a pull request on the LAMMPS GitHub project page.
### Issues
After submitting an issue, one or more of the LAMMPS developers will review it and categorize it by assigning labels. Confirmed bug reports will be labeled `bug`; if the bug report also contains a suggestion for how to fix it, it will be labeled `bugfix`; if the issue is a feature request, it will be labeled `enhancement`. Other labels may be attached as well, depending on which parts of the LAMMPS code are affected. If the assessment is, that the issue does not warrant any changes, the `wontfix` label will be applied and if the submission is incorrect or something that should not be submitted as an issue, the `invalid` label will be applied. In both of the last two cases, the issue will then be closed without further action.
For feature requests, what happens next is that developers may comment on the viability or relevance of the request, discuss and make suggestions for how to implement it. If a LAMMPS developer or user is planning to implement the feature, the issue will be assigned to that developer. For developers, that are not yet listed as LAMMPS project collaborators, they will receive an invitation to be added to the LAMMPS project as a collaborator so they can get assigned. If the requested feature or enhancement is implemented, it will usually be submitted as a pull request, which will contain a reference to the issue number. And once the pull request is reviewed and accepted for inclusion into LAMMPS, the issue will be closed. For details on how pull requests are processed, please see below.
For bug reports, the next step is that one of the core LAMMPS developers will self-assign to the issue and try to confirm the bug. If confirmed, the `bug` label and potentially other labels are added to classify the issue and its impact to LAMMPS. Before confirming, further questions may be asked or requests for providing additional input files or details about the steps required to reproduce the issue. Any bugfix is likely to be submitted as a pull request (more about that below) and since most bugs require only local changes, the bugfix may be included in a pull request specifically set up to collect such local bugfixes or small enhancements. Once the bugfix is included in the master branch, the issue will be closed.
### Pull Requests
For submitting pull requests, there is a [detailed tutorial](http://lammps.sandia.gov/doc/tutorial_github.html) in the LAMMPS manual. Thus only a brief breakdown of the steps is presented here.
Immediately after the submission, the LAMMPS continuing integration server at ci.lammps.org will download your submitted branch and perform a simple compilation test, i.e. will test whether your submitted code can be compiled under various conditions. It will also do a check on whether your included documentation translates cleanly. Whether these tests are successful or fail will be recorded. If a test fails, please inspect the corresponding output on the CI server and take the necessary steps, if needed, so that the code can compile cleanly again. The test will be re-run each the pull request is updated with a push to the remote branch on GitHub.
Next a LAMMPS core developer will self-assign and do an overall technical assessment of the submission. If you are not yet registered as a LAMMPS collaborator, you will receive an invitation for that.
You may also receive comments and suggestions on the overall submission or specific details. If permitted, additional changes may be pushed into your pull request branch or a pull request may be filed in your LAMMPS fork on GitHub to include those changes.
The LAMMPS developer may then decide to assign the pull request to another developer (e.g. when that developer is more knowledgeable about the submitted feature or enhancement or has written the modified code). It may also happen, that additional developers are requested to provide a review and approve the changes. For submissions, that may change the general behavior of LAMMPS, or where a possibility of unwanted side effects exists, additional tests may be requested by the assigned developer.
If the assigned developer is satisfied and considers the submission ready for inclusion into LAMMPS, the pull request will be assigned to the LAMMPS lead developer, Steve Plimpton (@sjplimp), who will then have the final decision on whether the submission will be included, additional changes are required or it will be ultimately rejected. After the pull request is merged, you may delete the pull request branch in your personal LAMMPS fork.
Since the learning curve for git is quite steep for efficiently managing remote repositories, local and remote branches, pull requests and more, do not hesitate to ask questions, if you are not sure about how to do certain steps that are asked of you. Even if the changes asked of you do not make sense to you, they may be important for the LAMMPS developers. Please also note, that these all are guidelines and not set in stone.

31
.github/ISSUE_TEMPLATE.md vendored Normal file
View File

@ -0,0 +1,31 @@
## Summary
_Please provide a brief description of the issue_
## Type of Issue
_Is this a 'Bug Report' or a 'Suggestion for an Enhancement'?_
## Detailed Description (Enhancement Suggestion)
_Explain how you would like to see LAMMPS enhanced, what feature(s) you are looking for, provide references to relevant background information, and whether you are willing to implement the enhancement yourself or would like to participate in the implementation_
## LAMMPS Version (Bug Report)
_Please specify which LAMMPS version this issue was detected with. If this is not the latest development version, please stop and test that version, too, and report it here if the bug persists_
## Expected Behavior (Bug Report)
_Describe the expected behavior. Quote from the LAMMPS manual where needed or explain why the expected behavior is meaningful, especially when it differs from the manual_
## Actual Behavior (Bug Report)
_Describe the actual behavior, how it differs from the expected behavior, and how this can be observed. Try to be specific and do **not* use vague terms like "doesn't work" or "wrong result". Do not assume that the person reading this has any experience with or knowledge of your specific research._
## Steps to Reproduce (Bug Report)
_Describe the steps required to quickly reproduce the issue. You can attach (small) files to the section below or add URLs where to download an archive with all necessary files. Please try to create input that are as small as possible and run as fast as possible. NOTE: the less effort and time it takes to reproduce your issue, the more likely, that somebody will look into it._
## Further Information, Files, and Links
_Put any additional information here, attach relevant text or image files and URLs to external sites, e.g. relevant publications_

29
.github/PULL_REQUEST_TEMPLATE.md vendored Normal file
View File

@ -0,0 +1,29 @@
## Purpose
_Briefly describe the new feature(s), enhancement(s), or bugfix(es) included in this pull request. If this addresses an open GitHub Issue, mention the issue number, e.g. with `fixes #221` or `closes #135`, so that issue will be automatically closed when the pull request is merged_
## Author(s)
_Please state name and affiliation of the author or authors that should be credited with the changes in this pull request_
## Backward Compatibility
_Please state whether any changes in the pull request break backward compatibility for inputs, and - if yes - explain what has been changed and why_
## Implementation Notes
_Provide any relevant details about how the changes are implemented, how correctness was verified, how other features - if any - in LAMMPS are affected_
## Post Submission Checklist
_Please check the fields below as they are completed_
- [ ] The feature or features in this pull request is complete
- [ ] Suitable new documentation files and/or updates to the existing docs are included
- [ ] One or more example input decks are included
- [ ] The source code follows the LAMMPS formatting guidelines
## Further Information, Files, and Links
_Put any additional information here, attach relevant text or image files, and URLs to external sites (e.g. DOIs or webpages)_

View File

@ -100,6 +100,7 @@ epub: $(OBJECTS)
pdf: utils/txt2html/txt2html.exe
@(\
set -e; \
cd src; \
../utils/txt2html/txt2html.exe -b *.txt; \
htmldoc --batch lammps.book; \

BIN
doc/src/Eqs/cnp_cutoff.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

View File

@ -0,0 +1,14 @@
\documentclass[12pt,article]{article}
\usepackage{indentfirst}
\usepackage{amsmath}
\begin{document}
\begin{eqnarray*}
r_{c}^{fcc} & = & \frac{1}{2} \left(\frac{\sqrt{2}}{2} + 1\right) \mathrm{a} \simeq 0.8536 \:\mathrm{a} \\
r_{c}^{bcc} & = & \frac{1}{2}(\sqrt{2} + 1) \mathrm{a} \simeq 1.207 \:\mathrm{a} \\
r_{c}^{hcp} & = & \frac{1}{2}\left(1+\sqrt{\frac{4+2x^{2}}{3}}\right) \mathrm{a}
\end{eqnarray*}
\end{document}

BIN
doc/src/Eqs/cnp_cutoff2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.5 KiB

View File

@ -0,0 +1,12 @@
\documentclass[12pt,article]{article}
\usepackage{indentfirst}
\usepackage{amsmath}
\begin{document}
$$
Rc + Rs > 2*{\rm cutoff}
$$
\end{document}

BIN
doc/src/Eqs/cnp_eq.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

9
doc/src/Eqs/cnp_eq.tex Normal file
View File

@ -0,0 +1,9 @@
\documentclass[12pt]{article}
\begin{document}
$$
Q_{i} = \frac{1}{n_i}\sum_{j = 1}^{n_i} | \sum_{k = 1}^{n_{ij}} \vec{R}_{ik} + \vec{R}_{jk} |^2
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

View File

@ -1,11 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
\begin{eqnarray*}
F & = & F_{\mathrm{LJ}}(r) - F_{\mathrm{LJ}}(r_{\mathrm{c}}) \qquad r < r_{\mathrm{c}} \\
E & = & E_{\mathrm{LJ}}(r) - E_{\mathrm{LJ}}(r_{\mathrm{c}}) + (r - r_{\mathrm{c}}) F_{\mathrm{LJ}}(r_{\mathrm{c}}) \qquad r < r_{\mathrm{c}} \\
\mathrm{with} \qquad E_{\mathrm{LJ}}(r) & = & 4 \epsilon \left[ \left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right] \qquad \mathrm{and} \qquad F_{\mathrm{LJ}}(r) = - E^\prime_{\mathrm{LJ}}(r)
\end{eqnarray*}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

After

Width:  |  Height:  |  Size: 14 KiB

View File

@ -1,7 +1,7 @@
<!-- HTML_ONLY -->
<HEAD>
<TITLE>LAMMPS Users Manual</TITLE>
<META NAME="docnumber" CONTENT="19 May 2017 version">
<META NAME="docnumber" CONTENT="6 Jul 2017 version">
<META NAME="author" CONTENT="http://lammps.sandia.gov - Sandia National Laboratories">
<META NAME="copyright" CONTENT="Copyright (2003) Sandia Corporation. This software and manual is distributed under the GNU General Public License.">
</HEAD>
@ -21,7 +21,7 @@
<H1></H1>
LAMMPS Documentation :c,h3
19 May 2017 version :c,h4
6 Jul 2017 version :c,h4
Version info: :h4

View File

@ -717,7 +717,7 @@ package"_Section_start.html#start_3.
"phonon"_fix_phonon.html,
"pimd"_fix_pimd.html,
"qbmsst"_fix_qbmsst.html,
"qeq/reax"_fix_qeq_reax.html,
"qeq/reax (ko)"_fix_qeq_reax.html,
"qmmm"_fix_qmmm.html,
"qtb"_fix_qtb.html,
"reax/c/bonds"_fix_reax_bonds.html,
@ -831,6 +831,7 @@ package"_Section_start.html#start_3.
"ackland/atom"_compute_ackland_atom.html,
"basal/atom"_compute_basal_atom.html,
"cnp/atom"_compute_cnp_atom.html,
"dpd"_compute_dpd.html,
"dpd/atom"_compute_dpd_atom.html,
"fep"_compute_fep.html,
@ -963,7 +964,7 @@ KOKKOS, o = USER-OMP, t = OPT.
"lj/expand (gko)"_pair_lj_expand.html,
"lj/gromacs (gko)"_pair_gromacs.html,
"lj/gromacs/coul/gromacs (ko)"_pair_gromacs.html,
"lj/long/coul/long (o)"_pair_lj_long.html,
"lj/long/coul/long (io)"_pair_lj_long.html,
"lj/long/dipole/long"_pair_dipole.html,
"lj/long/tip4p/long"_pair_lj_long.html,
"lj/smooth (o)"_pair_lj_smooth.html,
@ -1038,7 +1039,7 @@ package"_Section_start.html#start_3.
"lj/sdk (gko)"_pair_sdk.html,
"lj/sdk/coul/long (go)"_pair_sdk.html,
"lj/sdk/coul/msm (o)"_pair_sdk.html,
"lj/sf (o)"_pair_lj_sf.html,
"meam/c"_pair_meam.html,
"meam/spline (o)"_pair_meam_spline.html,
"meam/sw/spline"_pair_meam_sw_spline.html,
"mgpt"_pair_mgpt.html,
@ -1057,7 +1058,7 @@ package"_Section_start.html#start_3.
"oxdna2/excv"_pair_oxdna2.html,
"oxdna2/stk"_pair_oxdna2.html,
"quip"_pair_quip.html,
"reax/c (k)"_pair_reaxc.html,
"reax/c (ko)"_pair_reaxc.html,
"smd/hertz"_pair_smd_hertz.html,
"smd/tlsph"_pair_smd_tlsph.html,
"smd/triangulated/surface"_pair_smd_triangulated_surface.html,
@ -1225,7 +1226,7 @@ USER-OMP, t = OPT.
"msm/cg (o)"_kspace_style.html,
"pppm (go)"_kspace_style.html,
"pppm/cg (o)"_kspace_style.html,
"pppm/disp"_kspace_style.html,
"pppm/disp (i)"_kspace_style.html,
"pppm/disp/tip4p"_kspace_style.html,
"pppm/stagger"_kspace_style.html,
"pppm/tip4p (o)"_kspace_style.html :tb(c=4,ea=c)

View File

@ -4696,9 +4696,9 @@ Self-explanatory. :dd
{Fix bond/create induced too many angles/dihedrals/impropers per atom} :dt
See the read_data command for info on setting the "extra angle per
atom", etc header values to allow for additional angles, etc to be
formed. :dd
See the read_data command for info on using the "extra/angle/per/atom",
(or dihedral, improper) keywords to allow for additional
angles, dihedrals, and impropers to be formed. :dd
{Fix bond/create needs ghost atoms from further away} :dt
@ -7876,18 +7876,20 @@ See the setting for tagint in the src/lmptype.h file. :dd
{New bond exceeded bonds per atom in create_bonds} :dt
See the read_data command for info on setting the "extra bond per
atom" header value to allow for additional bonds to be formed. :dd
See the read_data command for info on using the "extra/bond/per/atom"
keyword to allow for additional bonds to be formed
{New bond exceeded bonds per atom in fix bond/create} :dt
See the read_data command for info on setting the "extra bond per
atom" header value to allow for additional bonds to be formed. :dd
See the read_data command for info on using the "extra/bond/per/atom"
keyword to allow for additional bonds to be formed :dd
{New bond exceeded special list size in fix bond/create} :dt
See the special_bonds extra command for info on how to leave space in
the special bonds list to allow for additional bonds to be formed. :dd
See the "special_bonds extra" command
(or the "read_data extra/special/per/atom" command)
for info on how to leave space in the special bonds
list to allow for additional bonds to be formed. :dd
{Newton bond change after simulation box is defined} :dt
@ -8890,6 +8892,14 @@ This is a requirement to use this potential. :dd
See the newton command. This is a restriction to use this potential. :dd
{Pair style vashishta/gpu requires atom IDs} :dt
This is a requirement to use this potential. :dd
{Pair style vashishta/gpu requires newton pair off} :dt
See the newton command. This is a restriction to use this potential. :dd
{Pair style tersoff/gpu requires atom IDs} :dt
This is a requirement to use the tersoff/gpu potential. :dd
@ -9656,9 +9666,10 @@ you are running. :dd
{Special list size exceeded in fix bond/create} :dt
See the read_data command for info on setting the "extra special per
atom" header value to allow for additional special values to be
stored. :dd
See the special_bonds extra command
(or the read_data extra/special/per/atom command)
for info on how to leave space in the special bonds
list to allow for additional bonds to be formed. :dd
{Specified processors != physical processors} :dt
@ -9675,23 +9686,23 @@ Self-explanatory. :dd
{Subsequent read data induced too many angles per atom} :dt
See the create_box extra/angle/per/atom or read_data "extra angle per
atom" header value to set this limit larger. :dd
See the extra/angle/per/atom keyword for the create_box
or the read_data command to set this limit larger :dd
{Subsequent read data induced too many bonds per atom} :dt
See the create_box extra/bond/per/atom or read_data "extra bond per
atom" header value to set this limit larger. :dd
See the extra/bond/per/atom keyword for the create_box
or the read_data command to set this limit larger :dd
{Subsequent read data induced too many dihedrals per atom} :dt
See the create_box extra/dihedral/per/atom or read_data "extra
dihedral per atom" header value to set this limit larger. :dd
See the extra/dihedral/per/atom keyword for the create_box
or the read_data command to set this limit larger :dd
{Subsequent read data induced too many impropers per atom} :dt
See the create_box extra/improper/per/atom or read_data "extra
improper per atom" header value to set this limit larger. :dd
See the extra/improper/per/atom keyword for the create_box
or the read_data command to set this limit larger :dd
{Substitution for illegal variable} :dt

View File

@ -121,6 +121,7 @@ Package, Description, Doc page, Example, Library
"USER-INTEL"_#USER-INTEL, optimized Intel CPU and KNL styles,"Section 5.3.2"_accelerate_intel.html, WWW bench, -
"USER-LB"_#USER-LB, Lattice Boltzmann fluid,"fix lb/fluid"_fix_lb_fluid.html, USER/lb, -
"USER-MANIFOLD"_#USER-MANIFOLD, motion on 2d surfaces,"fix manifoldforce"_fix_manifoldforce.html, USER/manifold, -
"USER-MEAMC"_#USER-MEAMC, modified EAM potential (C++), "pair_style meam/c"_pair_meam.html, meam, -
"USER-MGPT"_#USER-MGPT, fast MGPT multi-ion potentials, "pair_style mgpt"_pair_mgpt.html, USER/mgpt, -
"USER-MISC"_#USER-MISC, single-file contributions, USER-MISC/README, USER/misc, -
"USER-MOLFILE"_#USER-MOLFILE, "VMD"_vmd_home molfile plug-ins,"dump molfile"_dump_molfile.html, -, ext
@ -1502,7 +1503,7 @@ oxDNA model of Doye, Louis and Ouldridge at the University of Oxford.
This includes Langevin-type rigid-body integrators with improved
stability.
[Author:] Oliver Henrich (University of Edinburgh).
[Author:] Oliver Henrich (University of Strathclyde, Glasgow).
[Install or un-install:]
@ -2027,8 +2028,8 @@ algorithm to formulate single-particle constraint functions
g(xi,yi,zi) = 0 and their derivative (i.e. the normal of the manifold)
n = grad(g).
[Author:] Stefan Paquay (Eindhoven University of Technology (TU/e), The
Netherlands)
[Author:] Stefan Paquay (until 2017: Eindhoven University of Technology (TU/e), The
Netherlands; since 2017: Brandeis University, Waltham, MA, USA)
[Install or un-install:]
@ -2051,6 +2052,37 @@ http://lammps.sandia.gov/movies.html#manifold :ul
:line
USER-MEAMC package :link(USER-MEAMC),h4
[Contents:]
A pair style for the modified embedded atom (MEAM) potential
translated from the Fortran version in the "MEAM"_MEAM package
to plain C++. In contrast to the MEAM package, no library
needs to be compiled and the pair style can be instantiated
multiple times.
[Author:] Sebastian Huetter, (Otto-von-Guericke University Magdeburg)
based on the Fortran version of Greg Wagner (Northwestern U) while at
Sandia.
[Install or un-install:]
make yes-user-meamc
make machine :pre
make no-user-meamc
make machine :pre
[Supporting info:]
src/USER-MEAMC: filenames -> commands
src/USER-MEAMC/README
"pair meam/c"_pair_meam.html
examples/meam :ul
:line
USER-MOLFILE package :link(USER-MOLFILE),h4
[Contents:]

View File

@ -30,8 +30,8 @@ Dihedral Styles: charmm, harmonic, opls :l
Fixes: nve, npt, nvt, nvt/sllod :l
Improper Styles: cvff, harmonic :l
Pair Styles: buck/coul/cut, buck/coul/long, buck, eam, gayberne,
charmm/coul/long, lj/cut, lj/cut/coul/long, sw, tersoff :l
K-Space Styles: pppm :l
charmm/coul/long, lj/cut, lj/cut/coul/long, lj/long/coul/long, sw, tersoff :l
K-Space Styles: pppm, pppm/disp :l
:ule
[Speed-ups to expect:]
@ -42,62 +42,90 @@ precision mode. Performance improvements are shown compared to
LAMMPS {without using other acceleration packages} as these are
under active development (and subject to performance changes). The
measurements were performed using the input files available in
the src/USER-INTEL/TEST directory. These are scalable in size; the
results given are with 512K particles (524K for Liquid Crystal).
Most of the simulations are standard LAMMPS benchmarks (indicated
by the filename extension in parenthesis) with modifications to the
run length and to add a warmup run (for use with offload
benchmarks).
the src/USER-INTEL/TEST directory with the provided run script.
These are scalable in size; the results given are with 512K
particles (524K for Liquid Crystal). Most of the simulations are
standard LAMMPS benchmarks (indicated by the filename extension in
parenthesis) with modifications to the run length and to add a
warmup run (for use with offload benchmarks).
:c,image(JPG/user_intel.png)
Results are speedups obtained on Intel Xeon E5-2697v4 processors
(code-named Broadwell) and Intel Xeon Phi 7250 processors
(code-named Knights Landing) with "18 Jun 2016" LAMMPS built with
Intel Parallel Studio 2016 update 3. Results are with 1 MPI task
(code-named Knights Landing) with "June 2017" LAMMPS built with
Intel Parallel Studio 2017 update 2. Results are with 1 MPI task
per physical core. See {src/USER-INTEL/TEST/README} for the raw
simulation rates and instructions to reproduce.
:line
[Accuracy and order of operations:]
In most molecular dynamics software, parallelization parameters
(# of MPI, OpenMP, and vectorization) can change the results due
to changing the order of operations with finite-precision
calculations. The USER-INTEL package is deterministic. This means
that the results should be reproducible from run to run with the
{same} parallel configurations and when using determinstic
libraries or library settings (MPI, OpenMP, FFT). However, there
are differences in the USER-INTEL package that can change the
order of operations compared to LAMMPS without acceleration:
Neighbor lists can be created in a different order :ulb,l
Bins used for sorting atoms can be oriented differently :l
The default stencil order for PPPM is 7. By default, LAMMPS will
calculate other PPPM parameters to fit the desired acuracy with
this order :l
The {newton} setting applies to all atoms, not just atoms shared
between MPI tasks :l
Vectorization can change the order for adding pairwise forces :l
:ule
The precision mode (described below) used with the USER-INTEL
package can change the {accuracy} of the calculations. For the
default {mixed} precision option, calculations between pairs or
triplets of atoms are performed in single precision, intended to
be within the inherent error of MD simulations. All accumulation
is performed in double precision to prevent the error from growing
with the number of atoms in the simulation. {Single} precision
mode should not be used without appropriate validation.
:line
[Quick Start for Experienced Users:]
LAMMPS should be built with the USER-INTEL package installed.
Simulations should be run with 1 MPI task per physical {core},
not {hardware thread}.
For Intel Xeon CPUs:
Edit src/MAKE/OPTIONS/Makefile.intel_cpu_intelmpi as necessary. :ulb,l
If using {kspace_style pppm} in the input script, add "neigh_modify binsize cutoff" and "kspace_modify diff ad" to the input script for better
performance. Cutoff should be roughly the neighbor list cutoff. By
default the binsize is half the neighbor list cutoff. :l
"-pk intel 0 omp 2 -sf intel" added to LAMMPS command-line :l
Set the environment variable KMP_BLOCKTIME=0 :l
"-pk intel 0 omp $t -sf intel" added to LAMMPS command-line :l
$t should be 2 for Intel Xeon CPUs and 2 or 4 for Intel Xeon Phi :l
For some of the simple 2-body potentials without long-range
electrostatics, performance and scalability can be better with
the "newton off" setting added to the input script :l
For simulations on higher node counts, add "processors * * * grid
numa" to the beginning of the input script for better scalability :l
If using {kspace_style pppm} in the input script, add
"kspace_modify diff ad" for better performance :l
:ule
For Intel Xeon Phi CPUs for simulations without {kspace_style
pppm} in the input script :
For Intel Xeon Phi CPUs:
Edit src/MAKE/OPTIONS/Makefile.knl as necessary. :ulb,l
Runs should be performed using MCDRAM. :l
"-pk intel 0 omp 2 -sf intel" {or} "-pk intel 0 omp 4 -sf intel"
should be added to the LAMMPS command-line. Choice for best
performance will depend on the simulation. :l
Runs should be performed using MCDRAM. :ulb,l
:ule
For Intel Xeon Phi CPUs for simulations with {kspace_style
pppm} in the input script:
For simulations using {kspace_style pppm} on Intel CPUs
supporting AVX-512:
Edit src/MAKE/OPTIONS/Makefile.knl as necessary. :ulb,l
Runs should be performed using MCDRAM. :l
Add "neigh_modify binsize 3" to the input script for better
performance. :l
Add "kspace_modify diff ad" to the input script for better
performance. :l
export KMP_AFFINITY=none :l
"-pk intel 0 omp 3 lrt yes -sf intel" or "-pk intel 0 omp 1 lrt yes
-sf intel" added to LAMMPS command-line. Choice for best performance
will depend on the simulation. :l
Add "kspace_modify diff ad" to the input script :ulb,l
The command-line option should be changed to
"-pk intel 0 omp $r lrt yes -sf intel" where $r is the number of
threads minus 1. :l
Do not use thread affinity (set KMP_AFFINITY=none) :l
The "newton off" setting may provide better scalability :l
:ule
For Intel Xeon Phi coprocessors (Offload):
@ -169,6 +197,10 @@ cat /proc/cpuinfo :pre
[Building LAMMPS with the USER-INTEL package:]
NOTE: See the src/USER-INTEL/README file for additional flags that
might be needed for best performance on Intel server processors
code-named "Skylake".
The USER-INTEL package must be installed into the source directory:
make yes-user-intel :pre
@ -322,8 +354,8 @@ follow in the input script.
NOTE: The USER-INTEL package will perform better with modifications
to the input script when "PPPM"_kspace_style.html is used:
"kspace_modify diff ad"_kspace_modify.html and "neigh_modify binsize
3"_neigh_modify.html should be added to the input script.
"kspace_modify diff ad"_kspace_modify.html should be added to the
input script.
Long-Range Thread (LRT) mode is an option to the "package
intel"_package.html command that can improve performance when using
@ -342,6 +374,10 @@ would normally perform best with "-pk intel 0 omp 4", instead use
environment variable "KMP_AFFINITY=none". LRT mode is not supported
when using offload.
NOTE: Changing the "newton"_newton.html setting to off can improve
performance and/or scalability for simple 2-body potentials such as
lj/cut or when using LRT mode on processors supporting AVX-512.
Not all styles are supported in the USER-INTEL package. You can mix
the USER-INTEL package with styles from the "OPT"_accelerate_opt.html
package or the "USER-OMP package"_accelerate_omp.html. Of course,
@ -358,6 +394,10 @@ hybrid intel omp"_suffix.html command can also be used within the
input script to automatically append the "omp" suffix to styles when
USER-INTEL styles are not available.
NOTE: For simulations on higher node counts, add "processors * * *
grid numa"_processors.html" to the beginning of the input script for
better scalability.
When running on many nodes, performance might be better when using
fewer OpenMP threads and more MPI tasks. This will depend on the
simulation and the machine. Using the "verlet/split"_run_style.html
@ -467,7 +507,7 @@ supported.
Brown, W.M., Carrillo, J.-M.Y., Mishra, B., Gavhane, N., Thakker, F.M., De Kraker, A.R., Yamada, M., Ang, J.A., Plimpton, S.J., "Optimizing Classical Molecular Dynamics in LAMMPS," in Intel Xeon Phi Processor High Performance Programming: Knights Landing Edition, J. Jeffers, J. Reinders, A. Sodani, Eds. Morgan Kaufmann. :ulb,l
Brown, W. M., Semin, A., Hebenstreit, M., Khvostov, S., Raman, K., Plimpton, S.J. Increasing Molecular Dynamics Simulation Rates with an 8-Fold Increase in Electrical Power Efficiency. 2016 International Conference for High Performance Computing. In press. :l
Brown, W. M., Semin, A., Hebenstreit, M., Khvostov, S., Raman, K., Plimpton, S.J. "Increasing Molecular Dynamics Simulation Rates with an 8-Fold Increase in Electrical Power Efficiency."_http://dl.acm.org/citation.cfm?id=3014915 2016 High Performance Computing, Networking, Storage and Analysis, SC16: International Conference (pp. 82-95). :l
Brown, W.M., Carrillo, J.-M.Y., Gavhane, N., Thakkar, F.M., Plimpton, S.J. Optimizing Legacy Molecular Dynamics Software with Directive-Based Offload. Computer Physics Communications. 2015. 195: p. 95-101. :l
:ule

View File

@ -26,7 +26,7 @@ Define a computation that calculates the CNA (Common Neighbor
Analysis) pattern for each atom in the group. In solid-state systems
the CNA pattern is a useful measure of the local crystal structure
around an atom. The CNA methodology is described in "(Faken)"_#Faken
and "(Tsuzuki)"_#Tsuzuki.
and "(Tsuzuki)"_#Tsuzuki1.
Currently, there are five kinds of CNA patterns LAMMPS recognizes:
@ -93,5 +93,5 @@ above.
:link(Faken)
[(Faken)] Faken, Jonsson, Comput Mater Sci, 2, 279 (1994).
:link(Tsuzuki)
:link(Tsuzuki1)
[(Tsuzuki)] Tsuzuki, Branicio, Rino, Comput Phys Comm, 177, 518 (2007).

View File

@ -0,0 +1,111 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
compute cnp/atom command :h3
[Syntax:]
compute ID group-ID cnp/atom cutoff :pre
ID, group-ID are documented in "compute"_compute.html command
cnp/atom = style name of this compute command
cutoff = cutoff distance for nearest neighbors (distance units) :ul
[Examples:]
compute 1 all cnp/atom 3.08 :pre
[Description:]
Define a computation that calculates the Common Neighborhood
Parameter (CNP) for each atom in the group. In solid-state systems
the CNP is a useful measure of the local crystal structure
around an atom and can be used to characterize whether the
atom is part of a perfect lattice, a local defect (e.g. a dislocation
or stacking fault), or at a surface.
The value of the CNP parameter will be 0.0 for atoms not in the
specified compute group. Note that normally a CNP calculation should
only be performed on single component systems.
This parameter is computed using the following formula from
"(Tsuzuki)"_#Tsuzuki2
:c,image(Eqs/cnp_eq.jpg)
where the index {j} goes over the {n}i nearest neighbors of atom
{i}, and the index {k} goes over the {n}ij common nearest neighbors
between atom {i} and atom {j}. Rik and Rjk are the vectors connecting atom
{k} to atoms {i} and {j}. The quantity in the double sum is computed
for each atom.
The CNP calculation is sensitive to the specified cutoff value.
You should ensure that the appropriate nearest neighbors of an atom are
found within the cutoff distance for the presumed crystal structure.
E.g. 12 nearest neighbor for perfect FCC and HCP crystals, 14 nearest
neighbors for perfect BCC crystals. These formulas can be used to
obtain a good cutoff distance:
:c,image(Eqs/cnp_cutoff.jpg)
where a is the lattice constant for the crystal structure concerned
and in the HCP case, x = (c/a) / 1.633, where 1.633 is the ideal c/a
for HCP crystals.
Also note that since the CNP calculation in LAMMPS uses the neighbors
of an owned atom to find the nearest neighbors of a ghost atom, the
following relation should also be satisfied:
:c,image(Eqs/cnp_cutoff2.jpg)
where Rc is the cutoff distance of the potential, Rs is the skin
distance as specified by the "neighbor"_neighbor.html command, and
cutoff is the argument used with the compute cnp/atom command. LAMMPS
will issue a warning if this is not the case.
The neighbor list needed to compute this quantity is constructed each
time the calculation is performed (e.g. each time a snapshot of atoms
is dumped). Thus it can be inefficient to compute/dump this quantity
too frequently or to have multiple compute/dump commands, each with a
{cnp/atom} style.
[Output info:]
This compute calculates a per-atom vector, which can be accessed by
any command that uses per-atom values from a compute as input. See
"Section 6.15"_Section_howto.html#howto_15 for an overview of
LAMMPS output options.
The per-atom vector values will be real positive numbers. Some typical CNP
values:
FCC lattice = 0.0
BCC lattice = 0.0
HCP lattice = 4.4 :pre
FCC (111) surface ~ 13.0
FCC (100) surface ~ 26.5
FCC dislocation core ~ 11 :pre
[Restrictions:]
This compute is part of the USER-MISC package. It is only enabled if
LAMMPS was built with that package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info.
[Related commands:]
"compute cna/atom"_compute_cna_atom.html
"compute centro/atom"_compute_centro_atom.html
[Default:] none
:line
:link(Tsuzuki2)
[(Tsuzuki)] Tsuzuki, Branicio, Rino, Comput Phys Comm, 177, 518 (2007).

View File

@ -76,7 +76,9 @@ command for the types of the two atoms is used. For the {radius}
setting, the sum of the radii of the two particles is used as a
cutoff. For example, this is appropriate for granular particles which
only interact when they are overlapping, as computed by "granular pair
styles"_pair_gran.txt.
styles"_pair_gran.txt. Note that if a granular model defines atom
types such that all particles of a specific type are monodisperse
(same diameter), then the two settings are effectively identical.
Note that as atoms migrate from processor to processor, there will be
no consistent ordering of the entries within the local vector or array

View File

@ -79,6 +79,9 @@ the two atoms is used. For the {radius} setting, the sum of the radii
of the two particles is used as a cutoff. For example, this is
appropriate for granular particles which only interact when they are
overlapping, as computed by "granular pair styles"_pair_gran.html.
Note that if a granular model defines atom types such that all
particles of a specific type are monodisperse (same diameter), then
the two settings are effectively identical.
If the inputs are bond, angle, etc attributes, the local data is
generated by looping over all the atoms owned on a processor and

View File

@ -111,26 +111,26 @@ Coefficients parameterized by "(Fox)"_#Fox are assigned for each
atom type designating the chemical symbol and charge of each atom
type. Valid chemical symbols for compute saed are:
H: He: Li: Be: B:
C: N: O: F: Ne:
Na: Mg: Al: Si: P:
S: Cl: Ar: K: Ca:
Sc: Ti: V: Cr: Mn:
Fe: Co: Ni: Cu: Zn:
Ga: Ge: As: Se: Br:
Kr: Rb: Sr: Y: Zr:
Nb: Mo: Tc: Ru: Rh:
Pd: Ag: Cd: In: Sn:
Sb: Te: I: Xe: Cs:
Ba: La: Ce: Pr: Nd:
Pm: Sm: Eu: Gd: Tb:
Dy: Ho: Er: Tm: Yb:
Lu: Hf: Ta: W: Re:
Os: Ir: Pt: Au: Hg:
Tl: Pb: Bi: Po: At:
Rn: Fr: Ra: Ac: Th:
Pa: U: Np: Pu: Am:
Cm: Bk: Cf:tb(c=5,s=:)
H: He: Li: Be: B:
C: N: O: F: Ne:
Na: Mg: Al: Si: P:
S: Cl: Ar: K: Ca:
Sc: Ti: V: Cr: Mn:
Fe: Co: Ni: Cu: Zn:
Ga: Ge: As: Se: Br:
Kr: Rb: Sr: Y: Zr:
Nb: Mo: Tc: Ru: Rh:
Pd: Ag: Cd: In: Sn:
Sb: Te: I: Xe: Cs:
Ba: La: Ce: Pr: Nd:
Pm: Sm: Eu: Gd: Tb:
Dy: Ho: Er: Tm: Yb:
Lu: Hf: Ta: W: Re:
Os: Ir: Pt: Au: Hg:
Tl: Pb: Bi: Po: At:
Rn: Fr: Ra: Ac: Th:
Pa: U: Np: Pu: Am:
Cm: Bk: Cf:tb(c=5,s=:)
If the {echo} keyword is specified, compute saed will provide extra

View File

@ -231,11 +231,12 @@ the numbers of columns are 930, 2790, and 5580, respectively.
If the {quadratic} keyword value is set to 1, then additional
columns are appended to each per-atom array, corresponding to
a matrix of quantities that are products of two bispectrum components. If the
number of bispectrum components is {K}, then the number of matrix elements
is {K}^2. These are output in subblocks of {K}^2 columns, using the same
ordering of columns and sub-blocks as was used for the bispectrum
components.
the products of all distinct pairs of bispectrum components. If the
number of bispectrum components is {K}, then the number of distinct pairs
is {K}({K}+1)/2. These are output in subblocks of {K}({K}+1)/2 columns, using the same
ordering of sub-blocks as was used for the bispectrum
components. Within each sub-block, the ordering is upper-triangular,
(1,1),(1,2)...(1,{K}),(2,1)...({K}-1,{K}-1),({K}-1,{K}),({K},{K})
These values can be accessed by any command that uses per-atom values
from a compute as input. See "Section

View File

@ -17,6 +17,7 @@ Computes :h1
compute_chunk_atom
compute_cluster_atom
compute_cna_atom
compute_cnp_atom
compute_com
compute_com_chunk
compute_contact_atom

View File

@ -10,53 +10,93 @@ create_bonds command :h3
[Syntax:]
create_bonds group-ID group2-ID btype rmin rmax :pre
create_bonds style args ... keyword value ... :pre
group-ID = ID of first group
group2-ID = ID of second group, bonds will be between atoms in the 2 groups
btype = bond type of created bonds
rmin = minimum distance between pair of atoms to bond together
rmax = minimum distance between pair of atoms to bond together :ul
style = {many} or {single/bond} or {single/angle} or {single/dihedral} :ule,l
{many} args = group-ID group2-ID btype rmin rmax
group-ID = ID of first group
group2-ID = ID of second group, bonds will be between atoms in the 2 groups
btype = bond type of created bonds
rmin = minimum distance between pair of atoms to bond together
rmax = minimum distance between pair of atoms to bond together
{single/bond} args = btype batom1 batom2
btype = bond type of new bond
batom1,batom2 = atom IDs for two atoms in bond
{single/angle} args = atype aatom1 aatom2 aatom3
atype = bond type of new angle
aatom1,aatom2,aatom3 = atom IDs for three atoms in angle
{single/dihedral} args = dtype datom1 datom2 datom3 datom4
dtype = bond type of new dihedral
datom1,datom2,datom3,datom4 = atom IDs for four atoms in dihedral :pre
zero or more keyword/value pairs may be appended :l
keyword = {special} :l
{special} value = {yes} or {no} :pre
:ule
[Examples:]
create_bonds all all 1 1.0 1.2
create_bonds surf solvent 3 2.0 2.4 :pre
create_bonds many all all 1 1.0 1.2
create_bonds many surf solvent 3 2.0 2.4
create_bond single/bond 1 1 2
create_bond single/angle 5 52 98 107 special no :pre
[Description:]
Create bonds between pairs of atoms that meet specified distance
criteria. The bond interactions can then be computed during a
simulation by the bond potential defined by the
"bond_style"_bond_style.html and "bond_coeff"_bond_coeff.html
commands. This command is useful for adding bonds to a system,
e.g. between nearest neighbors in a lattice of atoms, without having
to enumerate all the bonds in the data file read by the
"read_data"_read_data.html command.
Create bonds between pairs of atoms that meet a specified distance
criteria. Or create a single bond, angle, or dihedral between 2, 3,
or 4 specified atoms.
Note that the flexibility of this command is limited. It can be used
several times to create different types of bond at different
distances. But it cannot typically create all the bonds that would
normally be defined in a complex system of molecules. Also note that
this command does not add any 3-body or 4-body interactions which,
depending on your model, may be induced by added bonds,
e.g. "angle"_angle_style.html, "dihedral"_dihedral_style.html, or
"improper"_improper_style.html interactions.
The new bond (angle, dihedral) interactions will then be computed
during a simulation by the bond (angle, dihedral) potential defined by
the "bond_style"_bond_style.html, "bond_coeff"_bond_coeff.html,
"angle_style"_angle_style.html, "angle_coeff"_angle_coeff.html,
"dihedral_style"_dihedral_style.html,
"dihedral_coeff"_dihedral_coeff.html commands.
All created bonds will be between pairs of atoms I,J where I is in one
of the two specified groups, and J is in the other. The two groups
can be the same, e.g. group "all". The created bonds will be of bond
type {btype}, where {btype} must be a value between 1 and the number
of bond types defined. This maximum value is set by the "bond types"
field in the header of the data file read by the
"read_data"_read_data.html command, or via the optional "bond/types"
argument of the "create_box"_create_box.html command.
The {many} style is useful for adding bonds to a system, e.g. between
nearest neighbors in a lattice of atoms, without having to enumerate
all the bonds in the data file read by the "read_data"_read_data.html
command.
The {single} styles are useful for adding bonds, angles, dihedrals
to a system incrementally, then continuing a simulation.
Note that this command does not auto-create any angle or dihedral
interactions when a bond is added. Nor does it auto-create any bonds
when an angle or dihedral is added. Or auto-create any angles when a
dihedral is added. Thus the flexibility of this command is limited.
It can be used several times to create different types of bond at
different distances. But it cannot typically auto-create all the
bonds or angles or dihedral that would normally be defined in a data
file for a complex system of molecules.
NOTE: If the system has no bonds (angles, dihedrals) to begin with, or
if more bonds per atom are being added than currently exist, then you
must insure that the number of bond types and the maximum number of
bonds per atom are set to large enough values. And similarly for
angles and dihedrals. Otherwise an error may occur when too many
bonds (angles, dihedrals) are added to an atom. If the
"read_data"_read_data.html command is used to define the system, these
parameters can be set via the "bond types" and "extra bond per atom"
fields in the header section of the data file. If the
"create_box"_create_box.html command is used to define the system,
these 2 parameters can be set via its optional "bond/types" and
"extra/bond/per/atom" arguments. And similarly for angles and
dihedrals. See the doc pages for these 2 commands for details.
:line
The {many} style will create bonds between pairs of atoms I,J where I
is in one of the two specified groups, and J is in the other. The two
groups can be the same, e.g. group "all". The created bonds will be
of bond type {btype}, where {btype} must be a value between 1 and the
number of bond types defined.
For a bond to be created, an I,J pair of atoms must be a distance D
apart such that {rmin} <= D <= {rmax}.
The following settings must have been made in an input
script before this command is used:
The following settings must have been made in an input script before
this style is used:
special_bonds weight for 1-2 interactions must be 0.0
a "pair_style"_pair_style.html must be defined
@ -69,8 +109,8 @@ cannot appear in the neighbor list, to avoid creation of duplicate
bonds. The neighbor list for all atom type pairs must also extend to
a distance that encompasses the {rmax} for new bonds to create.
An additional requirement is that your system must be ready to perform
a simulation. This means, for example, that all
An additional requirement for this style is that your system must be
ready to perform a simulation. This means, for example, that all
"pair_style"_pair_style.html coefficients be set via the
"pair_coeff"_pair_coeff.html command. A "bond_style"_bond_style.html
command and all bond coefficients must also be set, even if no bonds
@ -83,17 +123,58 @@ executes, e.g. if you wish to use long-range Coulombic interactions
via the "kspace_style"_kspace_style.html command for your subsequent
simulation.
NOTE: If the system has no bonds to begin with, or if more bonds per
atom are being added than currently exist, then you must insure that
the number of bond types and the maximum number of bonds per atom are
set to large enough values. Otherwise an error may occur when too
many bonds are added to an atom. If the "read_data"_read_data.html
command is used to define the system, these 2 parameters can be set
via the "bond types" and "extra bond per atom" fields in the header
section of the data file. If the "create_box"_create_box.html command
is used to define the system, these 2 parameters can be set via its
optional "bond/types" and "extra/bond/per/atom" arguments. See the
doc pages for the 2 commands for details.
:line
The {single/bond} style creates a single bond of type {btype} between
two atoms with IDs {batom1} and {batom2}. {Btype} must be a value
between 1 and the number of bond types defined.
The {single/angle} style creates a single angle of type {atype}
between three atoms with IDs {aatom1}, {aatom2}, and {aatom3}. The
ordering of the atoms is the same as in the {Angles} section of a data
file read by the "read_data"_read_data command. I.e. the 3 atoms are
ordered linearly within the angle; the central atom is {aatom2}.
{Atype} must be a value between 1 and the number of angle types
defined.
The {single/dihedral} style creates a single dihedral of type {btype}
between two atoms with IDs {batom1} and {batom2}. The ordering of the
atoms is the same as in the {Dihedrals} section of a data file read by
the "read_data"_read_data command. I.e. the 4 atoms are ordered
linearly within the dihedral. {Dtype} must be a value between 1 and
the number of dihedral types defined.
:line
The keyword {special} controls whether an internal list of special
bonds is created after one or more bonds, or a single angle or
dihedral is added to the system.
The default value is {yes}. A value of {no} cannot be used
with the {many} style.
This is an expensive operation since the bond topology for the system
must be walked to find all 1-2, 1-3, 1-4 interactions to store in an
internal list, which is used when pairwise interactions are weighted;
see the "special_bonds"_special_bonds.html command for details.
Thus if you are adding a few bonds or a large list of angles all at
the same time, by using this command repeatedly, it is more efficient
to only trigger the internal list to be created once, after the last
bond (or angle, or dihedral) is added:
create_bonds single/bond 5 52 98 special no
create_bonds single/bond 5 73 74 special no
...
create_bonds single/bond 5 17 386 special no
create_bonds single/bond 4 112 183 special yes :pre
Note that you MUST insure the internal list is re-built after the last
bond (angle, dihedral) is added, before performing a simulation.
Otherwise pairwise interactions will not be properly excluded or
weighted. LAMMPS does NOT check that you have done this correctly.
:line
[Restrictions:]
@ -105,4 +186,6 @@ molecule template files via the "molecule"_molecule.html and
"create_atoms"_create_atoms.html, "delete_bonds"_delete_bonds.html
[Default:] none
[Default:]
The keyword default is special = yes.

View File

@ -138,7 +138,15 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This dihedral style can only be used if LAMMPS was built with the
When using run_style "respa"_run_style.html, these dihedral styles
must be assigned to the same r-RESPA level as {pair} or {outer}.
When used in combination with CHARMM pair styles, the 1-4
"special_bonds"_special_bonds.html scaling factors must be set to 0.0.
Otherwise non-bonded contributions for these 1-4 pairs will be
computed multiple times.
These dihedral styles can only be used if LAMMPS was built with the
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.

View File

@ -18,6 +18,7 @@ dihedral_coeff 1 1 286.1 1 124 1 1 90.0 0 1 90.0 0
dihedral_coeff 1 3 69.3 1 93.9 1 1 90 0 1 90 0 &
49.1 0 0.00 0 1 74.4 1 0 0.00 0 &
25.2 0 0.00 0 0 0.00 0 1 48.1 1
:pre
[Description:]

View File

@ -16,7 +16,8 @@ dump-ID = ID of dump to modify :ulb,l
one or more keyword/value pairs may be appended :l
these keywords apply to various dump styles :l
keyword = {append} or {buffer} or {element} or {every} or {fileper} or {first} or {flush} or {format} or {image} or {label} or {nfile} or {pad} or {precision} or {region} or {scale} or {sort} or {thresh} or {unwrap} :l
{append} arg = {yes} or {no}
{append} arg = {yes} or {no} or {at} N
N = index of frame written upon first dump
{buffer} arg = {yes} or {no}
{element} args = E1 E2 ... EN, where N = # of atom types
E1,...,EN = element name, e.g. C or Fe or Ga
@ -41,6 +42,7 @@ keyword = {append} or {buffer} or {element} or {every} or {fileper} or {first} o
{region} arg = region-ID or "none"
{scale} arg = {yes} or {no}
{sfactor} arg = coordinate scaling factor (> 0.0)
{thermo} arg = {yes} or {no}
{tfactor} arg = time scaling factor (> 0.0)
{sort} arg = {off} or {id} or N or -N
off = no sorting of per-atom lines within a snapshot
@ -139,12 +141,13 @@ and {dcd}. It also applies only to text output files, not to binary
or gzipped or image/movie files. If specified as {yes}, then dump
snapshots are appended to the end of an existing dump file. If
specified as {no}, then a new dump file will be created which will
overwrite an existing file with the same name. This keyword can only
take effect if the dump_modify command is used after the
"dump"_dump.html command, but before the first command that causes
dump snapshots to be output, e.g. a "run"_run.html or
"minimize"_minimize.html command. Once the dump file has been opened,
this keyword has no further effect.
overwrite an existing file with the same name. If the {at} option is present
({netcdf} only), then the frame to append to can be specified. Negative values
are counted from the end of the file. This keyword can only take effect if the
dump_modify command is used after the "dump"_dump.html command, but before the
first command that causes dump snapshots to be output, e.g. a "run"_run.html or
"minimize"_minimize.html command. Once the dump file has been opened, this
keyword has no further effect.
:line
@ -413,6 +416,13 @@ most effective when the typical magnitude of position data is between
:line
The {thermo} keyword ({netcdf} only) triggers writing of "thermo"_thermo.html
information to the dump file alongside per-atom data. The data included in the
dump file is identical to the data specified by
"thermo_style"_thermo_style.html.
:line
The {region} keyword only applies to the dump {custom}, {cfg},
{image}, and {movie} styles. If specified, only atoms in the region
will be written to the dump file or included in the image/movie. Only

View File

@ -24,7 +24,7 @@ args = list of atom attributes, same as for "dump_style custom"_dump.html :l,ule
[Examples:]
dump 1 all netcdf 100 traj.nc type x y z vx vy vz
dump_modify 1 append yes at -1 global c_thermo_pe c_thermo_temp c_thermo_press
dump_modify 1 append yes at -1 thermo yes
dump 1 all netcdf/mpiio 1000 traj.nc id type x y z :pre
[Description:]
@ -44,7 +44,7 @@ rank.
NetCDF files can be directly visualized via the following tools:
Ovito (http://www.ovito.org/). Ovito supports the AMBER convention and
all of the above extensions. :ule,b
all extensions of this dump style. :ule,b
VMD (http://www.ks.uiuc.edu/Research/vmd/). :l
@ -52,15 +52,9 @@ AtomEye (http://www.libatoms.org/). The libAtoms version of AtomEye
contains a NetCDF reader that is not present in the standard
distribution of AtomEye. :l,ule
In addition to per-atom data, global data can be included in the dump
file, which are the kinds of values output by the
"thermo_style"_thermo_style.html command . See "Section howto
6.15"_Section_howto.html#howto_15 for an explanation of per-atom
versus global data. The global output written into the dump file can
be from computes, fixes, or variables, by prefixing the compute/fix ID
or variable name with "c_" or "f_" or "v_" respectively, as in the
example above. These global values are specified via the "dump_modify
global"_dump_modify.html command.
In addition to per-atom data, "thermo"_thermo.html data can be included in the
dump file. The data included in the dump file is identical to the data specified
by "thermo_style"_thermo_style.html.
:link(netcdf-home,http://www.unidata.ucar.edu/software/netcdf/)
:link(pnetcdf-home,http://trac.mcs.anl.gov/projects/parallel-netcdf/)

View File

@ -47,7 +47,7 @@ keyword = {scale} or {reset} :l
fix 1 all adapt 1 pair soft a 1 1 v_prefactor
fix 1 all adapt 1 pair soft a 2* 3 v_prefactor
fix 1 all adapt 1 pair lj/cut epsilon * * v_scale1 coul/cut scale 3 3 v_scale2 scale yes reset yes
fix 1 all adapt 10 atom diameter v_size
fix 1 all adapt 10 atom diameter v_size :pre
variable ramp_up equal "ramp(0.01,0.5)"
fix stretch all adapt 1 bond harmonic r0 1 v_ramp_up :pre

View File

@ -565,8 +565,10 @@ more instructions on how to use the accelerated styles effectively.
[Restart, fix_modify, output, run start/stop, minimize info:]
No information about this fix is written to "binary restart
files"_restart.html. None of the "fix_modify"_fix_modify.html options
This fix will restore the initial box settings from "binary restart
files"_restart.html, which allows the fix to be properly continue
deformation, when using the start/stop options of the "run"_run.html
command. None of the "fix_modify"_fix_modify.html options
are relevant to this fix. No global or per-atom quantities are stored
by this fix for access by various "output
commands"_Section_howto.html#howto_15.

View File

@ -68,7 +68,7 @@ matrix that gives canonical sampling for a given A is computed automatically.
However, the GLE framework also allow for non-equilibrium sampling, that
can be used for instance to model inexpensively zero-point energy
effects "(Ceriotti2)"_#Ceriotti2. This is achieved specifying the {noneq}
keyword followed by the name of the file that contains the static covariance
keyword followed by the name of the file that contains the static covariance
matrix for the non-equilibrium dynamics. Please note, that the covariance
matrix is expected to be given in [temperature units].

View File

@ -67,11 +67,11 @@ The Langevin forces are computed as
\(F_r'\) is a random force proportional to
\(\sqrt \{ \frac \{2\, k_B \mathtt\{Tcom\}\, m'\}
\{\mathrm dt\, \mathtt\{damp\_com\} \}
\} \). :b
\} \).
\(f_r'\) is a random force proportional to
\(\sqrt \{ \frac \{2\, k_B \mathtt\{Tdrude\}\, m'\}
\{\mathrm dt\, \mathtt\{damp\_drude\} \}
\} \). :b
\} \).
Then the real forces acting on the particles are computed from the inverse
transform:
\begin\{equation\} F = \frac M \{M'\}\, F' - f' \end\{equation\}

View File

@ -17,19 +17,22 @@ msst = style name of this fix :l
dir = {x} or {y} or {z} :l
shockvel = shock velocity (strictly positive, distance/time units) :l
zero or more keyword value pairs may be appended :l
keyword = {q} or {mu} or {p0} or {v0} or {e0} or {tscale} :l
keyword = {q} or {mu} or {p0} or {v0} or {e0} or {tscale} or {beta} or {dftb} :l
{q} value = cell mass-like parameter (mass^2/distance^4 units)
{mu} value = artificial viscosity (mass/length/time units)
{p0} value = initial pressure in the shock equations (pressure units)
{v0} value = initial simulation cell volume in the shock equations (distance^3 units)
{e0} value = initial total energy (energy units)
{tscale} value = reduction in initial temperature (unitless fraction between 0.0 and 1.0) :pre
{tscale} value = reduction in initial temperature (unitless fraction between 0.0 and 1.0)
{dftb} value = {yes} or {no} for whether using MSST in conjunction with DFTB+
{beta} value = scale factor on energy contribution of DFTB+ :pre
:ule
[Examples:]
fix 1 all msst y 100.0 q 1.0e5 mu 1.0e5
fix 2 all msst z 50.0 q 1.0e4 mu 1.0e4 v0 4.3419e+03 p0 3.7797e+03 e0 -9.72360e+02 tscale 0.01 :pre
fix 2 all msst z 50.0 q 1.0e4 mu 1.0e4 v0 4.3419e+03 p0 3.7797e+03 e0 -9.72360e+02 tscale 0.01
fix 1 all msst y 100.0 q 1.0e5 mu 1.0e5 dftb yes beta 0.5 :pre
[Description:]
@ -58,11 +61,11 @@ oscillations have physical significance in some cases. The optional
symmetry to equilibrate to the shock Hugoniot and Rayleigh line more
rapidly in such cases.
{tscale} is a factor between 0 and 1 that determines what fraction of
thermal kinetic energy is converted to compressive strain kinetic
energy at the start of the simulation. Setting this parameter to a
non-zero value may assist in compression at the start of simulations
where it is slow to occur.
The keyword {tscale} is a factor between 0 and 1 that determines what
fraction of thermal kinetic energy is converted to compressive strain
kinetic energy at the start of the simulation. Setting this parameter
to a non-zero value may assist in compression at the start of
simulations where it is slow to occur.
If keywords {e0}, {p0},or {v0} are not supplied, these quantities will
be calculated on the first step, after the energy specified by
@ -77,17 +80,40 @@ For all pressure styles, the simulation box stays orthogonal in shape.
Parrinello-Rahman boundary conditions (tilted box) are supported by
LAMMPS, but are not implemented for MSST.
This fix computes a temperature and pressure each timestep. To do
this, the fix creates its own computes of style "temp" and "pressure",
as if these commands had been issued:
This fix computes a temperature and pressure and potential energy each
timestep. To do this, the fix creates its own computes of style "temp"
"pressure", and "pe", as if these commands had been issued:
compute fix-ID_temp group-ID temp
compute fix-ID_press group-ID pressure fix-ID_temp :pre
compute fix-ID_MSST_temp all temp
compute fix-ID_MSST_press all pressure fix-ID_MSST_temp :pre
compute fix-ID_MSST_pe all pe :pre
See the "compute temp"_compute_temp.html and "compute
pressure"_compute_pressure.html commands for details. Note that the
IDs of the new computes are the fix-ID + underscore + "temp" or fix_ID
+ underscore + "press". The group for the new computes is "all".
IDs of the new computes are the fix-ID + "_MSST_temp" or "_MSST_press"
or "_MSST_pe". The group for the new computes is "all".
:line
The {dftb} and {beta} keywords are to allow this fix to be used when
LAMMPS is being driven by DFTB+, a density-functional tight-binding
code.
If the keyword {dftb} is used with a value of {yes}, then the MSST
equations are altered to account for an energy contribution compute by
DFTB+. In this case, you must define a "fix
external"_fix_external.html command in your input script, which is
used to callback to DFTB+ during the LAMMPS timestepping. DFTB+ will
communicate its info to LAMMPS via that fix.
The keyword {beta} is a scale factor on the DFTB+ energy contribution.
The value of {beta} must be between 0.0 and 1.0 inclusive. A value of
0.0 means no contribution, a value of 1.0 means a full contribution.
(July 2017) More information about these keywords and the use of
LAMMPS with DFTB+ will be added to the LAMMMPS documention soon.
:line
[Restart, fix_modify, output, run start/stop, minimize info:]
@ -149,8 +175,9 @@ all.
[Default:]
The keyword defaults are q = 10, mu = 0, tscale = 0.01. p0, v0, and e0
are calculated on the first step.
The keyword defaults are q = 10, mu = 0, tscale = 0.01, dftb = no,
beta = 0.0. Note that p0, v0, and e0 are calculated on the first
timestep.
:line

View File

@ -10,68 +10,183 @@ fix neb command :h3
[Syntax:]
fix ID group-ID neb Kspring :pre
fix ID group-ID neb Kspring keyword value :pre
ID, group-ID are documented in "fix"_fix.html command
neb = style name of this fix command
Kspring = inter-replica spring constant (force/distance units) :ul
ID, group-ID are documented in "fix"_fix.html command :ulb,l
neb = style name of this fix command :l
Kspring = spring constant for parallel nudging force (force/distance units or force units, see parallel keyword) :l
zero or more keyword/value pairs may be appended :l
keyword = {parallel} or {perp} or {end} :l
{parallel} value = {neigh} or {ideal}
{neigh} = parallel nudging force based on distance to neighbor replicas (Kspring = force/distance units)
{ideal} = parallel nudging force based on interpolated ideal position (Kspring = force units)
{perp} value = {Kspring2}
{Kspring2} = spring constant for perpendicular nudging force (force/distance units)
{end} values = estyle Kspring3
{estyle} = {first} or {last} or {last/efirst} or {last/efirst/middle}
{first} = apply force to first replica
{last} = apply force to last replica
{last/efirst} = apply force to last replica and set its target energy to that of first replica
{last/efirst/middle} = same as {last/efirst} plus prevent middle replicas having lower energy than first replica
{Kspring3} = spring constant for target energy term (1/distance units) :pre,ule
[Examples:]
fix 1 active neb 10.0 :pre
fix 1 active neb 10.0
fix 2 all neb 1.0 perp 1.0 end last
fix 2 all neb 1.0 perp 1.0 end first 1.0 end last 1.0
fix 1 all neb 1.0 nudge ideal end last/efirst 1 :pre
[Description:]
Add inter-replica forces to atoms in the group for a multi-replica
Add nudging forces to atoms in the group for a multi-replica
simulation run via the "neb"_neb.html command to perform a nudged
elastic band (NEB) calculation for transition state finding. Hi-level
explanations of NEB are given with the "neb"_neb.html command and in
"Section 6.5"_Section_howto.html#howto_5 of the manual. The fix
neb command must be used with the "neb" command to define how
inter-replica forces are computed.
elastic band (NEB) calculation for finding the transition state.
Hi-level explanations of NEB are given with the "neb"_neb.html command
and in "Section_howto 5"_Section_howto.html#howto_5 of the manual.
The fix neb command must be used with the "neb" command and defines
how inter-replica nudging forces are computed. A NEB calculation is
divided in two stages. In the first stage n replicas are relaxed
toward a MEP until convergence. In the second stage, the climbing
image scheme (see "(Henkelman2)"_#Henkelman2) is enabled, so that the
replica having the highest energy relaxes toward the saddle point
(i.e. the point of highest energy along the MEP), and a second
relaxation is performed.
Only the N atoms in the fix group experience inter-replica forces.
Atoms in the two end-point replicas do not experience these forces,
but those in intermediate replicas do. During the initial stage of
NEB, the 3N-length vector of interatomic forces Fi = -Grad(V) acting
on the atoms of each intermediate replica I is altered, as described
in the "(Henkelman1)"_#Henkelman1 paper, to become:
A key purpose of the nudging forces is to keep the replicas equally
spaced. During the NEB calculation, the 3N-length vector of
interatomic force Fi = -Grad(V) for each replica I is altered. For
all intermediate replicas (i.e. for 1 < I < N, except the climbing
replica) the force vector becomes:
Fi = -Grad(V) + (Grad(V) dot That) That + Kspring (| Ri+i - Ri | - | Ri - Ri-1 |) That :pre
Fi = -Grad(V) + (Grad(V) dot T') T' + Fnudge_parallel + Fnudge_perp :pre
Ri are the atomic coordinates of replica I; Ri-1 and Ri+1 are the
coordinates of its neighbor replicas. That (t with a hat over it) is
the unit "tangent" vector for replica I which is a function of Ri,
T' is the unit "tangent" vector for replica I and is a function of Ri,
Ri-1, Ri+1, and the potential energy of the 3 replicas; it points
roughly in the direction of (Ri+i - Ri-1); see the
"(Henkelman1)"_#Henkelman1 paper for details.
"(Henkelman1)"_#Henkelman1 paper for details. Ri are the atomic
coordinates of replica I; Ri-1 and Ri+1 are the coordinates of its
neighbor replicas. The term (Grad(V) dot T') is used to remove the
component of the gradient parallel to the path which would tend to
distribute the replica unevenly along the path. Fnudge_parallel is an
artificial nudging force which is applied only in the tangent
direction and which maintains the equal spacing between replicas (see
below for more information). Fnudge_perp is an optional artificial
spring which is applied in a direction perpendicular to the tangent
direction and which prevent the paths from forming acute kinks (see
below for more information).
The first two terms in the above equation are the component of the
interatomic forces perpendicular to the tangent vector. The last term
is a spring force between replica I and its neighbors, parallel to the
tangent vector direction with the specified spring constant {Kspring}.
In the second stage of the NEB calculation, the interatomic force Fi
for the climbing replica (the replica of highest energy after the
first stage) is changed to:
The effect of the first two terms is to push the atoms of each replica
toward the minimum energy path (MEP) of conformational states that
transition over the energy barrier. The MEP for an energy barrier is
defined as a sequence of 3N-dimensional states which cross the barrier
at its saddle point, each of which has a potential energy gradient
parallel to the MEP itself.
Fi = -Grad(V) + 2 (Grad(V) dot T') T' :pre
The effect of the last term is to push each replica away from its two
neighbors in a direction along the MEP, so that the final set of
states are equidistant from each other.
and the relaxation procedure is continued to a new converged MEP.
During the second stage of NEB, the forces on the N atoms in the
replica nearest the top of the energy barrier are altered so that it
climbs to the top of the barrier and finds the saddle point. The
forces on atoms in this replica are described in the
"(Henkelman2)"_#Henkelman2 paper, and become:
:line
Fi = -Grad(V) + 2 (Grad(V) dot That) That :pre
The keyword {parallel} specifies how the parallel nudging force is
computed. With a value of {neigh}, the parallel nudging force is
computed as in "(Henkelman1)"_#Henkelman1 by connecting each
intermediate replica with the previous and the next image:
The inter-replica forces for the other replicas are unchanged from the
first equation.
Fnudge_parallel = {Kspring} * (|Ri+1 - Ri| - |Ri - Ri-1|) :pre
Note that in this case the specified {Kspring) is in force/distance
units.
With a value of {ideal}, the spring force is computed as suggested in
"(WeinenE)"_#WeinenE :
Fnudge_parallel = -{Kspring} * (RD-RDideal) / (2 * meanDist) :pre
where RD is the "reaction coordinate" see "neb"_neb.html section, and
RDideal is the ideal RD for which all the images are equally spaced.
I.e. RDideal = (I-1)*meanDist when the climbing replica is off, where
I is the replica number). The meanDist is the average distance
between replicas. Note that in this case the specified {Kspring) is
in force units.
Note that the {ideal} form of nudging can often be more effective at
keeping the replicas equally spaced.
:line
The keyword {perp} specifies if and how a perpendicual nudging force
is computed. It adds a spring force perpendicular to the path in
order to prevent the path from becoming too kinky. It can
significantly improve the convergence of the NEB calculation when the
resolution is poor. I.e. when few replicas are used; see
"(Maras)"_#Maras1 for details.
The perpendicular spring force is given by
Fnudge_perp = {Kspring2} * F(Ri-1,Ri,Ri+1) (Ri+1 + Ri-1 - 2 Ri) :pre
where {Kspring2} is the specified value. F(Ri-1 Ri R+1) is a smooth
scalar function of the angle Ri-1 Ri Ri+1. It is equal to 0.0 when
the path is straight and is equal to 1 when the angle Ri-1 Ri Ri+1 is
acute. F(Ri-1 Ri R+1) is defined in "(Jonsson)"_#Jonsson.
If {Kspring2} is set to 0.0 (the default) then no perpendicular spring
force is added.
:line
By default, no additional forces act on the first and last replicas
during the NEB relaxation, so these replicas simply relax toward their
respective local minima. By using the key word {end}, additional
forces can be applied to the first and/or last replicas, to enable
them to relax toward a MEP while constraining their energy.
The interatomic force Fi for the specified replica becomes:
Fi = -Grad(V) + (Grad(V) dot T' + (E-ETarget)*Kspring3) T', {when} Grad(V) dot T' < 0
Fi = -Grad(V) + (Grad(V) dot T' + (ETarget- E)*Kspring3) T', {when} Grad(V) dot T' > 0
:pre
where E is the current energy of the replica and ETarget is the target
energy. The "spring" constant on the difference in energies is the
specified {Kspring3} value.
When {estyle} is specified as {first}, the force is applied to the
first replica. When {estyle} is specified as {last}, the force is
applied to the last replica. Note that the {end} keyword can be used
twice to add forces to both the first and last replicas.
For both these {estyle} settings, the target energy {ETarget} is set
to the initial energy of the replica (at the start of the NEB
calculation).
If the {estyle} is specified as {last/efirst} or {last/efirst/middle},
force is applied to the last replica, but the target energy {ETarget}
is continuously set to the energy of the first replica, as it evolves
during the NEB relaxation.
The difference between these two {estyle} options is as follows. When
{estyle} is specified as {last/efirst}, no change is made to the
inter-replica force applied to the intermediate replicas (neither
first or last). If the initial path is too far from the MEP, an
intermediate repilica may relax "faster" and reach a lower energy than
the last replica. In this case the intermediate replica will be
relaxing toward its own local minima. This behavior can be prevented
by specifying {estyle} as {last/efirst/middle} which will alter the
inter-replica force applied to intermediate replicas by removing the
contribution of the gradient to the inter-replica force. This will
only be done if a particular intermediate replica has a lower energy
than the first replica. This should effectively prevent the
intermediate replicas from over-relaxing.
After converging a NEB calculation using an {estyle} of
{last/efirst/middle}, you should check that all intermediate replicas
have a larger energy than the first replica. If this is not the case,
the path is probably not a MEP.
Finally, note that if the last replica converges toward a local
minimum which has a larger energy than the energy of the first
replica, a NEB calculation using an {estyle} of {last/efirst} or
{last/efirst/middle} cannot reach final convergence.
[Restart, fix_modify, output, run start/stop, minimize info:]
@ -96,7 +211,12 @@ for more info on packages.
"neb"_neb.html
[Default:] none
[Default:]
The option defaults are nudge = neigh, perp = 0.0, ends is not
specified (no inter-replica force on the end replicas).
:line
:link(Henkelman1)
[(Henkelman1)] Henkelman and Jonsson, J Chem Phys, 113, 9978-9985 (2000).
@ -104,3 +224,15 @@ for more info on packages.
:link(Henkelman2)
[(Henkelman2)] Henkelman, Uberuaga, Jonsson, J Chem Phys, 113,
9901-9904 (2000).
:link(WeinenE)
[(WeinenE)] E, Ren, Vanden-Eijnden, Phys Rev B, 66, 052301 (2002).
:link(Jonsson)
[(Jonsson)] Jonsson, Mills and Jacobsen, in Classical and Quantum
Dynamics in Condensed Phase Simulations, edited by Berne, Ciccotti,
and Coker World Scientific, Singapore, 1998, p 385.
:link(Maras1)
[(Maras)] Maras, Trushin, Stukowski, Ala-Nissila, Jonsson,
Comp Phys Comm, 205, 13-21 (2016).

View File

@ -8,17 +8,19 @@
fix qeq/reax command :h3
fix qeq/reax/kk command :h3
fix qeq/reax/omp command :h3
[Syntax:]
fix ID group-ID qeq/reax Nevery cutlo cuthi tolerance params :pre
fix ID group-ID qeq/reax Nevery cutlo cuthi tolerance params args :pre
ID, group-ID are documented in "fix"_fix.html command
qeq/reax = style name of this fix command
Nevery = perform QEq every this many steps
cutlo,cuthi = lo and hi cutoff for Taper radius
tolerance = precision to which charges will be equilibrated
params = reax/c or a filename :ul
params = reax/c or a filename
args = {dual} (optional) :ul
[Examples:]
@ -59,6 +61,10 @@ potential file, except that eta is defined here as twice the eta value
in the ReaxFF file. Note that unlike the rest of LAMMPS, the units
of this fix are hard-coded to be A, eV, and electronic charge.
The optional {dual} keyword allows to perform the optimization
of the S and T matrices in parallel. This is only supported for
the {qeq/reax/omp} style. Otherwise they are processed separately.
[Restart, fix_modify, output, run start/stop, minimize info:]
No information about this fix is written to "binary restart

View File

@ -31,11 +31,12 @@ bodystyle = {single} or {molecule} or {group} :l
groupID1, groupID2, ... = list of N group IDs :pre
zero or more keyword/value pairs may be appended :l
keyword = {langevin} or {temp} or {iso} or {aniso} or {x} or {y} or {z} or {couple} or {tparam} or {pchain} or {dilate} or {force} or {torque} or {infile} :l
keyword = {langevin} or {reinit} or {temp} or {iso} or {aniso} or {x} or {y} or {z} or {couple} or {tparam} or {pchain} or {dilate} or {force} or {torque} or {infile} :l
{langevin} values = Tstart Tstop Tperiod seed
Tstart,Tstop = desired temperature at start/stop of run (temperature units)
Tdamp = temperature damping parameter (time units)
seed = random number seed to use for white noise (positive integer)
{reinit} = {yes} or {no}
{temp} values = Tstart Tstop Tdamp
Tstart,Tstop = desired temperature at start/stop of run (temperature units)
Tdamp = temperature damping parameter (time units)
@ -68,10 +69,10 @@ keyword = {langevin} or {temp} or {iso} or {aniso} or {x} or {y} or {z} or {coup
[Examples:]
fix 1 clump rigid single
fix 1 clump rigid single reinit yes
fix 1 clump rigid/small molecule
fix 1 clump rigid single force 1 off off on langevin 1.0 1.0 1.0 428984
fix 1 polychains rigid/nvt molecule temp 1.0 1.0 5.0
fix 1 polychains rigid/nvt molecule temp 1.0 1.0 5.0 reinit no
fix 1 polychains rigid molecule force 1*5 off off off force 6*10 off off on
fix 1 polychains rigid/small molecule langevin 1.0 1.0 1.0 428984
fix 2 fluid rigid group 3 clump1 clump2 clump3 torque * off off off
@ -87,7 +88,12 @@ means that each timestep the total force and torque on each rigid body
is computed as the sum of the forces and torques on its constituent
particles. The coordinates, velocities, and orientations of the atoms
in each body are then updated so that the body moves and rotates as a
single entity.
single entity. This is implemented by creating internal data structures
for each rigid body and performing time integration on these data
structures. Positions, velocities, and orientations of the constituent
particles are regenerated from the rigid body data structures in every
time step. This restricts which operations and fixes can be applied to
rigid bodies. See below for a detailed discussion.
Examples of large rigid bodies are a colloidal particle, or portions
of a biomolecule such as a protein.
@ -148,8 +154,9 @@ differences may accumulate to produce divergent trajectories.
NOTE: You should not update the atoms in rigid bodies via other
time-integration fixes (e.g. "fix nve"_fix_nve.html, "fix
nvt"_fix_nh.html, "fix npt"_fix_nh.html), or you will be integrating
their motion more than once each timestep. When performing a hybrid
nvt"_fix_nh.html, "fix npt"_fix_nh.html, "fix move"_fix_move.html),
or you will have conflicting updates to positions and velocities
resulting in unphysical behavior in most cases. When performing a hybrid
simulation with some atoms in rigid bodies, and some not, a separate
time integration fix like "fix nve"_fix_nve.html or "fix
nvt"_fix_nh.html should be used for the non-rigid particles.
@ -165,23 +172,29 @@ setting the force on them to 0.0 (via the "fix
setforce"_fix_setforce.html command), and integrating them as usual
(e.g. via the "fix nve"_fix_nve.html command).
NOTE: The aggregate properties of each rigid body are calculated one
time at the start of the first simulation run after these fixes are
specified. The properties include the position and velocity of the
center-of-mass of the body, its moments of inertia, and its angular
momentum. This is done using the properties of the constituent atoms
of the body at that point in time (or see the {infile} keyword
option). Thereafter, changing properties of individual atoms in the
body will have no effect on a rigid body's dynamics, unless they
affect the "pair_style"_pair_style.html interactions that individual
particles are part of. For example, you might think you could
displace the atoms in a body or add a large velocity to each atom in a
body to make it move in a desired direction before a 2nd run is
IMPORTANT NOTE: The aggregate properties of each rigid body are
calculated at the start of a simulation run and are maintained in
internal data structures. The properties include the position and
velocity of the center-of-mass of the body, its moments of inertia, and
its angular momentum. This is done using the properties of the
constituent atoms of the body at that point in time (or see the {infile}
keyword option). Thereafter, changing these properties of individual
atoms in the body will have no effect on a rigid body's dynamics, unless
they effect any computation of per-atom forces or torques. If the
keyword {reinit} is set to {yes} (the default), the rigid body data
structures will be recreated at the beginning of each {run} command;
if the keyword {reinit} is set to {no}, the rigid body data structures
will be built only at the very first {run} command and maintained for
as long as the rigid fix is defined. For example, you might think you
could displace the atoms in a body or add a large velocity to each atom
in a body to make it move in a desired direction before a 2nd run is
performed, using the "set"_set.html or
"displace_atoms"_displace_atoms.html or "velocity"_velocity.html
command. But these commands will not affect the internal attributes
of the body, and the position and velocity of individual atoms in the
body will be reset when time integration starts.
commands. But these commands will not affect the internal attributes
of the body unless {reinit} is set to {yes}. With {reinit} set to {no}
(or using the {infile} option, which implies {reinit} {no}) the position
and velocity of individual atoms in the body will be reset when time
integration starts again.
:line
@ -401,6 +414,14 @@ couple none :pre
The keyword/value option pairs are used in the following ways.
The {reinit} keyword determines, whether the rigid body properties
are reinitialized between run commands. With the option {yes} (the
default) this is done, with the option {no} this is not done. Turning
off the reinitialization can be helpful to protect rigid bodies against
unphysical manipulations between runs or when properties cannot be
easily recomputed (e.g. when read from a file). When using the {infile}
keyword, the {reinit} option is automatically set to {no}.
The {langevin} and {temp} and {tparam} keywords perform thermostatting
of the rigid bodies, altering both their translational and rotational
degrees of freedom. What is meant by "temperature" of a collection of
@ -778,7 +799,7 @@ exclude, "fix shake"_fix_shake.html
The option defaults are force * on on on and torque * on on on,
meaning all rigid bodies are acted on by center-of-mass force and
torque. Also Tchain = Pchain = 10, Titer = 1, Torder = 3.
torque. Also Tchain = Pchain = 10, Titer = 1, Torder = 3, reinit = yes.
:line

View File

@ -144,7 +144,11 @@ this fix.
"fix spring"_fix_spring.html, "fix adapt"_fix_adapt.html
[Restrictions:] none
[Restrictions:]
This fix is part of the USER-MISC package. It is only enabled if
LAMMPS was built with that package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info.
[Default:]

View File

@ -219,10 +219,10 @@ instead of using the virial equation. This option cannot be used to access
individual components of the pressure tensor, to compute per-atom virial,
or with suffix kspace/pair styles of MSM, like OMP or GPU.
The {fftbench} keyword applies only to PPPM. It is on by default. If
this option is turned off, LAMMPS will not take the time at the end
of a run to give FFT benchmark timings, and will finish a few seconds
faster than it would if this option were on.
The {fftbench} keyword applies only to PPPM. It is off by default. If
this option is turned on, LAMMPS will perform a short FFT benchmark
computation and report its timings, and will thus finish a some seconds
later than it would if this option were off.
The {collective} keyword applies only to PPPM. It is set to {no} by
default, except on IBM BlueGene machines. If this option is set to
@ -306,9 +306,10 @@ parameters, see the "How-To"_Section_howto.html#howto_24 discussion.
The option defaults are mesh = mesh/disp = 0 0 0, order = order/disp =
5 (PPPM), order = 10 (MSM), minorder = 2, overlap = yes, force = -1.0,
gewald = gewald/disp = 0.0, slab = 1.0, compute = yes, cutoff/adjust =
yes (MSM), pressure/scalar = yes (MSM), fftbench = yes (PPPM), diff = ik
yes (MSM), pressure/scalar = yes (MSM), fftbench = no (PPPM), diff = ik
(PPPM), mix/disp = pair, force/disp/real = -1.0, force/disp/kspace = -1.0,
split = 0, tol = 1.0e-6, and disp/auto = no.
split = 0, tol = 1.0e-6, and disp/auto = no. For pppm/intel, order =
order/disp = 7.
:line

View File

@ -33,12 +33,16 @@ style = {none} or {ewald} or {ewald/disp} or {ewald/omp} or {pppm} or {pppm/cg}
accuracy = desired relative error in forces
{pppm/gpu} value = accuracy
accuracy = desired relative error in forces
{pppm/intel} value = accuracy
accuracy = desired relative error in forces
{pppm/kk} value = accuracy
accuracy = desired relative error in forces
{pppm/omp} value = accuracy
accuracy = desired relative error in forces
{pppm/cg/omp} value = accuracy
accuracy = desired relative error in forces
{pppm/disp/intel} value = accuracy
accuracy = desired relative error in forces
{pppm/tip4p/omp} value = accuracy
accuracy = desired relative error in forces
{pppm/stagger} value = accuracy

View File

@ -301,6 +301,7 @@ compute_centro_atom.html
compute_chunk_atom.html
compute_cluster_atom.html
compute_cna_atom.html
compute_cnp_atom.html
compute_com.html
compute_com_chunk.html
compute_contact_atom.html
@ -446,7 +447,6 @@ pair_lj96.html
pair_lj_cubic.html
pair_lj_expand.html
pair_lj_long.html
pair_lj_sf.html
pair_lj_smooth.html
pair_lj_smooth_linear.html
pair_lj_soft.html

View File

@ -24,14 +24,15 @@ to the relevant fixes.
{manifold} @ {parameters} @ {equation} @ {description}
cylinder @ R @ x^2 + y^2 - R^2 = 0 @ Cylinder along z-axis, axis going through (0,0,0)
cylinder_dent @ R l a @ x^2 + y^2 - r(z)^2 = 0, r(x) = R if | z | > l, r(z) = R - a*(1 + cos(z/l))/2 otherwise @ A cylinder with a dent around z = 0
dumbbell @ a A B c @ -( x^2 + y^2 ) * (a^2 - z^2/c^2) * ( 1 + (A*sin(B*z^2))^4) = 0 @ A dumbbell @
dumbbell @ a A B c @ -( x^2 + y^2 ) + (a^2 - z^2/c^2) * ( 1 + (A*sin(B*z^2))^4) = 0 @ A dumbbell
ellipsoid @ a b c @ (x/a)^2 + (y/b)^2 + (z/c)^2 = 0 @ An ellipsoid
gaussian_bump @ A l rc1 rc2 @ if( x < rc1) -z + A * exp( -x^2 / (2 l^2) ); else if( x < rc2 ) -z + a + b*x + c*x^2 + d*x^3; else z @ A Gaussian bump at x = y = 0, smoothly tapered to a flat plane z = 0.
plane @ a b c x0 y0 z0 @ a*(x-x0) + b*(y-y0) + c*(z-z0) = 0 @ A plane with normal (a,b,c) going through point (x0,y0,z0)
plane_wiggle @ a w @ z - a*sin(w*x) = 0 @ A plane with a sinusoidal modulation on z along x.
sphere @ R @ x^2 + y^2 + z^2 - R^2 = 0 @ A sphere of radius R
supersphere @ R q @ | x |^q + | y |^q + | z |^q - R^q = 0 @ A supersphere of hyperradius R
spine @ a, A, B, B2, c @ -(x^2 + y^2)*(a^2 - z^2/f(z)^2)*(1 + (A*sin(g(z)*z^2))^4), f(z) = c if z > 0, 1 otherwise; g(z) = B if z > 0, B2 otherwise @ An approximation to a dendtritic spine
spine_two @ a, A, B, B2, c @ -(x^2 + y^2)*(a^2 - z^2/f(z)^2)*(1 + (A*sin(g(z)*z^2))^2), f(z) = c if z > 0, 1 otherwise; g(z) = B if z > 0, B2 otherwise @ Another approximation to a dendtritic spine
spine @ a, A, B, B2, c @ -(x^2 + y^2) + (a^2 - z^2/f(z)^2)*(1 + (A*sin(g(z)*z^2))^4), f(z) = c if z > 0, 1 otherwise; g(z) = B if z > 0, B2 otherwise @ An approximation to a dendtritic spine
spine_two @ a, A, B, B2, c @ -(x^2 + y^2) + (a^2 - z^2/f(z)^2)*(1 + (A*sin(g(z)*z^2))^2), f(z) = c if z > 0, 1 otherwise; g(z) = B if z > 0, B2 otherwise @ Another approximation to a dendtritic spine
thylakoid @ wB LB lB @ Various, see "(Paquay)"_#Paquay1 @ A model grana thylakoid consisting of two block-like compartments connected by a bridge of width wB, length LB and taper length lB
torus @ R r @ (R - sqrt( x^2 + y^2 ) )^2 + z^2 - r^2 @ A torus with large radius R and small radius r, centered on (0,0,0) :tb(s=@)

View File

@ -10,28 +10,31 @@ neb command :h3
[Syntax:]
neb etol ftol N1 N2 Nevery file-style arg :pre
neb etol ftol N1 N2 Nevery file-style arg keyword :pre
etol = stopping tolerance for energy (energy units) :ulb,l
ftol = stopping tolerance for force (force units) :l
N1 = max # of iterations (timesteps) to run initial NEB :l
N2 = max # of iterations (timesteps) to run barrier-climbing NEB :l
Nevery = print replica energies and reaction coordinates every this many timesteps :l
file-style= {final} or {each} or {none} :l
file-style = {final} or {each} or {none} :l
{final} arg = filename
filename = file with initial coords for final replica
coords for intermediate replicas are linearly interpolated between first and last replica
coords for intermediate replicas are linearly interpolated
between first and last replica
{each} arg = filename
filename = unique filename for each replica (except first) with its initial coords
{none} arg = no argument
all replicas assumed to already have their initial coords :pre
filename = unique filename for each replica (except first)
with its initial coords
{none} arg = no argument all replicas assumed to already have
their initial coords :pre
keyword = {verbose}
:ule
[Examples:]
neb 0.1 0.0 1000 500 50 final coords.final
neb 0.0 0.001 1000 500 50 each coords.initial.$i
neb 0.0 0.001 1000 500 50 none :pre
neb 0.0 0.001 1000 500 50 none verbose :pre
[Description:]
@ -43,8 +46,8 @@ NEB is a method for finding both the atomic configurations and height
of the energy barrier associated with a transition state, e.g. for an
atom to perform a diffusive hop from one energy basin to another in a
coordinated fashion with its neighbors. The implementation in LAMMPS
follows the discussion in these 3 papers: "(HenkelmanA)"_#HenkelmanA,
"(HenkelmanB)"_#HenkelmanB, and "(Nakano)"_#Nakano3.
follows the discussion in these 4 papers: "(HenkelmanA)"_#HenkelmanA,
"(HenkelmanB)"_#HenkelmanB, "(Nakano)"_#Nakano3 and "(Maras)"_#Maras2.
Each replica runs on a partition of one or more processors. Processor
partitions are defined at run-time using the -partition command-line
@ -70,18 +73,17 @@ I.e. the simulation domain, the number of atoms, the interaction
potentials, and the starting configuration when the neb command is
issued should be the same for every replica.
In a NEB calculation each atom in a replica is connected to the same
atom in adjacent replicas by springs, which induce inter-replica
forces. These forces are imposed by the "fix neb"_fix_neb.html
command, which must be used in conjunction with the neb command. The
group used to define the fix neb command defines the NEB atoms which
are the only ones that inter-replica springs are applied to. If the
group does not include all atoms, then non-NEB atoms have no
inter-replica springs and the forces they feel and their motion is
computed in the usual way due only to other atoms within their
replica. Conceptually, the non-NEB atoms provide a background force
field for the NEB atoms. They can be allowed to move during the NEB
minimization procedure (which will typically induce different
In a NEB calculation each replica is connected to other replicas by
inter-replica nudging forces. These forces are imposed by the "fix
neb"_fix_neb.html command, which must be used in conjunction with the
neb command. The group used to define the fix neb command defines the
NEB atoms which are the only ones that inter-replica springs are
applied to. If the group does not include all atoms, then non-NEB
atoms have no inter-replica springs and the forces they feel and their
motion is computed in the usual way due only to other atoms within
their replica. Conceptually, the non-NEB atoms provide a background
force field for the NEB atoms. They can be allowed to move during the
NEB minimization procedure (which will typically induce different
coordinates for non-NEB atoms in different replicas), or held fixed
using other LAMMPS commands such as "fix setforce"_fix_setforce.html.
Note that the "partition"_partition.html command can be used to invoke
@ -93,33 +95,18 @@ specified in different manners via the {file-style} setting, as
discussed below. Only atoms whose initial coordinates should differ
from the current configuration need be specified.
Conceptually, the initial configuration for the first replica should
be a state with all the atoms (NEB and non-NEB) having coordinates on
one side of the energy barrier. A perfect energy minimum is not
required, since atoms in the first replica experience no spring forces
from the 2nd replica. Thus the damped dynamics minimization will
drive the first replica to an energy minimum if it is not already
there. However, you will typically get better convergence if the
initial state is already at a minimum. For example, for a system with
a free surface, the surface should be fully relaxed before attempting
a NEB calculation.
Likewise, the initial configuration of the final replica should be a
state with all the atoms (NEB and non-NEB) on the other side of the
energy barrier. Again, a perfect energy minimum is not required,
since the atoms in the last replica also experience no spring forces
from the next-to-last replica, and thus the damped dynamics
minimization will drive it to an energy minimum.
Conceptually, the initial and final configurations for the first
replica should be states on either side of an energy barrier.
As explained below, the initial configurations of intermediate
replicas can be atomic coordinates interpolated in a linear fashion
between the first and last replicas. This is often adequate state for
between the first and last replicas. This is often adequate for
simple transitions. For more complex transitions, it may lead to slow
convergence or even bad results if the minimum energy path (MEP, see
below) of states over the barrier cannot be correctly converged to
from such an initial configuration. In this case, you will want to
generate initial states for the intermediate replicas that are
geometrically closer to the MEP and read them in.
from such an initial path. In this case, you will want to generate
initial states for the intermediate replicas that are geometrically
closer to the MEP and read them in.
:line
@ -135,10 +122,11 @@ is assigned to be a fraction of the distance. E.g. if there are 10
replicas, the 2nd replica will assign a position that is 10% of the
distance along a line between the starting and final point, and the
9th replica will assign a position that is 90% of the distance along
the line. Note that this procedure to produce consistent coordinates
across all the replicas, the current coordinates need to be the same
in all replicas. LAMMPS does not check for this, but invalid initial
configurations will likely result if it is not the case.
the line. Note that for this procedure to produce consistent
coordinates across all the replicas, the current coordinates need to
be the same in all replicas. LAMMPS does not check for this, but
invalid initial configurations will likely result if it is not the
case.
NOTE: The "distance" between the starting and final point is
calculated in a minimum-image sense for a periodic simulation box.
@ -150,8 +138,8 @@ interpolation is outside the periodic box, the atom will be wrapped
back into the box when the NEB calculation begins.
For a {file-style} setting of {each}, a filename is specified which is
assumed to be unique to each replica. This can be done by
using a variable in the filename, e.g.
assumed to be unique to each replica. This can be done by using a
variable in the filename, e.g.
variable i equal part
neb 0.0 0.001 1000 500 50 each coords.initial.$i :pre
@ -198,11 +186,10 @@ The minimizer tolerances for energy and force are set by {etol} and
A non-zero {etol} means that the NEB calculation will terminate if the
energy criterion is met by every replica. The energies being compared
to {etol} do not include any contribution from the inter-replica
forces, since these are non-conservative. A non-zero {ftol} means
that the NEB calculation will terminate if the force criterion is met
by every replica. The forces being compared to {ftol} include the
inter-replica forces between an atom and its images in adjacent
replicas.
nudging forces, since these are non-conservative. A non-zero {ftol}
means that the NEB calculation will terminate if the force criterion
is met by every replica. The forces being compared to {ftol} include
the inter-replica nudging forces.
The maximum number of iterations in each stage is set by {N1} and
{N2}. These are effectively timestep counts since each iteration of
@ -220,27 +207,27 @@ finding a good energy barrier. {N1} and {N2} must both be multiples
of {Nevery}.
In the first stage of NEB, the set of replicas should converge toward
the minimum energy path (MEP) of conformational states that transition
over the barrier. The MEP for a barrier is defined as a sequence of
3N-dimensional states that cross the barrier at its saddle point, each
of which has a potential energy gradient parallel to the MEP itself.
The replica states will also be roughly equally spaced along the MEP
due to the inter-replica spring force added by the "fix
neb"_fix_neb.html command.
a minimum energy path (MEP) of conformational states that transition
over a barrier. The MEP for a transition is defined as a sequence of
3N-dimensional states, each of which has a potential energy gradient
parallel to the MEP itself. The configuration of highest energy along
a MEP corresponds to a saddle point. The replica states will also be
roughly equally spaced along the MEP due to the inter-replica nugding
force added by the "fix neb"_fix_neb.html command.
In the second stage of NEB, the replica with the highest energy
is selected and the inter-replica forces on it are converted to a
force that drives its atom coordinates to the top or saddle point of
the barrier, via the barrier-climbing calculation described in
In the second stage of NEB, the replica with the highest energy is
selected and the inter-replica forces on it are converted to a force
that drives its atom coordinates to the top or saddle point of the
barrier, via the barrier-climbing calculation described in
"(HenkelmanB)"_#HenkelmanB. As before, the other replicas rearrange
themselves along the MEP so as to be roughly equally spaced.
When both stages are complete, if the NEB calculation was successful,
one of the replicas should be an atomic configuration at the top or
saddle point of the barrier, the potential energies for the set of
replicas should represent the energy profile of the barrier along the
MEP, and the configurations of the replicas should be a sequence of
configurations along the MEP.
the configurations of the replicas should be along (close to) the MEP
and the replica with the highest energy should be an atomic
configuration at (close to) the saddle point of the transition. The
potential energies for the set of replicas represents the energy
profile of the transition along the MEP.
:line
@ -284,9 +271,9 @@ ID2 x2 y2 z2
...
IDN xN yN zN :pre
The fields are the atom ID, followed by the x,y,z coordinates.
The lines can be listed in any order. Additional trailing information
on the line is OK, such as a comment.
The fields are the atom ID, followed by the x,y,z coordinates. The
lines can be listed in any order. Additional trailing information on
the line is OK, such as a comment.
Note that for a typical NEB calculation you do not need to specify
initial coordinates for very many atoms to produce differing starting
@ -310,38 +297,54 @@ this case), the print-out to the screen and master log.lammps file
contains a line of output, printed once every {Nevery} timesteps. It
contains the timestep, the maximum force per replica, the maximum
force per atom (in any replica), potential gradients in the initial,
final, and climbing replicas, the forward and backward energy barriers,
the total reaction coordinate (RDT), and the normalized reaction
coordinate and potential energy of each replica.
final, and climbing replicas, the forward and backward energy
barriers, the total reaction coordinate (RDT), and the normalized
reaction coordinate and potential energy of each replica.
The "maximum force per replica" is
the two-norm of the 3N-length force vector for the atoms in each
replica, maximized across replicas, which is what the {ftol} setting
is checking against. In this case, N is all the atoms in each
replica. The "maximum force per atom" is the maximum force component
of any atom in any replica. The potential gradients are the two-norm
of the 3N-length force vector solely due to the interaction potential i.e.
without adding in inter-replica forces. Note that inter-replica forces
are zero in the initial and final replicas, and only affect
the direction in the climbing replica. For this reason, the "maximum
force per replica" is often equal to the potential gradient in the
climbing replica. In the first stage of NEB, there is no climbing
replica, and so the potential gradient in the highest energy replica
is reported, since this replica will become the climbing replica
in the second stage of NEB.
The "maximum force per replica" is the two-norm of the 3N-length force
vector for the atoms in each replica, maximized across replicas, which
is what the {ftol} setting is checking against. In this case, N is
all the atoms in each replica. The "maximum force per atom" is the
maximum force component of any atom in any replica. The potential
gradients are the two-norm of the 3N-length force vector solely due to
the interaction potential i.e. without adding in inter-replica
forces.
The "reaction coordinate" (RD) for each
replica is the two-norm of the 3N-length vector of distances between
its atoms and the preceding replica's atoms, added to the RD of the
preceding replica. The RD of the first replica RD1 = 0.0;
the RD of the final replica RDN = RDT, the total reaction coordinate.
The normalized RDs are divided by RDT,
so that they form a monotonically increasing sequence
from zero to one. When computing RD, N only includes the atoms
being operated on by the fix neb command.
The "reaction coordinate" (RD) for each replica is the two-norm of the
3N-length vector of distances between its atoms and the preceding
replica's atoms, added to the RD of the preceding replica. The RD of
the first replica RD1 = 0.0; the RD of the final replica RDN = RDT,
the total reaction coordinate. The normalized RDs are divided by RDT,
so that they form a monotonically increasing sequence from zero to
one. When computing RD, N only includes the atoms being operated on by
the fix neb command.
The forward (reverse) energy barrier is the potential energy of the
highest replica minus the energy of the first (last) replica.
Supplementary informations for all replicas can be printed out to the
screen and master log.lammps file by adding the verbose keyword. These
informations include the following. The "path angle" (pathangle) for
the replica i which is the angle between the 3N-length vectors (Ri-1 -
Ri) and (Ri+1 - Ri) (where Ri is the atomic coordinates of replica
i). A "path angle" of 180 indicates that replicas i-1, i and i+1 are
aligned. "angletangrad" is the angle between the 3N-length tangent
vector and the 3N-length force vector at image i. The tangent vector
is calculated as in "(HenkelmanA)"_#HenkelmanA for all intermediate
replicas and at R2 - R1 and RM - RM-1 for the first and last replica,
respectively. "anglegrad" is the angle between the 3N-length energy
gradient vector of replica i and that of replica i+1. It is not
defined for the final replica and reads nan. gradV is the norm of the
energy gradient of image i. ReplicaForce is the two-norm of the
3N-length force vector (including nudging forces) for replica i.
MaxAtomForce is the maximum force component of any atom in replica i.
When a NEB calculation does not converge properly, these suplementary
informations can help understanding what is going wrong. For instance
when the path angle becomes accute the definition of tangent used in
the NEB calculation is questionable and the NEB cannot may diverge
"(Maras)"_#Maras2.
The forward (reverse) energy barrier is the potential energy of the highest
replica minus the energy of the first (last) replica.
When running on multiple partitions, LAMMPS produces additional log
files for each partition, e.g. log.lammps.0, log.lammps.1, etc. For a
@ -396,12 +399,16 @@ This command can only be used if LAMMPS was built with the REPLICA
package. See the "Making LAMMPS"_Section_start.html#start_3 section
for more info on packages.
:line
[Related commands:]
"prd"_prd.html, "temper"_temper.html, "fix
langevin"_fix_langevin.html, "fix viscous"_fix_viscous.html
"prd"_prd.html, "temper"_temper.html, "fix langevin"_fix_langevin.html,
"fix viscous"_fix_viscous.html
[Default:] none
[Default:]
none
:line
@ -414,3 +421,7 @@ langevin"_fix_langevin.html, "fix viscous"_fix_viscous.html
:link(Nakano3)
[(Nakano)] Nakano, Comp Phys Comm, 178, 280-289 (2008).
:link(Maras2)
[(Maras)] Maras, Trushin, Stukowski, Ala-Nissila, Jonsson,
Comp Phys Comm, 205, 13-21 (2016)

View File

@ -574,9 +574,9 @@ is used. If it is not used, you must invoke the package intel
command in your input script or or via the "-pk intel" "command-line
switch"_Section_start.html#start_7.
For the KOKKOS package, the option defaults neigh = full, neigh/qeq
= full, newton = off, binsize = 0.0, and comm = device. These settings
are made automatically by the required "-k on" "command-line
For the KOKKOS package, the option defaults neigh = full,
neigh/qeq = full, newton = off, binsize = 0.0, and comm = device.
These settings are made automatically by the required "-k on" "command-line
switch"_Section_start.html#start_7. You can change them bu using the
package kokkos command in your input script or via the "-pk kokkos"
"command-line switch"_Section_start.html#start_7.

View File

@ -104,7 +104,15 @@ charmmfsw"_dihedral_charmm.html command. Eventually code from the new
styles will propagate into the related pair styles (e.g. implicit,
accelerator, free energy variants).
The general CHARMM formulas are as follows
NOTE: The newest CHARMM pair styles reset the Coulombic energy
conversion factor used internally in the code, from the LAMMPS value
to the CHARMM value, as if it were effectively a parameter of the
force field. This is because the CHARMM code uses a slightly
different value for the this conversion factor in "real
units"_units.html (Kcal/mole), namely CHARMM = 332.0716, LAMMPS =
332.06371. This is to enable more precise agreement by LAMMPS with
the CHARMM force field energies and forces, when using one of these
two CHARMM pair styles.
:c,image(Eqs/pair_charmm.jpg)

View File

@ -71,6 +71,14 @@ and force, Fij = -Fji as symmetric forces, and Tij != -Tji since the
torques do not act symmetrically. These formulas are discussed in
"(Allen)"_#Allen2 and in "(Toukmaji)"_#Toukmaji2.
Also note, that in the code, all of these terms (except Elj) have a
C/epsilon prefactor, the same as the Coulombic term in the LJ +
Coulombic pair styles discussed "here"_pair_lj.html. C is an
energy-conversion constant and epsilon is the dielectric constant
which can be set by the "dielectric"_dielectric.html command. The
same is true of the equations that follow for other dipole pair
styles.
Style {lj/sf/dipole/sf} computes "shifted-force" interactions between
pairs of particles that each have a charge and/or a point dipole
moment. In general, a shifted-force potential is a (sligthly) modified

View File

@ -7,6 +7,7 @@
:line
pair_style lj/long/coul/long command :h3
pair_style lj/long/coul/long/intel command :h3
pair_style lj/long/coul/long/omp command :h3
pair_style lj/long/coul/long/opt command :h3
pair_style lj/long/tip4p/long command :h3

View File

@ -1,114 +0,0 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
pair_style lj/sf command :h3
pair_style lj/sf/omp command :h3
[Syntax:]
pair_style lj/sf cutoff :pre
cutoff = global cutoff for Lennard-Jones interactions (distance units) :ul
[Examples:]
pair_style lj/sf 2.5
pair_coeff * * 1.0 1.0
pair_coeff 1 1 1.0 1.0 3.0 :pre
[Description:]
Style {lj/sf} computes a truncated and force-shifted LJ interaction
(Shifted Force Lennard-Jones), so that both the potential and the
force go continuously to zero at the cutoff "(Toxvaerd)"_#Toxvaerd:
:c,image(Eqs/pair_lj_sf.jpg)
The following coefficients must be defined for each pair of atoms
types via the "pair_coeff"_pair_coeff.html command as in the examples
above, or in the data file or restart files read by the
"read_data"_read_data.html or "read_restart"_read_restart.html
commands, or by mixing as described below:
epsilon (energy units)
sigma (distance units)
cutoff (distance units) :ul
The last coefficient is optional. If not specified, the global
LJ cutoff specified in the pair_style command is used.
:line
Styles with a {gpu}, {intel}, {kk}, {omp}, or {opt} suffix are
functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available
hardware, as discussed in "Section 5"_Section_accelerate.html
of the manual. The accelerated styles take the same arguments and
should produce the same results, except for round-off and precision
issues.
These accelerated styles are part of the GPU, USER-INTEL, KOKKOS,
USER-OMP and OPT packages, respectively. They are only enabled if
LAMMPS was built with those packages. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for
more instructions on how to use the accelerated styles effectively.
:line
[Mixing, shift, table, tail correction, restart, rRESPA info]:
For atom type pairs I,J and I != J, the epsilon and sigma
coefficients and cutoff distance for this pair style can be mixed.
Rin is a cutoff value and is mixed like the cutoff. The
default mix value is {geometric}. See the "pair_modify" command for
details.
The "pair_modify"_pair_modify.html shift option is not relevant for
this pair style, since the pair interaction goes to 0.0 at the cutoff.
The "pair_modify"_pair_modify.html table option is not relevant
for this pair style.
This pair style does not support the "pair_modify"_pair_modify.html
tail option for adding long-range tail corrections to energy and
pressure, since the energy of the pair interaction is smoothed to 0.0
at the cutoff.
This pair style writes its information to "binary restart
files"_restart.html, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.
This pair style can only be used via the {pair} keyword of the
"run_style respa"_run_style.html command. It does not support the
{inner}, {middle}, {outer} keywords.
:line
[Restrictions:]
This pair style is part of the USER-MISC package. It is only enabled
if LAMMPS was built with that package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info.
[Related commands:]
"pair_coeff"_pair_coeff.html
[Default:] none
:line
:link(Toxvaerd)
[(Toxvaerd)] Toxvaerd, Dyre, J Chem Phys, 134, 081102 (2011).

View File

@ -11,26 +11,26 @@ pair_style lj/smooth/linear/omp command :h3
[Syntax:]
pair_style lj/smooth/linear Rc :pre
pair_style lj/smooth/linear cutoff :pre
Rc = cutoff for lj/smooth/linear interactions (distance units) :ul
cutoff = global cutoff for Lennard-Jones interactions (distance units) :ul
[Examples:]
pair_style lj/smooth/linear 5.456108274435118
pair_coeff * * 0.7242785984051078 2.598146797350056
pair_coeff 1 1 20.0 1.3 9.0 :pre
pair_style lj/smooth/linear 2.5
pair_coeff * * 1.0 1.0
pair_coeff 1 1 0.3 3.0 9.0 :pre
[Description:]
Style {lj/smooth/linear} computes a LJ interaction that combines the
standard 12/6 Lennard-Jones function and subtracts a linear term that
includes the cutoff distance Rc, as in this formula:
Style {lj/smooth/linear} computes a truncated and force-shifted LJ
interaction (aka Shifted Force Lennard-Jones) that combines the
standard 12/6 Lennard-Jones function and subtracts a linear term based
on the cutoff distance, so that both, the potential and the force, go
continuously to zero at the cutoff Rc "(Toxvaerd)"_#Toxvaerd:
:c,image(Eqs/pair_lj_smooth_linear.jpg)
At the cutoff Rc, the energy and force (its 1st derivative) will be 0.0.
The following coefficients must be defined for each pair of atoms
types via the "pair_coeff"_pair_coeff.html command as in the examples
above, or in the data file or restart files read by the
@ -41,8 +41,8 @@ epsilon (energy units)
sigma (distance units)
cutoff (distance units) :ul
The last coefficient is optional. If not specified, the global value
for Rc is used.
The last coefficient is optional. If not specified, the global
LJ cutoff specified in the pair_style command is used.
:line
@ -76,10 +76,11 @@ and cutoff distance can be mixed. The default mix value is geometric.
See the "pair_modify" command for details.
This pair style does not support the "pair_modify"_pair_modify.html
shift option for the energy of the pair interaction.
shift option for the energy of the pair interaction, since it goes
to 0.0 at the cutoff by construction.
The "pair_modify"_pair_modify.html table option is not relevant for
this pair style.
The "pair_modify"_pair_modify.html table option is not relevant
for this pair style.
This pair style does not support the "pair_modify"_pair_modify.html
tail option for adding long-range tail corrections to energy and
@ -103,3 +104,8 @@ This pair style can only be used via the {pair} keyword of the
"pair_coeff"_pair_coeff.html, "pair lj/smooth"_pair_lj_smooth.html
[Default:] none
:line
:link(Toxvaerd)
[(Toxvaerd)] Toxvaerd, Dyre, J Chem Phys, 134, 081102 (2011).

View File

@ -7,10 +7,13 @@
:line
pair_style meam command :h3
pair_style meam/c command :h3
[Syntax:]
pair_style meam :pre
pair_style style :pre
style = {meam} or {meam/c}
[Examples:]
@ -30,7 +33,8 @@ using modified embedded-atom method (MEAM) potentials
"EAM potentials"_pair_eam.html which adds angular forces. It is
thus suitable for modeling metals and alloys with fcc, bcc, hcp and
diamond cubic structures, as well as covalently bonded materials like
silicon and carbon.
silicon and carbon. Style {meam/c} is a translation of the {meam} code
from (mostly) Fortran to C++. It is functionally equivalent to {meam}.
In the MEAM formulation, the total energy E of a system of atoms is
given by:
@ -331,10 +335,14 @@ This pair style can only be used via the {pair} keyword of the
[Restrictions:]
This style is part of the MEAM package. It is only enabled if LAMMPS
The {meam} style is part of the MEAM package. It is only enabled if LAMMPS
was built with that package, which also requires the MEAM library be
built and linked with LAMMPS. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info.
built and linked with LAMMPS.
The {meam/c} style is provided in the USER-MEAMC package. It is only enabled
if LAMMPS was built with that package. In contrast to the {meam} style,
{meam/c} does not require a separate library to be compiled and it can be
instantiated multiple times in a "hybrid"_pair_hybrid.html pair style.
See the "Making LAMMPS"_Section_start.html#start_3 section for more info.
[Related commands:]

View File

@ -36,7 +36,7 @@ args = list of arguments for a particular style :ul
pair_style morse 2.5
pair_style morse/smooth/linear 2.5
pair_coeff * * 100.0 2.0 1.5
pair_coeff 1 1 100.0 2.0 1.5 3.0
pair_coeff 1 1 100.0 2.0 1.5 3.0 :pre
pair_style morse/soft 4 0.9 10.0
pair_coeff * * 100.0 2.0 1.5 1.0

View File

@ -80,10 +80,12 @@ For a given entry, if the first three arguments are all different,
then the entry is for the {K} and {theta_0} parameters (the cutoff in
this case is irrelevant).
It is {not} required that the potential file contain entries for all
of the elements listed in the pair_coeff command. It can also contain
entries for additional elements not being used in a particular
simulation; LAMMPS ignores those entries.
It is required that the potential file contains entries for {all}
permutations of the elements listed in the pair_coeff command.
If certain combinations are not parameterized the corresponding
parameters should be set to zero. The potential file can also
contain entries for additional elements which are not used in
a particular simulation; LAMMPS ignores those entries.
:line

View File

@ -74,7 +74,7 @@ placeholders for atom types that will be used with other potentials.
The python potential file has to start with the following code:
from __future__ import print_function
#
class LAMMPSPairPotential(object):
def __init__(self):
self.pmap=dict()
@ -163,9 +163,10 @@ pair_write 1 1 2000 rsq 0.01 2.5 lj1_lj2.table lj :pre
Note that it is strongly recommended to try to [delete] the potential
table file before generating it. Since the {pair_write} command will
always append to a table file, which pair style table will use the
first match. Thus when changing the potential function in the python
class, the table pair style will still read the old variant.
always [append] to a table file, while pair style table will use the
[first match]. Thus when changing the potential function in the python
class, the table pair style will still read the old variant unless the
table file is first deleted.
After switching the pair style to {table}, the potential tables need
to be assigned to the LAMMPS atom types like this:

View File

@ -8,6 +8,7 @@
pair_style reax/c command :h3
pair_style reax/c/kk command :h3
pair_style reax/c/omp command :h3
[Syntax:]

View File

@ -10,7 +10,8 @@ pair_style snap command :h3
[Syntax:]
pair_style snap :pre
pair_style snap
:pre
[Examples:]
@ -19,11 +20,11 @@ pair_coeff * * InP.snapcoeff In P InP.snapparam In In P P :pre
[Description:]
Style {snap} computes interactions
Pair style {snap} computes interactions
using the spectral neighbor analysis potential (SNAP)
"(Thompson)"_#Thompson20142. Like the GAP framework of Bartok et al.
"(Bartok2010)"_#Bartok20102, "(Bartok2013)"_#Bartok2013
it uses bispectrum components
which uses bispectrum components
to characterize the local neighborhood of each atom
in a very general way. The mathematical definition of the
bispectrum calculation used by SNAP is identical
@ -139,10 +140,15 @@ The default values for these keywords are
{rmin0} = 0.0
{diagonalstyle} = 3
{switchflag} = 0
{bzeroflag} = 1 :ul
{bzeroflag} = 1
{quadraticflag} = 1 :ul
Detailed definitions of these keywords are given on the "compute
Detailed definitions for all the keywords are given on the "compute
sna/atom"_compute_sna_atom.html doc page.
If {quadraticflag} is set to 1, then the SNAP energy expression includes the quadratic term,
0.5*B^t.alpha.B, where alpha is a symmetric {K} by {K} matrix.
The SNAP element file should contain {K}({K}+1)/2 additional coefficients
for each element, the upper-triangular elements of alpha.
:line

View File

@ -7,6 +7,7 @@
:line
pair_style vashishta command :h3
pair_style vashishta/gpu command :h3
pair_style vashishta/omp command :h3
pair_style vashishta/kk command :h3
pair_style vashishta/table command :h3

View File

@ -14,7 +14,7 @@ pair_style zero cutoff {nocoeff} :pre
zero = style name of this pair style
cutoff = global cutoff (distance units)
nocoeff = ignore all pair_coeff parameters (optional) :l
nocoeff = ignore all pair_coeff parameters (optional) :ul
[Examples:]

View File

@ -49,7 +49,6 @@ Pair Styles :h1
pair_lj_cubic
pair_lj_expand
pair_lj_long
pair_lj_sf
pair_lj_smooth
pair_lj_smooth_linear
pair_lj_soft

View File

@ -14,7 +14,7 @@ read_data file keyword args ... :pre
file = name of data file to read in :ulb,l
zero or more keyword/arg pairs may be appended :l
keyword = {add} or {offset} or {shift} or {extra/atom/types} or {extra/bond/types} or {extra/angle/types} or {extra/dihedral/types} or {extra/improper/types} or {group} or {nocoeff} or {fix} :l
keyword = {add} or {offset} or {shift} or {extra/atom/types} or {extra/bond/types} or {extra/angle/types} or {extra/dihedral/types} or {extra/improper/types} or {extra/bond/per/atom} or {extra/angle/per/atom} or {extra/dihedral/per/atom} or {extra/improper/per/atom} or {group} or {nocoeff} or {fix} :l
{add} arg = {append} or {Nstart} or {merge}
append = add new atoms with IDs appended to current IDs
Nstart = add new atoms with IDs starting with Nstart
@ -32,6 +32,11 @@ keyword = {add} or {offset} or {shift} or {extra/atom/types} or {extra/bond/type
{extra/angle/types} arg = # of extra angle types
{extra/dihedral/types} arg = # of extra dihedral types
{extra/improper/types} arg = # of extra improper types
{extra/bond/per/atom} arg = leave space for this many new bonds per atom
{extra/angle/per/atom} arg = leave space for this many new angles per atom
{extra/dihedral/per/atom} arg = leave space for this many new dihedrals per atom
{extra/improper/per/atom} arg = leave space for this many new impropers per atom
{extra/special/per/atom} arg = leave space for extra 1-2,1-3,1-4 interactions per atom
{group} args = groupID
groupID = add atoms in data file to this group
{nocoeff} = ignore force field parameters
@ -264,11 +269,11 @@ is different than the default.
{angle types} = # of angle types in system
{dihedral types} = # of dihedral types in system
{improper types} = # of improper types in system
{extra bond per atom} = leave space for this many new bonds per atom
{extra angle per atom} = leave space for this many new angles per atom
{extra dihedral per atom} = leave space for this many new dihedrals per atom
{extra improper per atom} = leave space for this many new impropers per atom
{extra special per atom} = leave space for this many new special bonds per atom
{extra bond per atom} = leave space for this many new bonds per atom (deprecated, use extra/bond/per/atom keyword)
{extra angle per atom} = leave space for this many new angles per atom (deprecated, use extra/angle/per/atom keyword)
{extra dihedral per atom} = leave space for this many new dihedrals per atom (deprecated, use extra/dihedral/per/atom keyword)
{extra improper per atom} = leave space for this many new impropers per atom (deprecated, use extra/improper/per/atom keyword)
{extra special per atom} = leave space for this many new special bonds per atom (deprecated, use extra/special/per/atom keyword)
{ellipsoids} = # of ellipsoids in system
{lines} = # of line segments in system
{triangles} = # of triangles in system
@ -367,25 +372,32 @@ read_data command will generate an error in this case.
The "extra bond per atom" setting (angle, dihedral, improper) is only
needed if new bonds (angles, dihedrals, impropers) will be added to
the system when a simulation runs, e.g. by using the "fix
bond/create"_fix_bond_create.html command. This will pre-allocate
space in LAMMPS data structures for storing the new bonds (angles,
bond/create"_fix_bond_create.html command. Using this header flag
is deprecated; please use the {extra/bond/per/atom} keyword (and
correspondingly for angles, dihedrals and impropers) in the
read_data command instead. Either will pre-allocate space in LAMMPS
data structures for storing the new bonds (angles,
dihedrals, impropers).
The "extra special per atom" setting is typically only needed if new
bonds/angles/etc will be added to the system, e.g. by using the "fix
bond/create"_fix_bond_create.html command. Or if entire new molecules
will be added to the system, e.g. by using the "fix
deposit"_fix_deposit.html or "fix pour"_fix_pour.html commands, which
will have more special 1-2,1-3,1-4 neighbors than any other molecules
defined in the data file. Using this setting will pre-allocate space
in the LAMMPS data structures for storing these neighbors. See the
will be added to the system, e.g. by using the
"fix deposit"_fix_deposit.html or "fix pour"_fix_pour.html commands,
which will have more special 1-2,1-3,1-4 neighbors than any other
molecules defined in the data file. Using this header flag is
deprecated; please use the {extra/special/per/atom} keyword instead.
Using this setting will pre-allocate space in the LAMMPS data
structures for storing these neighbors. See the
"special_bonds"_special_bonds.html and "molecule"_molecule.html doc
pages for more discussion of 1-2,1-3,1-4 neighbors.
NOTE: All of the "extra" settings are only used if they appear in the
first data file read; see the description of the {add} keyword above
for reading multiple data files. If they appear in later data files,
they are ignored.
NOTE: All of the "extra" settings are only applied in the first data
file read and when no simulation box has yet been created; as soon as
the simulation box is created (and read_data implies that), these
settings are {locked} and cannot be changed anymore. Please see the
description of the {add} keyword above for reading multiple data files.
If they appear in later data files, they are ignored.
The "ellipsoids" and "lines" and "triangles" and "bodies" settings are
only used with "atom_style ellipsoid or line or tri or

View File

@ -17,7 +17,7 @@ style = {verlet} or {verlet/split} or {respa} or {respa/omp} :ulb,l
{verlet/split} args = none
{respa} args = N n1 n2 ... keyword values ...
N = # of levels of rRESPA
n1, n2, ... = loop factor between rRESPA levels (N-1 values)
n1, n2, ... = loop factors between rRESPA levels (N-1 values)
zero or more keyword/value pairings may be appended to the loop factors
keyword = {bond} or {angle} or {dihedral} or {improper} or
{pair} or {inner} or {middle} or {outer} or {hybrid} or {kspace}
@ -55,7 +55,7 @@ style = {verlet} or {verlet/split} or {respa} or {respa/omp} :ulb,l
run_style verlet
run_style respa 4 2 2 2 bond 1 dihedral 2 pair 3 kspace 4
run_style respa 4 2 2 2 bond 1 dihedral 2 inner 3 5.0 6.0 outer 4 kspace 4 :pre
run_style respa 4 2 2 2 bond 1 dihedral 2 inner 3 5.0 6.0 outer 4 kspace 4
run_style respa 3 4 2 bond 1 hybrid 2 2 1 kspace 3 :pre
[Description:]

View File

@ -80,6 +80,7 @@ keyword = {type} or {type/fraction} or {mol} or {x} or {y} or {z} or \
value can be an atom-style variable (see below)
{image} nx ny nz
nx,ny,nz = which periodic image of the simulation box the atom is in
any of nx,ny,nz can be an atom-style variable (see below)
{bond} value = bond type for all bonds between selected atoms
{angle} value = angle type for all angles between selected atoms
{dihedral} value = dihedral type for all dihedrals between selected atoms
@ -363,9 +364,8 @@ A value of -1 means subtract 1 box length to get the true value.
LAMMPS updates these flags as atoms cross periodic boundaries during
the simulation. The flags can be output with atom snapshots via the
"dump"_dump.html command. If a value of NULL is specified for any of
nx,ny,nz, then the current image value for that dimension is
unchanged. For non-periodic dimensions only a value of 0 can be
specified. This keyword does not allow use of atom-style variables.
nx,ny,nz, then the current image value for that dimension is unchanged.
For non-periodic dimensions only a value of 0 can be specified.
This command can be useful after a system has been equilibrated and
atoms have diffused one or more box lengths in various directions.
This command can then reset the image values for atoms so that they

View File

@ -65,7 +65,13 @@ sense to define permanent bonds between atoms that interact via these
potentials, though such bonds may exist elsewhere in your system,
e.g. when using the "pair_style hybrid"_pair_hybrid.html command.
Thus LAMMPS ignores special_bonds settings when manybody potentials
are calculated.
are calculated. Please note, that the existence of explicit bonds
for atoms that are described by a manybody potential will alter the
neigborlist and thus can render the computation of those interactions
invalid, since those pairs are not only used to determine direct
pairwise interactions but also neighbors of neighbors and more.
The recommended course of action is to remove such bonds, or - if
that is not possible - use a special bonds setting of 1.0 1.0 1.0.
NOTE: Unlike some commands in LAMMPS, you cannot use this command
multiple times in an incremental fashion: e.g. to first set the LJ

View File

@ -10,6 +10,7 @@ PyLammps Tutorial :h1
<!-- RST
.. contents::
END_RST -->
Overview :h2

View File

@ -41,5 +41,8 @@ fortran a simple wrapper on the LAMMPS library API that
can be called from Fortran
fortran2 a more sophisticated wrapper on the LAMMPS library API that
can be called from Fortran
fortran3 wrapper written by Nir Goldman (LLNL), as an
extension to fortran2, used for calling LAMMPS
from Fortran DFTB+ code
Each sub-directory has its own README.
Each sub-directory has its own README with more details.

View File

@ -0,0 +1,236 @@
/* -----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
www.cs.sandia.gov/~sjplimp/lammps.html
Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ------------------------------------------------------------------------
Contributing author: Karl D. Hammond <karlh@ugcs.caltech.edu>
University of Tennessee, Knoxville (USA), 2012
------------------------------------------------------------------------- */
/* This is set of "wrapper" functions to assist LAMMPS.F90, which itself
provides a (I hope) robust Fortran interface to library.cpp and
library.h. All functions herein COULD be added to library.cpp instead of
including this as a separate file. See the README for instructions. */
#include <mpi.h>
#include "LAMMPS-wrapper.h"
#include <library.h>
#include <lammps.h>
#include <atom.h>
#include <fix.h>
#include <compute.h>
#include <modify.h>
#include <error.h>
#include <cstdlib>
using namespace LAMMPS_NS;
void lammps_open_fortran_wrapper (int argc, char **argv,
MPI_Fint communicator, void **ptr)
{
MPI_Comm C_communicator = MPI_Comm_f2c (communicator);
lammps_open (argc, argv, C_communicator, ptr);
}
int lammps_get_ntypes (void *ptr)
{
class LAMMPS *lmp = (class LAMMPS *) ptr;
int ntypes = lmp->atom->ntypes;
return ntypes;
}
void lammps_error_all (void *ptr, const char *file, int line, const char *str)
{
class LAMMPS *lmp = (class LAMMPS *) ptr;
lmp->error->all (file, line, str);
}
int lammps_extract_compute_vectorsize (void *ptr, char *id, int style)
{
class LAMMPS *lmp = (class LAMMPS *) ptr;
int icompute = lmp->modify->find_compute(id);
if ( icompute < 0 ) return 0;
class Compute *compute = lmp->modify->compute[icompute];
if ( style == 0 )
{
if ( !compute->vector_flag )
return 0;
else
return compute->size_vector;
}
else if ( style == 1 )
{
return lammps_get_natoms (ptr);
}
else if ( style == 2 )
{
if ( !compute->local_flag )
return 0;
else
return compute->size_local_rows;
}
else
return 0;
}
void lammps_extract_compute_arraysize (void *ptr, char *id, int style,
int *nrows, int *ncols)
{
class LAMMPS *lmp = (class LAMMPS *) ptr;
int icompute = lmp->modify->find_compute(id);
if ( icompute < 0 )
{
*nrows = 0;
*ncols = 0;
}
class Compute *compute = lmp->modify->compute[icompute];
if ( style == 0 )
{
if ( !compute->array_flag )
{
*nrows = 0;
*ncols = 0;
}
else
{
*nrows = compute->size_array_rows;
*ncols = compute->size_array_cols;
}
}
else if ( style == 1 )
{
if ( !compute->peratom_flag )
{
*nrows = 0;
*ncols = 0;
}
else
{
*nrows = lammps_get_natoms (ptr);
*ncols = compute->size_peratom_cols;
}
}
else if ( style == 2 )
{
if ( !compute->local_flag )
{
*nrows = 0;
*ncols = 0;
}
else
{
*nrows = compute->size_local_rows;
*ncols = compute->size_local_cols;
}
}
else
{
*nrows = 0;
*ncols = 0;
}
return;
}
int lammps_extract_fix_vectorsize (void *ptr, char *id, int style)
{
class LAMMPS *lmp = (class LAMMPS *) ptr;
int ifix = lmp->modify->find_fix(id);
if ( ifix < 0 ) return 0;
class Fix *fix = lmp->modify->fix[ifix];
if ( style == 0 )
{
if ( !fix->vector_flag )
return 0;
else
return fix->size_vector;
}
else if ( style == 1 )
{
return lammps_get_natoms (ptr);
}
else if ( style == 2 )
{
if ( !fix->local_flag )
return 0;
else
return fix->size_local_rows;
}
else
return 0;
}
void lammps_extract_fix_arraysize (void *ptr, char *id, int style,
int *nrows, int *ncols)
{
class LAMMPS *lmp = (class LAMMPS *) ptr;
int ifix = lmp->modify->find_fix(id);
if ( ifix < 0 )
{
*nrows = 0;
*ncols = 0;
}
class Fix *fix = lmp->modify->fix[ifix];
if ( style == 0 )
{
if ( !fix->array_flag )
{
*nrows = 0;
*ncols = 0;
}
else
{
*nrows = fix->size_array_rows;
*ncols = fix->size_array_cols;
}
}
else if ( style == 1 )
{
if ( !fix->peratom_flag )
{
*nrows = 0;
*ncols = 0;
}
else
{
*nrows = lammps_get_natoms (ptr);
*ncols = fix->size_peratom_cols;
}
}
else if ( style == 2 )
{
if ( !fix->local_flag )
{
*nrows = 0;
*ncols = 0;
}
else
{
*nrows = fix->size_local_rows;
*ncols = fix->size_local_cols;
}
}
else
{
*nrows = 0;
*ncols = 0;
}
return;
}
/* vim: set ts=3 sts=3 expandtab: */

View File

@ -0,0 +1,40 @@
/* -----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
www.cs.sandia.gov/~sjplimp/lammps.html
Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ------------------------------------------------------------------------
Contributing author: Karl D. Hammond <karlh@ugcs.caltech.edu>
University of Tennessee, Knoxville (USA), 2012
------------------------------------------------------------------------- */
/* This is set of "wrapper" functions to assist LAMMPS.F90, which itself
provides a (I hope) robust Fortran interface to library.cpp and
library.h. All prototypes herein COULD be added to library.h instead of
including this as a separate file. See the README for instructions. */
#ifdef __cplusplus
extern "C" {
#endif
/* Prototypes for auxiliary functions */
void lammps_open_fortran_wrapper (int, char**, MPI_Fint, void**);
int lammps_get_ntypes (void*);
int lammps_extract_compute_vectorsize (void*, char*, int);
void lammps_extract_compute_arraysize (void*, char*, int, int*, int*);
int lammps_extract_fix_vectorsize (void*, char*, int);
void lammps_extract_fix_arraysize (void*, char*, int, int*, int*);
void lammps_error_all (void*, const char*, int, const char*);
#ifdef __cplusplus
}
#endif
/* vim: set ts=3 sts=3 expandtab: */

View File

@ -0,0 +1,57 @@
/* -----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
www.cs.sandia.gov/~sjplimp/lammps.html
Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ------------------------------------------------------------------------
Contributing author: Karl D. Hammond <karlh@ugcs.caltech.edu>
University of Tennessee, Knoxville (USA), 2012
------------------------------------------------------------------------- */
/* This is set of "wrapper" functions to assist LAMMPS.F90, which itself
provides a (I hope) robust Fortran interface to library.cpp and
library.h. All functions herein COULD be added to library.cpp instead of
including this as a separate file. See the README for instructions. */
#include <mpi.h>
#include "LAMMPS-wrapper2.h"
#include <library.h>
#include <lammps.h>
#include <atom.h>
#include <input.h>
#include <modify.h>
#include <fix.h>
#include <fix_external.h>
#include <compute.h>
#include <modify.h>
#include <error.h>
#include <cstdlib>
using namespace LAMMPS_NS;
extern "C" void f_callback(void *, bigint, int, tagint *, double **, double **);
void lammps_set_callback (void *ptr) {
class LAMMPS *lmp = (class LAMMPS *) ptr;
int ifix = lmp->modify->find_fix_by_style("external");
FixExternal *fix = (FixExternal *) lmp->modify->fix[ifix];
fix->set_callback(f_callback, ptr);
return;
}
void lammps_set_user_energy (void *ptr, double energy) {
class LAMMPS *lmp = (class LAMMPS *) ptr;
int ifix = lmp->modify->find_fix_by_style("external");
FixExternal *fix = (FixExternal *) lmp->modify->fix[ifix];
fix->set_energy(energy);
return;
}

View File

@ -0,0 +1,34 @@
/* -----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
www.cs.sandia.gov/~sjplimp/lammps.html
Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ------------------------------------------------------------------------
Contributing author: Nir Goldman, ngoldman@llnl.gov, Oct. 19th, 2016
------------------------------------------------------------------------- */
/* This is set of "wrapper" functions to assist LAMMPS.F90, which itself
provides a (I hope) robust Fortran interface to library.cpp and
library.h. All prototypes herein COULD be added to library.h instead of
including this as a separate file. See the README for instructions. */
#ifdef __cplusplus
extern "C" {
#endif
/* Prototypes for auxiliary functions */
void lammps_set_callback (void *);
void lammps_set_user_energy (void*, double);
#ifdef __cplusplus
}
#endif
/* vim: set ts=3 sts=3 expandtab: */

View File

@ -0,0 +1,956 @@
!! -----------------------------------------------------------------------
! LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
! www.cs.sandia.gov/~sjplimp/lammps.html
! Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
!
! Copyright (2003) Sandia Corporation. Under the terms of Contract
! DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
! certain rights in this software. This software is distributed under
! the GNU General Public License.
!
! See the README file in the top-level LAMMPS directory.
!--------------------------------------------------------------------------
!! ------------------------------------------------------------------------
! Contributing author: Karl D. Hammond <karlh@ugcs.caltech.edu>
! University of Tennessee, Knoxville (USA), 2012
!--------------------------------------------------------------------------
!! LAMMPS, a Fortran 2003 module containing an interface between Fortran
!! programs and the C-style functions in library.cpp that ship with LAMMPS.
!! This file should be accompanied by LAMMPS-wrapper.cpp and LAMMPS-wrapper.h,
!! which define wrapper functions that ease portability and enforce array
!! dimensions.
!!
!! Everything in this module should be 100% portable by way of Fortran 2003's
!! ISO_C_BINDING intrinsic module. See the README for instructions for
!! compilation and use.
!!
!! Here are the PUBLIC functions and subroutines included in this module.
!! subroutine lammps_open (command_line, communicator, ptr)
!! subroutine lammps_open_no_mpi (command_line, ptr)
!! subroutine lammps_close (ptr)
!! subroutine lammps_file (ptr, str)
!! subroutine lammps_command (ptr, str)
!! subroutine lammps_free (ptr)
!! subroutine lammps_extract_global (global, ptr, name)
!! subroutine lammps_extract_atom (atom, ptr, name)
!! subroutine lammps_extract_fix (fix, ptr, id, style, type, i, j)
!! subroutine lammps_extract_compute (compute, ptr, id, style, type)
!! subroutine lammps_extract_variable (variable, ptr, name, group)
!! function lammps_get_natoms (ptr)
!! subroutine lammps_gather_atoms (ptr, name, count, data)
!! subroutine lammps_scatter_atoms (ptr, name, data)
#define FLERR __FILE__,__LINE__
! The above line allows for similar error checking as is done with standard
! LAMMPS files.
module LAMMPS
use, intrinsic :: ISO_C_binding, only : C_double, C_int, C_ptr, C_char, &
C_NULL_CHAR, C_loc, C_F_pointer, lammps_instance => C_ptr
implicit none
private
public :: lammps_open, lammps_open_no_mpi, lammps_close, lammps_file, &
lammps_command, lammps_free, lammps_extract_global, &
lammps_extract_atom, lammps_extract_compute, lammps_extract_fix, &
lammps_extract_variable, lammps_get_natoms, lammps_gather_atoms, &
lammps_scatter_atoms, lammps_set_callback, lammps_set_user_energy
public :: lammps_instance, C_ptr, C_double, C_int
!! Functions supplemental to the prototypes in library.h. {{{1
!! The function definitions (in C++) are contained in LAMMPS-wrapper.cpp.
!! I would have written the first in Fortran, but the MPI libraries (which
!! were written in C) have C-based functions to convert from Fortran MPI
!! handles to C MPI handles, and there is no Fortran equivalent for those
!! functions.
interface
subroutine lammps_open_wrapper (argc, argv, communicator, ptr) &
bind (C, name='lammps_open_fortran_wrapper')
import :: C_int, C_ptr
integer (C_int), value :: argc
type (C_ptr), dimension(*) :: argv
integer, value :: communicator
type (C_ptr) :: ptr
end subroutine lammps_open_wrapper
subroutine lammps_actual_error_all (ptr, file, line, str) &
bind (C, name='lammps_error_all')
import :: C_int, C_char, C_ptr
type (C_ptr), value :: ptr
character (kind=C_char), dimension(*), intent(in) :: file, str
integer (C_int), value :: line
end subroutine lammps_actual_error_all
function lammps_get_ntypes (ptr) result (ntypes) &
bind (C, name='lammps_get_ntypes')
import :: C_int, C_ptr
type (C_ptr), value :: ptr
integer (C_int) :: ntypes
end function lammps_get_ntypes
function lammps_actual_extract_compute_vectorsize (ptr, id, style) &
result (vectorsize) bind (C, name='lammps_extract_compute_vectorsize')
import :: C_int, C_char, C_ptr
integer (C_int) :: vectorsize
type (C_ptr), value :: ptr
character (kind=C_char), dimension(*) :: id
integer (C_int), value :: style
end function lammps_actual_extract_compute_vectorsize
subroutine lammps_actual_extract_compute_arraysize (ptr, id, style, &
nrows, ncols) bind (C, name='lammps_extract_compute_arraysize')
import :: C_int, C_char, C_ptr
integer (C_int) :: arraysize
type (C_ptr), value :: ptr
character (kind=C_char), dimension(*) :: id
integer (C_int), value :: style
integer (C_int) :: nrows, ncols
end subroutine lammps_actual_extract_compute_arraysize
function lammps_actual_extract_fix_vectorsize (ptr, id, style) &
result (vectorsize) bind (C, name='lammps_extract_fix_vectorsize')
import :: C_int, C_char, C_ptr
integer (C_int) :: vectorsize
type (C_ptr), value :: ptr
character (kind=C_char), dimension(*) :: id
integer (C_int), value :: style
end function lammps_actual_extract_fix_vectorsize
subroutine lammps_actual_extract_fix_arraysize (ptr, id, style, &
nrows, ncols) bind (C, name='lammps_extract_fix_arraysize')
import :: C_int, C_char, C_ptr
type (C_ptr), value :: ptr
character (kind=C_char), dimension(*) :: id
integer (C_int), value :: style
integer (C_int) :: nrows, ncols
end subroutine lammps_actual_extract_fix_arraysize
end interface
!! Functions/subroutines defined in library.h and library.cpp {{{1
interface
subroutine lammps_actual_open_no_mpi (argc, argv, ptr) &
bind (C, name='lammps_open_no_mpi')
import :: C_int, C_ptr
integer (C_int), value :: argc
type (C_ptr), dimension(*) :: argv
type (C_ptr) :: ptr
end subroutine lammps_actual_open_no_mpi
subroutine lammps_close (ptr) bind (C, name='lammps_close')
import :: C_ptr
type (C_ptr), value :: ptr
end subroutine lammps_close
subroutine lammps_actual_file (ptr, str) bind (C, name='lammps_file')
import :: C_ptr, C_char
type (C_ptr), value :: ptr
character (kind=C_char), dimension(*) :: str
end subroutine lammps_actual_file
function lammps_actual_command (ptr, str) result (command) &
bind (C, name='lammps_command')
import :: C_ptr, C_char
type (C_ptr), value :: ptr
character (kind=C_char), dimension(*) :: str
type (C_ptr) :: command
end function lammps_actual_command
subroutine lammps_free (ptr) bind (C, name='lammps_free')
import :: C_ptr
type (C_ptr), value :: ptr
end subroutine lammps_free
function lammps_actual_extract_global (ptr, name) &
bind (C, name='lammps_extract_global') result (global)
import :: C_ptr, C_char
type (C_ptr), value :: ptr
character (kind=C_char), dimension(*) :: name
type (C_ptr) :: global
end function lammps_actual_extract_global
function lammps_actual_extract_atom (ptr, name) &
bind (C, name='lammps_extract_atom') result (atom)
import :: C_ptr, C_char
type (C_ptr), value :: ptr
character (kind=C_char), dimension(*) :: name
type (C_ptr) :: atom
end function lammps_actual_extract_atom
function lammps_actual_extract_compute (ptr, id, style, type) &
result (compute) bind (C, name='lammps_extract_compute')
import :: C_ptr, C_char, C_int
type (C_ptr), value :: ptr
character (kind=C_char), dimension(*) :: id
integer (C_int), value :: style, type
type (C_ptr) :: compute
end function lammps_actual_extract_compute
function lammps_actual_extract_fix (ptr, id, style, type, i, j) &
result (fix) bind (C, name='lammps_extract_fix')
import :: C_ptr, C_char, C_int
type (C_ptr), value :: ptr
character (kind=C_char), dimension(*) :: id
integer (C_int), value :: style, type, i, j
type (C_ptr) :: fix
end function lammps_actual_extract_fix
function lammps_actual_extract_variable (ptr, name, group) &
result (variable) bind (C, name='lammps_extract_variable')
import :: C_ptr, C_char
type (C_ptr), value :: ptr
character (kind=C_char), dimension(*) :: name, group
type (C_ptr) :: variable
end function lammps_actual_extract_variable
function lammps_get_natoms (ptr) result (natoms) &
bind (C, name='lammps_get_natoms')
import :: C_ptr, C_int
type (C_ptr), value :: ptr
integer (C_int) :: natoms
end function lammps_get_natoms
subroutine lammps_set_callback (ptr) &
bind (C, name='lammps_set_callback')
import :: C_ptr
type (C_ptr), value :: ptr
end subroutine lammps_set_callback
subroutine lammps_set_user_energy (ptr, energy) &
bind (C, name='lammps_set_user_energy')
import :: C_ptr, C_double
type (C_ptr), value :: ptr
real(C_double), value :: energy
end subroutine lammps_set_user_energy
subroutine lammps_actual_gather_atoms (ptr, name, type, count, data) &
bind (C, name='lammps_gather_atoms')
import :: C_ptr, C_int, C_char
type (C_ptr), value :: ptr, data
character (kind=C_char), dimension(*) :: name
integer (C_int), value :: type, count
end subroutine lammps_actual_gather_atoms
subroutine lammps_actual_scatter_atoms (ptr, name, type, count, data) &
bind (C, name='lammps_scatter_atoms')
import :: C_ptr, C_int, C_char
type (C_ptr), value :: ptr, data
character (kind=C_char), dimension(*) :: name
integer (C_int), value :: type, count
end subroutine lammps_actual_scatter_atoms
end interface
! Generic functions for the wrappers below {{{1
interface lammps_extract_global
module procedure lammps_extract_global_i, &
lammps_extract_global_dp
end interface lammps_extract_global
interface lammps_extract_atom
module procedure lammps_extract_atom_ia, &
lammps_extract_atom_dpa, &
lammps_extract_atom_dp2a
end interface lammps_extract_atom
interface lammps_extract_compute
module procedure lammps_extract_compute_dp, &
lammps_extract_compute_dpa, &
lammps_extract_compute_dp2a
end interface lammps_extract_compute
interface lammps_extract_fix
module procedure lammps_extract_fix_dp, &
lammps_extract_fix_dpa, &
lammps_extract_fix_dp2a
end interface lammps_extract_fix
interface lammps_extract_variable
module procedure lammps_extract_variable_dp, &
lammps_extract_variable_dpa
end interface lammps_extract_variable
interface lammps_gather_atoms
module procedure lammps_gather_atoms_ia, lammps_gather_atoms_dpa
end interface lammps_gather_atoms
interface lammps_scatter_atoms
module procedure lammps_scatter_atoms_ia, lammps_scatter_atoms_dpa
end interface lammps_scatter_atoms
contains !! Wrapper functions local to this module {{{1
subroutine lammps_open (command_line, communicator, ptr)
character (len=*), intent(in) :: command_line
integer, intent(in) :: communicator
type (C_ptr) :: ptr
integer (C_int) :: argc
type (C_ptr), dimension(:), allocatable :: argv
character (kind=C_char), dimension(len_trim(command_line)+1), target :: &
c_command_line
c_command_line = string2Cstring (command_line)
call Cstring2argcargv (c_command_line, argc, argv)
call lammps_open_wrapper (argc, argv, communicator, ptr)
deallocate (argv)
end subroutine lammps_open
!-----------------------------------------------------------------------------
subroutine lammps_open_no_mpi (command_line, ptr)
character (len=*), intent(in) :: command_line
type (C_ptr) :: ptr
integer (C_int) :: argc
type (C_ptr), dimension(:), allocatable :: argv
character (kind=C_char), dimension(len_trim(command_line)+1), target :: &
c_command_line
c_command_line = string2Cstring (command_line)
call Cstring2argcargv (c_command_line, argc, argv)
call lammps_actual_open_no_mpi (argc, argv, ptr)
deallocate (argv)
end subroutine lammps_open_no_mpi
!-----------------------------------------------------------------------------
subroutine lammps_file (ptr, str)
type (C_ptr) :: ptr
character (len=*) :: str
character (kind=C_char), dimension(len_trim(str)+1) :: Cstr
Cstr = string2Cstring (str)
call lammps_actual_file (ptr, Cstr)
end subroutine lammps_file
!-----------------------------------------------------------------------------
subroutine lammps_command (ptr, str)
type (C_ptr) :: ptr
character (len=*) :: str
character (kind=C_char), dimension(len_trim(str)+1) :: Cstr
type (C_ptr) :: dummy
Cstr = string2Cstring (str)
dummy = lammps_actual_command (ptr, Cstr)
end subroutine lammps_command
!-----------------------------------------------------------------------------
! lammps_extract_global {{{2
function lammps_extract_global_Cptr (ptr, name) result (global)
type (C_ptr) :: global
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: name
character (kind=C_char), dimension(len_trim(name)+1) :: Cname
Cname = string2Cstring (name)
global = lammps_actual_extract_global (ptr, Cname)
end function lammps_extract_global_Cptr
subroutine lammps_extract_global_i (global, ptr, name)
integer (C_int), pointer, intent(out) :: global
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: name
type (C_ptr) :: Cptr
Cptr = lammps_extract_global_Cptr (ptr, name)
call C_F_pointer (Cptr, global)
end subroutine lammps_extract_global_i
subroutine lammps_extract_global_dp (global, ptr, name)
real (C_double), pointer, intent(out) :: global
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: name
type (C_ptr) :: Cptr
Cptr = lammps_extract_global_Cptr (ptr, name)
call C_F_pointer (Cptr, global)
end subroutine lammps_extract_global_dp
!-----------------------------------------------------------------------------
! lammps_extract_atom {{{2
function lammps_extract_atom_Cptr (ptr, name) result (atom)
type (C_ptr) :: atom
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: name
character (kind=C_char), dimension(len_trim(name)+1) :: Cname
Cname = string2Cstring (name)
atom = lammps_actual_extract_atom (ptr, Cname)
end function lammps_extract_atom_Cptr
subroutine lammps_extract_atom_ia (atom, ptr, name)
integer (C_int), dimension(:), pointer, intent(out) :: atom
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: name
type (C_ptr) :: Cptr
integer (C_int), pointer :: nelements
call lammps_extract_global_i (nelements, ptr, 'nlocal')
Cptr = lammps_extract_atom_Cptr (ptr, name)
call C_F_pointer (Cptr, atom, (/nelements/))
end subroutine lammps_extract_atom_ia
subroutine lammps_extract_atom_dpa (atom, ptr, name)
real (C_double), dimension(:), pointer, intent(out) :: atom
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: name
type (C_ptr) :: Cptr
integer (C_int), pointer :: nlocal
integer :: nelements
real (C_double), dimension(:), pointer :: Fptr
if ( name == 'mass' ) then
nelements = lammps_get_ntypes (ptr) + 1
else if ( name == 'x' .or. name == 'v' .or. name == 'f' .or. &
name == 'mu' .or. name == 'omega' .or. name == 'torque' .or. &
name == 'angmom' ) then
! We should not be getting a rank-2 array here!
call lammps_error_all (ptr, FLERR, 'You cannot extract those atom&
& data (' // trim(name) // ') into a rank 1 array.')
return
else
! Everything else we can get is probably nlocal units long
call lammps_extract_global_i (nlocal, ptr, 'nlocal')
nelements = nlocal
end if
Cptr = lammps_extract_atom_Cptr (ptr, name)
call C_F_pointer (Cptr, Fptr, (/nelements/))
if ( name == 'mass' ) then
!atom(0:) => Fptr
atom => Fptr
else
atom => Fptr
end if
end subroutine lammps_extract_atom_dpa
subroutine lammps_extract_atom_dp2a (atom, ptr, name)
real (C_double), dimension(:,:), pointer, intent(out) :: atom
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: name
type (C_ptr) :: Cptr
type (C_ptr), pointer, dimension(:) :: Catom
integer (C_int), pointer :: nelements
if ( name /= 'x' .and. name /= 'v' .and. name /= 'f' .and. &
name /= 'mu' .and. name /= 'omega' .and. name /= 'tandque' .and. &
name /= 'angmom' .and. name /= 'fexternal' ) then
! We should not be getting a rank-2 array here!
call lammps_error_all (ptr, FLERR, 'You cannot extract those atom&
& data (' // trim(name) // ') into a rank 2 array.')
return
end if
Cptr = lammps_extract_atom_Cptr (ptr, name)
call lammps_extract_global_i (nelements, ptr, 'nlocal')
! Catom will now be the array of void* pointers that the void** pointer
! pointed to. Catom(1) is now the pointer to the first element.
call C_F_pointer (Cptr, Catom, (/nelements/))
! Now get the actual array, which has its shape transposed from what we
! might think of it in C
call C_F_pointer (Catom(1), atom, (/3, nelements/))
end subroutine lammps_extract_atom_dp2a
!-----------------------------------------------------------------------------
! lammps_extract_compute {{{2
function lammps_extract_compute_Cptr (ptr, id, style, type) result (compute)
type (C_ptr) :: compute
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: id
integer, intent(in) :: style, type
integer (kind=C_int) :: Cstyle, Ctype
character (kind=C_char), dimension(len_trim(id)+1) :: Cid
Cid = string2Cstring (id)
Cstyle = style
Ctype = type
compute = lammps_actual_extract_compute (ptr, Cid, Cstyle, Ctype)
end function lammps_extract_compute_Cptr
subroutine lammps_extract_compute_dp (compute, ptr, id, style, type)
real (C_double), pointer, intent(out) :: compute
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: id
integer, intent(in) :: style, type
type (C_ptr) :: Cptr
! The only valid values of (style,type) are (0,0) for scalar 'compute'
if ( style /= 0 ) then
call lammps_error_all (ptr, FLERR, 'You cannot pack per-atom/local&
& data into a scalar.')
return
end if
if ( type == 1 ) then
call lammps_error_all (ptr, FLERR, 'You cannot extract a compute&
& vector (rank 1) into a scalar.')
return
else if ( type == 2 ) then
call lammps_error_all (ptr, FLERR, 'You cannot extract a compute&
& array (rank 2) into a scalar.')
return
end if
Cptr = lammps_extract_compute_Cptr (ptr, id, style, type)
call C_F_pointer (Cptr, compute)
end subroutine lammps_extract_compute_dp
subroutine lammps_extract_compute_dpa (compute, ptr, id, style, type)
real (C_double), dimension(:), pointer, intent(out) :: compute
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: id
integer, intent(in) :: style, type
type (C_ptr) :: Cptr
integer :: nelements
! Check for the correct dimensionality
if ( type == 0 ) then
call lammps_error_all (ptr, FLERR, 'You cannot extract a compute&
& scalar (rank 0) into a rank 1 variable.')
return
else if ( type == 2 ) then
call lammps_error_all (ptr, FLERR, 'You cannot extract a compute&
& array (rank 2) into a rank 1 variable.')
return
end if
nelements = lammps_extract_compute_vectorsize (ptr, id, style)
Cptr = lammps_extract_compute_Cptr (ptr, id, style, type)
call C_F_pointer (Cptr, compute, (/nelements/))
end subroutine lammps_extract_compute_dpa
subroutine lammps_extract_compute_dp2a (compute, ptr, id, style, type)
real (C_double), dimension(:,:), pointer, intent(out) :: compute
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: id
integer, intent(in) :: style, type
type (C_ptr) :: Cptr
type (C_ptr), pointer, dimension(:) :: Ccompute
integer :: nr, nc
! Check for the correct dimensionality
if ( type == 0 ) then
call lammps_error_all (ptr, FLERR, 'You cannot extract a compute&
& scalar (rank 0) into a rank 2 variable.')
return
else if ( type == 1 ) then
call lammps_error_all (ptr, FLERR, 'You cannot extract a compute&
& array (rank 1) into a rank 2 variable.')
return
end if
call lammps_extract_compute_arraysize (ptr, id, style, nr, nc)
Cptr = lammps_extract_compute_Cptr (ptr, id, style, type)
call C_F_pointer (Cptr, Ccompute, (/nr/))
! Note that the matrix is transposed, from Fortran's perspective
call C_F_pointer (Ccompute(1), compute, (/nc, nr/))
end subroutine lammps_extract_compute_dp2a
!-----------------------------------------------------------------------------
! lammps_extract_fix {{{2
function lammps_extract_fix_Cptr (ptr, id, style, type, i, j) &
result (fix)
type (C_ptr) :: fix
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: id
integer, intent(in) :: style, type, i, j
character (kind=C_char), dimension(len_trim(id)+1) :: Cid
integer (kind=C_int) :: Cstyle, Ctype, Ci, Cj
Cid = string2Cstring (id)
Cstyle = style
Ctype = type
Ci = i - 1 ! This is for consistency with the values from f_ID[i],
Cj = j - 1 ! which is different from what library.cpp uses!
if ( (type >= 1 .and. Ci < 0) .or. &
(type == 2 .and. (Ci < 0 .or. Cj < 0) ) ) then
call lammps_error_all (ptr, FLERR, 'Index out of range in&
& lammps_extract_fix')
end if
fix = lammps_actual_extract_fix (ptr, Cid, Cstyle, Ctype, Ci, Cj)
end function lammps_extract_fix_Cptr
subroutine lammps_extract_fix_dp (fix, ptr, id, style, type, i, j)
real (C_double), intent(out) :: fix
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: id
integer, intent(in) :: style, type, i, j
type (C_ptr) :: Cptr
real (C_double), pointer :: Fptr
! Check for the correct dimensionality
if ( style /= 0 ) then
select case (type)
case (0)
call lammps_error_all (ptr, FLERR, 'There is no per-atom or local&
& scalar data available from fixes.')
case (1)
call lammps_error_all (ptr, FLERR, 'You cannot extract a fix''s &
&per-atom/local vector (rank 1) into a scalar.')
case (2)
call lammps_error_all (ptr, FLERR, 'You cannot extract a fix''s &
&per-atom/local array (rank 2) into a scalar.')
case default
call lammps_error_all (ptr, FLERR, 'Invalid extract_fix style/&
&type combination.')
end select
return
end if
Cptr = lammps_extract_fix_Cptr (ptr, id, style, type, i, j)
call C_F_pointer (Cptr, Fptr)
fix = Fptr
nullify (Fptr)
! Memory is only allocated for "global" fix variables
if ( style == 0 ) call lammps_free (Cptr)
end subroutine lammps_extract_fix_dp
subroutine lammps_extract_fix_dpa (fix, ptr, id, style, type, i, j)
real (C_double), dimension(:), pointer, intent(out) :: fix
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: id
integer, intent(in) :: style, type, i, j
type (C_ptr) :: Cptr
integer :: fix_len
! Check for the correct dimensionality
if ( style == 0 ) then
call lammps_error_all (ptr, FLERR, 'You can''t extract the&
& whole vector from global fix data')
return
else if ( type == 0 ) then
call lammps_error_all (ptr, FLERR, 'You can''t extract a fix&
& scalar into a rank 1 variable')
return
else if ( type == 2 ) then
call lammps_error_all (ptr, FLERR, 'You cannot extract a fix&
& array into a rank 1 variable.')
return
else if ( type /= 1 ) then
call lammps_error_all (ptr, FLERR, 'Invalid type for fix extraction.')
return
end if
fix_len = lammps_extract_fix_vectorsize (ptr, id, style)
call C_F_pointer (Cptr, fix, (/fix_len/))
! Memory is only allocated for "global" fix variables, which we should
! never get here, so no need to call lammps_free!
end subroutine lammps_extract_fix_dpa
subroutine lammps_extract_fix_dp2a (fix, ptr, id, style, type, i, j)
real (C_double), dimension(:,:), pointer, intent(out) :: fix
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: id
integer, intent(in) :: style, type, i, j
type (C_ptr) :: Cptr
type (C_ptr), pointer, dimension(:) :: Cfix
integer :: nr, nc
! Check for the correct dimensionality
if ( style == 0 ) then
call lammps_error_all (ptr, FLERR, 'It is not possible to extract the&
& entire array from global fix data.')
return
else if ( type == 0 ) then
call lammps_error_all (ptr, FLERR, 'You cannot extract a fix&
& scalar (rank 0) into a rank 2 variable.')
return
else if ( type == 1 ) then
call lammps_error_all (ptr, FLERR, 'You cannot extract a fix&
& vector (rank 1) into a rank 2 variable.')
return
end if
call lammps_extract_fix_arraysize (ptr, id, style, nr, nc)
! Extract pointer to first element as Cfix(1)
call C_F_pointer (Cptr, Cfix, (/nr/))
! Now extract the array, which is transposed
call C_F_pointer (Cfix(1), fix, (/nc, nr/))
end subroutine lammps_extract_fix_dp2a
!-----------------------------------------------------------------------------
! lammps_extract_variable {{{2
function lammps_extract_variable_Cptr (ptr, name, group) result (variable)
type (C_ptr) :: ptr, variable
character (len=*) :: name
character (len=*), optional :: group
character (kind=C_char), dimension(len_trim(name)+1) :: Cname
character (kind=C_char), dimension(:), allocatable :: Cgroup
Cname = string2Cstring (name)
if ( present(group) ) then
allocate (Cgroup(len_trim(group)+1))
Cgroup = string2Cstring (group)
else
allocate (Cgroup(1))
Cgroup(1) = C_NULL_CHAR
end if
variable = lammps_actual_extract_variable (ptr, Cname, Cgroup)
deallocate (Cgroup)
end function lammps_extract_variable_Cptr
subroutine lammps_extract_variable_dp (variable, ptr, name, group)
real (C_double), intent(out) :: variable
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: name
character (len=*), intent(in), optional :: group
type (C_ptr) :: Cptr
real (C_double), pointer :: Fptr
if ( present(group) ) then
Cptr = lammps_extract_variable_Cptr (ptr, name, group)
else
Cptr = lammps_extract_variable_Cptr (ptr, name)
end if
call C_F_pointer (Cptr, Fptr)
variable = Fptr
nullify (Fptr)
call lammps_free (Cptr)
end subroutine lammps_extract_variable_dp
subroutine lammps_extract_variable_dpa (variable, ptr, name, group)
real (C_double), dimension(:), allocatable, intent(out) :: variable
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: name
character (len=*), intent(in), optional :: group
type (C_ptr) :: Cptr
real (C_double), dimension(:), pointer :: Fptr
integer :: natoms
if ( present(group) ) then
Cptr = lammps_extract_variable_Cptr (ptr, name, group)
else
Cptr = lammps_extract_variable_Cptr (ptr, name)
end if
natoms = lammps_get_natoms (ptr)
allocate (variable(natoms))
call C_F_pointer (Cptr, Fptr, (/natoms/))
variable = Fptr
nullify (Fptr)
call lammps_free (Cptr)
end subroutine lammps_extract_variable_dpa
!-------------------------------------------------------------------------2}}}
subroutine lammps_gather_atoms_ia (ptr, name, count, data)
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: name
integer, intent(in) :: count
integer, dimension(:), allocatable, intent(out) :: data
type (C_ptr) :: Cdata
integer (C_int), dimension(:), pointer :: Fdata
integer (C_int) :: natoms
character (kind=C_char), dimension(len_trim(name)+1) :: Cname
integer (C_int), parameter :: Ctype = 0_C_int
integer (C_int) :: Ccount
natoms = lammps_get_natoms (ptr)
Cname = string2Cstring (name)
if ( count /= 1 .and. count /= 3 ) then
call lammps_error_all (ptr, FLERR, 'lammps_gather_atoms requires&
& count to be either 1 or 3')
else
Ccount = count
end if
allocate ( Fdata(count*natoms) )
allocate ( data(count*natoms) )
Cdata = C_loc (Fdata(1))
call lammps_actual_gather_atoms (ptr, Cname, Ctype, Ccount, Cdata)
data = Fdata
deallocate (Fdata)
end subroutine lammps_gather_atoms_ia
subroutine lammps_gather_atoms_dpa (ptr, name, count, data)
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: name
integer, intent(in) :: count
double precision, dimension(:), allocatable, intent(out) :: data
type (C_ptr) :: Cdata
real (C_double), dimension(:), pointer :: Fdata
integer (C_int) :: natoms
character (kind=C_char), dimension(len_trim(name)+1) :: Cname
integer (C_int), parameter :: Ctype = 1_C_int
integer (C_int) :: Ccount
natoms = lammps_get_natoms (ptr)
Cname = string2Cstring (name)
if ( count /= 1 .and. count /= 3 ) then
call lammps_error_all (ptr, FLERR, 'lammps_gather_atoms requires&
& count to be either 1 or 3')
else
Ccount = count
end if
allocate ( Fdata(count*natoms) )
allocate ( data(count*natoms) )
Cdata = C_loc (Fdata(1))
call lammps_actual_gather_atoms (ptr, Cname, Ctype, Ccount, Cdata)
data = Fdata(:)
deallocate (Fdata)
end subroutine lammps_gather_atoms_dpa
!-----------------------------------------------------------------------------
subroutine lammps_scatter_atoms_ia (ptr, name, data)
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: name
integer, dimension(:), intent(in) :: data
integer (kind=C_int) :: natoms, Ccount
integer (kind=C_int), parameter :: Ctype = 0_C_int
character (kind=C_char), dimension(len_trim(name)+1) :: Cname
integer (C_int), dimension(size(data)), target :: Fdata
type (C_ptr) :: Cdata
natoms = lammps_get_natoms (ptr)
Cname = string2Cstring (name)
Ccount = size(data) / natoms
if ( Ccount /= 1 .and. Ccount /= 3 ) &
call lammps_error_all (ptr, FLERR, 'lammps_gather_atoms requires&
& count to be either 1 or 3')
Fdata = data
Cdata = C_loc (Fdata(1))
call lammps_actual_scatter_atoms (ptr, Cname, Ctype, Ccount, Cdata)
end subroutine lammps_scatter_atoms_ia
subroutine lammps_scatter_atoms_dpa (ptr, name, data)
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: name
double precision, dimension(:), intent(in) :: data
integer (kind=C_int) :: natoms, Ccount
integer (kind=C_int), parameter :: Ctype = 1_C_int
character (kind=C_char), dimension(len_trim(name)+1) :: Cname
real (C_double), dimension(size(data)), target :: Fdata
type (C_ptr) :: Cdata
natoms = lammps_get_natoms (ptr)
Cname = string2Cstring (name)
Ccount = size(data) / natoms
if ( Ccount /= 1 .and. Ccount /= 3 ) &
call lammps_error_all (ptr, FLERR, 'lammps_gather_atoms requires&
& count to be either 1 or 3')
Fdata = data
Cdata = C_loc (Fdata(1))
call lammps_actual_scatter_atoms (ptr, Cname, Ctype, Ccount, Cdata)
end subroutine lammps_scatter_atoms_dpa
!-----------------------------------------------------------------------------
function lammps_extract_compute_vectorsize (ptr, id, style) &
result (vectorsize)
integer :: vectorsize
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: id
integer, intent(in) :: style
integer (C_int) :: Cvectorsize, Cstyle
character (kind=C_char), dimension(len_trim(id)+1) :: Cid
Cid = string2Cstring (id)
Cstyle = int(style, C_int)
Cvectorsize = lammps_actual_extract_compute_vectorsize (ptr, Cid, Cstyle)
vectorsize = int(Cvectorsize, kind(vectorsize))
end function lammps_extract_compute_vectorsize
!-----------------------------------------------------------------------------
function lammps_extract_fix_vectorsize (ptr, id, style) &
result (vectorsize)
integer :: vectorsize
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: id
integer, intent(in) :: style
integer (C_int) :: Cvectorsize, Cstyle
character (kind=C_char), dimension(len_trim(id)+1) :: Cid
Cid = string2Cstring (id)
Cstyle = int(style, C_int)
Cvectorsize = lammps_actual_extract_fix_vectorsize (ptr, Cid, Cstyle)
vectorsize = int(Cvectorsize, kind(vectorsize))
end function lammps_extract_fix_vectorsize
!-----------------------------------------------------------------------------
subroutine lammps_extract_compute_arraysize (ptr, id, style, nrows, ncols)
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: id
integer, intent(in) :: style
integer, intent(out) :: nrows, ncols
integer (C_int) :: Cstyle, Cnrows, Cncols
character (kind=C_char), dimension(len_trim(id)+1) :: Cid
Cid = string2Cstring (id)
Cstyle = int (style, C_int)
call lammps_actual_extract_compute_arraysize (ptr, Cid, Cstyle, &
Cnrows, Cncols)
nrows = int (Cnrows, kind(nrows))
ncols = int (Cncols, kind(ncols))
end subroutine lammps_extract_compute_arraysize
!-----------------------------------------------------------------------------
subroutine lammps_extract_fix_arraysize (ptr, id, style, nrows, ncols)
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: id
integer, intent(in) :: style
integer, intent(out) :: nrows, ncols
integer (C_int) :: Cstyle, Cnrows, Cncols
character (kind=C_char), dimension(len_trim(id)+1) :: Cid
Cid = string2Cstring (id)
Cstyle = int (style, kind(Cstyle))
call lammps_actual_extract_fix_arraysize (ptr, Cid, Cstyle, &
Cnrows, Cncols)
nrows = int (Cnrows, kind(nrows))
ncols = int (Cncols, kind(ncols))
end subroutine lammps_extract_fix_arraysize
!-----------------------------------------------------------------------------
subroutine lammps_error_all (ptr, file, line, str)
type (C_ptr), intent(in) :: ptr
character (len=*), intent(in) :: file, str
integer, intent(in) :: line
character (kind=C_char), dimension(len_trim(file)+1) :: Cfile
character (kind=C_char), dimension(len_trim(str)+1) :: Cstr
integer (C_int) :: Cline
Cline = int(line, kind(Cline))
Cfile = string2Cstring (file)
Cstr = string2Cstring (str)
call lammps_actual_error_all (ptr, Cfile, Cline, Cstr)
end subroutine lammps_error_all
!-----------------------------------------------------------------------------
! Locally defined helper functions {{{1
pure function string2Cstring (string) result (C_string)
use, intrinsic :: ISO_C_binding, only : C_char, C_NULL_CHAR
character (len=*), intent(in) :: string
character (len=1, kind=C_char) :: C_string (len_trim(string)+1)
integer :: i, n
n = len_trim (string)
forall (i = 1:n)
C_string(i) = string(i:i)
end forall
C_string(n+1) = C_NULL_CHAR
end function string2Cstring
!-----------------------------------------------------------------------------
subroutine Cstring2argcargv (Cstring, argc, argv)
!! Converts a C-style string to argc and argv, that is, words in Cstring
!! become C-style strings in argv. IMPORTANT: Cstring is modified by
!! this routine! I would make Cstring local TO this routine and accept
!! a Fortran-style string instead, but we run into scoping and
!! allocation problems that way. This routine assumes the string is
!! null-terminated, as all C-style strings must be.
character (kind=C_char), dimension(*), target, intent(inout) :: Cstring
integer (C_int), intent(out) :: argc
type (C_ptr), dimension(:), allocatable, intent(out) :: argv
integer :: StringStart, SpaceIndex, strlen, argnum
argc = 1_C_int
! Find the length of the string
strlen = 1
do while ( Cstring(strlen) /= C_NULL_CHAR )
strlen = strlen + 1
end do
! Find the number of non-escaped spaces
SpaceIndex = 2
do while ( SpaceIndex < strlen )
if ( Cstring(SpaceIndex) == ' ' .and. &
Cstring(SpaceIndex-1) /= '\' ) then
argc = argc + 1_C_int
! Find the next non-space character
do while ( Cstring(SpaceIndex+1) == ' ')
SpaceIndex = SpaceIndex + 1
end do
end if
SpaceIndex = SpaceIndex + 1
end do
! Now allocate memory for argv
allocate (argv(argc))
! Now find the string starting and ending locations
StringStart = 1
SpaceIndex = 2
argnum = 1
do while ( SpaceIndex < strlen )
if ( Cstring(SpaceIndex) == ' ' .and. &
Cstring(SpaceIndex-1) /= '\' ) then
! Found a real space => split strings and store this one
Cstring(Spaceindex) = C_NULL_CHAR ! Replaces space with NULL
argv(argnum) = C_loc(Cstring(StringStart))
argnum = argnum + 1
! Find the next non-space character
do while ( Cstring(SpaceIndex+1) == ' ')
SpaceIndex = SpaceIndex + 1
end do
StringStart = SpaceIndex + 1
else if ( Cstring(SpaceIndex) == ' ' .and. &
Cstring(SpaceIndex-1) == '\' ) then
! Escaped space => remove backslash and move rest of array
Cstring(SpaceIndex-1:strlen-1) = Cstring(SpaceIndex:strlen)
strlen = strlen - 1 ! Last character is still C_NULL_CHAR
end if
SpaceIndex = SpaceIndex + 1
end do
! Now handle the last argument
argv(argnum) = C_loc(Cstring(StringStart))
end subroutine Cstring2argcargv
! 1}}}
end module LAMMPS
! vim: foldmethod=marker tabstop=3 softtabstop=3 shiftwidth=3 expandtab

View File

@ -0,0 +1,33 @@
This directory has an example of using a callback function to obtain
forces from a fortran code for a LAMMPS simulation. The reader should
refer to the README file in COUPLE/fortran2 before proceeding. Here,
the LAMMPS.F90 file has been modified slightly and additional files
named LAMMPS-wrapper2.h and LAMMPS-wrapper2.cpp have been included in
order to supply wrapper functions to set the LAMMPS callback function
and total energy.
In this example, the callback function is set to run the
semi-empirical quantum code DFTB+ in serial and then read in the total
energy, forces, and stress tensor from file. In this case, nlocal =
the total number of atoms in the system, so particle positions can be
read from the pos array directly, and DFTB+ forces can simply be
included via the fext array. The user should take care in the case of
a parallel calculation, where LAMMPS can assign different particules
to each processor. For example, the user should use functions such as
lammps_gather_atoms() and lammps_scatter_atoms() in the case where the
fortran force calculating code requires the positions of all atoms,
etc.
A few more important notes:
-The stress tensor from DFTB+ is passed in to LAMMPS via pointer.
-Calling the subroutine lammps_set_callback() is required in order to set
a pointer to the callback function in LAMMPS.
-The subroutine lammps_set_user_energy() passes in the potential energy
from DFTB+ to LAMMPS.
This example was created by Nir Goldman, whom you can contact with
questions:
Nir Goldman, LLNL
ngoldman@llnl.gov

View File

@ -0,0 +1,148 @@
# Position data file
64 atoms
1 atom types
0 7.134 xlo xhi
0 7.134 ylo yhi
0 7.134 zlo zhi
0.00000000 0.00000000 0.00000000 xy xz yz
Masses
1 12.010000
Atoms
1 1 0 0 0 0
2 1 0 0.89175 0.89175 0.89175
3 1 0 1.7835 1.7835 0
4 1 0 2.67525 2.67525 0.89175
5 1 0 0 1.7835 1.7835
6 1 0 0.89175 2.67525 2.67525
7 1 0 1.7835 0 1.7835
8 1 0 2.67525 0.89175 2.67525
9 1 0 0 0 3.567
10 1 0 0.89175 0.89175 4.45875
11 1 0 1.7835 1.7835 3.567
12 1 0 2.67525 2.67525 4.45875
13 1 0 0 1.7835 5.3505
14 1 0 0.89175 2.67525 6.24225
15 1 0 1.7835 0 5.3505
16 1 0 2.67525 0.89175 6.24225
17 1 0 0 3.567 0
18 1 0 0.89175 4.45875 0.89175
19 1 0 1.7835 5.3505 0
20 1 0 2.67525 6.24225 0.89175
21 1 0 0 5.3505 1.7835
22 1 0 0.89175 6.24225 2.67525
23 1 0 1.7835 3.567 1.7835
24 1 0 2.67525 4.45875 2.67525
25 1 0 0 3.567 3.567
26 1 0 0.89175 4.45875 4.45875
27 1 0 1.7835 5.3505 3.567
28 1 0 2.67525 6.24225 4.45875
29 1 0 0 5.3505 5.3505
30 1 0 0.89175 6.24225 6.24225
31 1 0 1.7835 3.567 5.3505
32 1 0 2.67525 4.45875 6.24225
33 1 0 3.567 0 0
34 1 0 4.45875 0.89175 0.89175
35 1 0 5.3505 1.7835 0
36 1 0 6.24225 2.67525 0.89175
37 1 0 3.567 1.7835 1.7835
38 1 0 4.45875 2.67525 2.67525
39 1 0 5.3505 0 1.7835
40 1 0 6.24225 0.89175 2.67525
41 1 0 3.567 0 3.567
42 1 0 4.45875 0.89175 4.45875
43 1 0 5.3505 1.7835 3.567
44 1 0 6.24225 2.67525 4.45875
45 1 0 3.567 1.7835 5.3505
46 1 0 4.45875 2.67525 6.24225
47 1 0 5.3505 0 5.3505
48 1 0 6.24225 0.89175 6.24225
49 1 0 3.567 3.567 0
50 1 0 4.45875 4.45875 0.89175
51 1 0 5.3505 5.3505 0
52 1 0 6.24225 6.24225 0.89175
53 1 0 3.567 5.3505 1.7835
54 1 0 4.45875 6.24225 2.67525
55 1 0 5.3505 3.567 1.7835
56 1 0 6.24225 4.45875 2.67525
57 1 0 3.567 3.567 3.567
58 1 0 4.45875 4.45875 4.45875
59 1 0 5.3505 5.3505 3.567
60 1 0 6.24225 6.24225 4.45875
61 1 0 3.567 5.3505 5.3505
62 1 0 4.45875 6.24225 6.24225
63 1 0 5.3505 3.567 5.3505
64 1 0 6.24225 4.45875 6.24225
Velocities
1 -0.00733742 -0.0040297 -0.00315229
2 -0.00788609 -0.00567535 -0.00199152
3 -0.00239042 0.00710139 -0.00335049
4 0.00678551 0.0019976 0.00219289
5 0.00413717 0.00275709 0.000937637
6 -0.00126313 0.00485636 0.00727862
7 0.00337547 -0.00234623 -0.000922223
8 -0.00792183 -0.00509186 -0.00104168
9 0.00414091 0.00390285 0.000845961
10 -0.000284543 0.0010771 -0.00458404
11 -0.00394968 -0.00446363 -0.00361688
12 0.00067088 -0.00655175 -0.00752464
13 0.00306632 -0.00245545 -0.00183867
14 -0.0082145 -0.00564127 0.000281191
15 0.00504454 0.0045835 0.000495763
16 0.0035767 0.00320441 -0.00486426
17 0.00420597 0.00262005 -0.0049459
18 0.00440579 -1.76783e-05 0.00449311
19 -0.00406463 0.00613304 0.00285599
20 0.00171215 -0.00517887 0.00124326
21 0.0011118 0.00334129 -0.0015222
22 -0.00838394 -0.00112906 -0.00353379
23 -0.00578527 -0.00415501 0.00297043
24 -0.00211466 0.000964108 -0.00716523
25 -0.000204107 -0.00380986 0.00681648
26 0.00677838 0.00540935 0.0044354
27 -0.00266809 -0.00358382 -0.00241889
28 -0.0003973 0.00236566 0.00558871
29 0.000754103 0.00457797 0.000105531
30 -0.00246049 0.00110428 0.00511088
31 0.00248891 0.00623314 0.00461597
32 -0.00509423 0.000570503 0.00720856
33 -0.00244427 -0.00374384 0.00618767
34 -0.000360752 -8.10558e-05 0.00314052
35 0.00435313 -0.00630587 -0.0070309
36 0.00651087 -0.00389833 3.72525e-05
37 0.00631828 -0.00316064 0.00231522
38 -0.00579624 -0.00345068 -0.000277486
39 0.00483974 0.000715028 0.000206355
40 -0.00388164 -0.00189242 -0.00554862
41 0.00398115 0.00152915 0.00756919
42 -0.000552263 0.00352025 -0.000246143
43 -0.00800284 0.00555703 0.00425716
44 -0.00734405 -0.00752512 0.00667173
45 -0.00545636 0.00421035 0.00399552
46 0.00480246 0.00621147 -0.00492715
47 -0.00424168 0.00621818 -9.37733e-05
48 -0.00649561 0.00612908 -0.0020753
49 -0.0075007 -0.00384737 -0.00687913
50 -0.00203903 -0.00764372 0.0023883
51 0.00442642 0.00744072 -0.0049344
52 -0.00280486 -0.00509128 -0.00678045
53 0.00679491 0.00583493 0.00333875
54 0.00574665 -0.00521074 0.00523475
55 0.00305618 -0.00320094 0.00341297
56 0.004304 0.000615544 -0.00668787
57 0.00564532 0.00327373 0.00388611
58 0.000676899 0.00210326 0.00495295
59 0.000160781 -0.00744313 -0.00279828
60 0.00623521 0.00371301 0.00178015
61 0.00520759 0.000642669 0.00207913
62 0.00398042 0.0046438 -0.00359978
63 -0.00478071 -0.00304932 -0.00765125
64 0.00282671 -0.00548392 -0.00692691

View File

@ -0,0 +1,16 @@
units real
atom_style charge
atom_modify map array
atom_modify sort 0 0.0
read_data data.diamond
neighbor 1.0 bin
neigh_modify delay 0 every 5 check no
fix 1 all nve
fix 2 all external pf/callback 1 1
fix_modify 2 energy yes
thermo_style custom step temp etotal ke pe lx ly lz pxx pyy pzz press
thermo 1
timestep 0.5

View File

@ -0,0 +1,45 @@
SHELL = /bin/sh
# Path to LAMMPS extraction directory
LAMMPS_ROOT = ../../..
LAMMPS_SRC = $(LAMMPS_ROOT)/src
# Uncomment the line below if using the MPI stubs library
MPI_STUBS = #-I$(LAMMPS_SRC)/STUBS
FC = mpif90 # replace with your Fortran compiler
CXX = mpicc # replace with your C++ compiler
# Flags for Fortran compiler, C++ compiler, and C preprocessor, respectively
FFLAGS = -O2 -fPIC
CXXFLAGS = -O2 -fPIC
CPPFLAGS = -DOMPI_SKIP_MPICXX=1 -DMPICH_SKIP_MPICXX
all : liblammps_fortran.a liblammps_fortran.so simpleF.x
liblammps_fortran.so : LAMMPS.o LAMMPS-wrapper.o LAMMPS-wrapper2.o
$(FC) $(FFLAGS) -shared -o $@ $^
simpleF.x: simple.o LAMMPS.o LAMMPS-wrapper.o LAMMPS-wrapper2.o
$(FC) $(FFLAGS) simple.o -o simpleF.x liblammps_fortran.a $(LAMMPS_SRC)/liblammps_mvapich.a -lstdc++ /usr/local/tools/fftw/lib/libfftw.a
liblammps_fortran.a : LAMMPS.o LAMMPS-wrapper.o LAMMPS-wrapper2.o
$(AR) rs $@ $^
LAMMPS.o lammps.mod : LAMMPS.F90
$(FC) $(CPPFLAGS) $(FFLAGS) -c $<
simple.o : simple.f90
$(FC) $(FFLAGS) -c $<
LAMMPS-wrapper.o : LAMMPS-wrapper.cpp LAMMPS-wrapper.h
$(CXX) $(CPPFLAGS) $(CXXFLAGS) -c $< -I$(LAMMPS_SRC) $(MPI_STUBS)
LAMMPS-wrapper2.o : LAMMPS-wrapper2.cpp LAMMPS-wrapper2.h
$(CXX) $(CPPFLAGS) $(CXXFLAGS) -c $< -I$(LAMMPS_SRC) $(MPI_STUBS)
clean :
$(RM) *.o *.mod liblammps_fortran.a liblammps_fortran.so
dist :
tar -czvf fortran-interface-callback.tar.gz LAMMPS-wrapper.h LAMMPS-wrapper.cpp LAMMPS-wrapper2.h LAMMPS-wrapper2.cpp LAMMPS.F90 makefile README simple.f90

View File

@ -0,0 +1,114 @@
module callback
implicit none
contains
subroutine fortran_callback(lmp, timestep, nlocal, ids, c_pos, c_fext) &
& bind(C, name='f_callback')
use, intrinsic :: ISO_C_binding
use LAMMPS
implicit none
type (C_ptr), value :: lmp
integer(C_int64_t), intent(in), value :: timestep
integer(C_int), intent(in), value :: nlocal
real (C_double), dimension(:,:), pointer :: x
type(c_ptr) :: c_pos, c_fext, c_ids
double precision, pointer :: fext(:,:), pos(:,:)
integer, intent(in) :: ids(nlocal)
real (C_double), dimension(:), pointer :: virial => NULL()
real (C_double) :: etot
real(C_double), pointer :: ts_lmp
double precision :: stress(3,3), ts_dftb
integer :: natom , i
real (C_double), parameter :: econv = 627.4947284155114 ! converts from Ha to
double precision, parameter :: fconv = 1185.793095983065 ! converts from Ha/bohr to
double precision, parameter :: autoatm = 2.9037166638E8
double precision lx, ly, lz
real (C_double), pointer :: boxxlo, boxxhi
real (C_double), pointer :: boxylo, boxyhi
real (C_double), pointer :: boxzlo, boxzhi
double precision, parameter :: nktv2p = 68568.4149999999935972
double precision :: volume
type (C_ptr) :: Cptr
type (C_ptr), pointer, dimension(:) :: Catom
call c_f_pointer(c_pos, pos, [3,nlocal])
call c_f_pointer(c_fext, fext, [3,nlocal])
call lammps_extract_global(boxxlo, lmp, 'boxxlo')
call lammps_extract_global(boxxhi, lmp, 'boxxhi')
call lammps_extract_global(boxylo, lmp, 'boxylo')
call lammps_extract_global(boxyhi, lmp, 'boxyhi')
call lammps_extract_global(boxzlo, lmp, 'boxzlo')
call lammps_extract_global(boxzhi, lmp, 'boxzhi')
lx = boxxhi - boxxlo
ly = boxyhi - boxylo
lz = boxzhi - boxzlo
volume = lx*ly*lz
open (unit = 10, status = 'replace', action = 'write', file='lammps.gen')
write(10,*)nlocal,"S"
write(10,*) "C"
do i = 1, nlocal
write(10,'(2I,3F15.6)')i,1,pos(:,ids(i))
enddo
write(10,*)"0.0 0.0 0.0"
write(10,*)lx,0,0
write(10,*)0,ly,0
write(10,*)0,0,lz
close(10)
call system("./dftb+ > dftb.out")
open (unit = 10, status = 'old', file = 'results.out')
read(10,*)etot
read(10,*)ts_dftb
do i = 1, 3
read(10,*)stress(i,:)
enddo
stress (:,:) = stress(:,:)*autoatm
etot = etot*econv
call lammps_extract_global(ts_lmp, lmp, 'TS_dftb')
ts_lmp = ts_dftb
do i = 1, nlocal
read(10,*)fext(:,ids(i))
fext(:,ids(i)) = fext(:,ids(i))*fconv
enddo
close(10)
call lammps_set_user_energy (lmp, etot)
call lammps_extract_atom (virial, lmp, 'virial')
if (.not. associated(virial)) then
print*,'virial pointer not associated.'
STOP
endif
virial(1) = stress(1,1)/(nktv2p/volume)
virial(2) = stress(2,2)/(nktv2p/volume)
virial(3) = stress(3,3)/(nktv2p/volume)
virial(4) = stress(1,2)/(nktv2p/volume)
virial(5) = stress(1,3)/(nktv2p/volume)
virial(6) = stress(2,3)/(nktv2p/volume)
end subroutine
end module callback
program simple_fortran_callback
use MPI
use LAMMPS
use callback
use, intrinsic :: ISO_C_binding, only : C_double, C_ptr, C_int, C_FUNPTR
implicit none
type (C_ptr) :: lmp
integer :: error, narg, me, nprocs
call MPI_Init (error)
call MPI_Comm_rank (MPI_COMM_WORLD, me, error)
call MPI_Comm_size (MPI_COMM_WORLD, nprocs, error)
call lammps_open_no_mpi ('lmp -log log.simple', lmp)
call lammps_file (lmp, 'in.simple')
call lammps_set_callback(lmp)
call lammps_command (lmp, 'run 10')
call lammps_close (lmp)
call MPI_Finalize (error)
end program simple_fortran_callback

View File

@ -153,7 +153,7 @@ int main(int narg, char **arg)
for (int i = 0; i < natoms; i++) type[i] = 1;
lmp->input->one("delete_atoms group all");
lammps_create_atoms(lmp,natoms,NULL,type,x,v);
lammps_create_atoms(lmp,natoms,NULL,type,x,v,NULL,0);
lmp->input->one("run 10");
}

View File

@ -14,7 +14,7 @@
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Oliver Henrich (EPCC, University of Edinburgh)
Contributing author: Oliver Henrich (University of Strathclyde, Glasgow)
------------------------------------------------------------------------- */
"""

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,51 @@
# Generation and relaxation of a partial dislocation in Cu perfect FCC crystal
# Initialization
units metal
boundary p p p
atom_style atomic
# create simulation box and system
lattice fcc 3.615 origin 0.01 0.01 0.01 orient x -1 -1 2 orient y 1 1 1 orient z -1 1 0
region mdbox block 0 3 0.0 14.0 0 84 units lattice
region system block 0 3 1.1 13.1 0 84 units lattice
create_box 2 mdbox
create_atoms 1 region system
# Define atoms mass and force field
mass * 63.54
pair_style eam/alloy
pair_coeff * * Cu_Mishin1.eam Cu Cu
# Delete a plane of atoms along the z direction to generate a partial dislocation
region dislocation_atoms block 0 3 7 14 41.9 42.1 units lattice
delete_atoms region dislocation_atoms
region quarter_up block 0 3 7 11 0 84 units lattice
group middle region quarter_up
# specify simulation parameters
timestep 0.004
# Relax configuration using conjugate gradient
#min_style cg
#minimize 1.0e-4 1.0e-6 100 1000
# Setup calculations
compute 1 all cnp/atom 3.086
compute 2 all cna/atom 3.086
compute 3 all centro/atom fcc
compute 4 all coord/atom cutoff 3.086
dump 1 all custom 100 dump.lammpstrj id type xu yu zu c_1 c_2 c_3 c_4
### Set up thermo display
thermo 10
thermo_style custom step atoms temp press pe ke etotal
# Relax the system performing a langevin dynamics (freeze motion along y 111 direction)
fix 1 all nve
fix 2 all langevin 50 1 0.1 699483
fix 3 all setforce NULL 0.0 NULL
fix 4 middle setforce 0.0 0.0 0.0
run 100
unfix 4
run 200

View File

@ -0,0 +1,185 @@
LAMMPS (19 May 2017)
OMP_NUM_THREADS environment is not set. Defaulting to 1 thread. (../comm.cpp:90)
using 1 OpenMP thread(s) per MPI task
# Generation and relaxation of a partial dislocation in Cu perfect FCC crystal
# Initialization
units metal
boundary p p p
atom_style atomic
# create simulation box and system
lattice fcc 3.615 origin 0.01 0.01 0.01 orient x -1 -1 2 orient y 1 1 1 orient z -1 1 0
Lattice spacing in x,y,z = 5.90327 6.26136 5.11238
region mdbox block 0 3 0.0 14.0 0 84 units lattice
region system block 0 3 1.1 13.1 0 84 units lattice
create_box 2 mdbox
Created orthogonal box = (0 0 0) to (17.7098 87.6591 429.44)
1 by 1 by 4 MPI processor grid
create_atoms 1 region system
Created 48384 atoms
# Define atoms mass and force field
mass * 63.54
pair_style eam/alloy
pair_coeff * * Cu_Mishin1.eam Cu Cu
# Delete a plane of atoms along the z direction to generate a partial dislocation
region dislocation_atoms block 0 3 7 14 41.9 42.1 units lattice
delete_atoms region dislocation_atoms
Deleted 76 atoms, new total = 48308
region quarter_up block 0 3 7 11 0 84 units lattice
group middle region quarter_up
16080 atoms in group middle
# specify simulation parameters
timestep 0.004
# Relax configuration using conjugate gradient
#min_style cg
#minimize 1.0e-4 1.0e-6 100 1000
# Setup calculations
compute 1 all cnp/atom 3.086
compute 2 all cna/atom 3.086
compute 3 all centro/atom fcc
compute 4 all coord/atom cutoff 3.086
dump 1 all custom 100 dump.lammpstrj id type xu yu zu c_1 c_2 c_3 c_4
### Set up thermo display
thermo 10
thermo_style custom step atoms temp press pe ke etotal
# Relax the system performing a langevin dynamics (freeze motion along y 111 direction)
fix 1 all nve
fix 2 all langevin 50 1 0.1 699483
fix 3 all setforce NULL 0.0 NULL
fix 4 middle setforce 0.0 0.0 0.0
run 100
Neighbor list info ...
update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 7.50679
ghost atom cutoff = 7.50679
binsize = 3.75339, bins = 5 24 115
5 neighbor lists, perpetual/occasional/extra = 1 4 0
(1) pair eam/alloy, perpetual
attributes: half, newton on
pair build: half/bin/atomonly/newton
stencil: half/bin/3d/newton
bin: standard
(2) compute cnp/atom, occasional
attributes: full, newton on
pair build: full/bin/atomonly
stencil: full/bin/3d
bin: standard
(3) compute cna/atom, occasional
attributes: full, newton on
pair build: full/bin/atomonly
stencil: full/bin/3d
bin: standard
(4) compute centro/atom, occasional
attributes: full, newton on
pair build: full/bin/atomonly
stencil: full/bin/3d
bin: standard
(5) compute coord/atom, occasional
attributes: full, newton on
pair build: full/bin/atomonly
stencil: full/bin/3d
bin: standard
Per MPI rank memory allocation (min/avg/max) = 45.41 | 45.41 | 45.41 Mbytes
Step Atoms Temp Press PotEng KinEng TotEng
0 48308 0 -3388.0911 -169746.07 0 -169746.07
10 48308 7.35092 -3091.0864 -169715.96 45.900393 -169670.05
20 48308 9.9162268 -2822.7045 -169678.51 61.918604 -169616.59
30 48308 12.351316 -2726.7195 -169666.35 77.123716 -169589.23
40 48308 13.302856 -2703.586 -169662.9 83.06529 -169579.83
50 48308 12.782228 -2706.8662 -169662.36 79.814401 -169582.55
60 48308 12.198179 -2772.4206 -169670.02 76.167503 -169593.86
70 48308 10.663322 -2841.3384 -169677.48 66.583595 -169610.9
80 48308 9.1169804 -2932.3896 -169687.85 56.927974 -169630.92
90 48308 7.2905076 -3029.9433 -169699.09 45.523167 -169653.56
100 48308 5.4063635 -3139.4496 -169711.65 33.758252 -169677.89
Loop time of 10.9003 on 4 procs for 100 steps with 48308 atoms
Performance: 3.171 ns/day, 7.570 hours/ns, 9.174 timesteps/s
31.8% CPU use with 4 MPI tasks x 1 OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 9.8764 | 9.9587 | 10.021 | 1.6 | 91.36
Neigh | 0 | 0 | 0 | 0.0 | 0.00
Comm | 0.1232 | 0.18385 | 0.26683 | 12.1 | 1.69
Output | 0.45385 | 0.45451 | 0.45634 | 0.2 | 4.17
Modify | 0.25026 | 0.2537 | 0.25744 | 0.5 | 2.33
Other | | 0.04949 | | | 0.45
Nlocal: 12077 ave 12096 max 12020 min
Histogram: 1 0 0 0 0 0 0 0 0 3
Nghost: 14204 ave 14261 max 14109 min
Histogram: 1 0 0 0 0 1 0 0 0 2
Neighs: 814050 ave 818584 max 809212 min
Histogram: 1 0 0 0 0 2 0 0 0 1
FullNghs: 1.6281e+06 ave 1.63296e+06 max 1.61808e+06 min
Histogram: 1 0 0 0 0 0 1 0 0 2
Total # of neighbors = 6512400
Ave neighs/atom = 134.81
Neighbor list builds = 0
Dangerous builds = 0
unfix 4
run 200
Per MPI rank memory allocation (min/avg/max) = 45.41 | 45.41 | 45.41 Mbytes
Step Atoms Temp Press PotEng KinEng TotEng
100 48308 5.4063635 -3139.4496 -169711.65 33.758252 -169677.89
110 48308 15.260795 -2793.119 -169677.24 95.290993 -169581.95
120 48308 18.548656 -2433.1584 -169624.79 115.82096 -169508.97
130 48308 22.15831 -2276.626 -169604.28 138.36025 -169465.92
140 48308 24.393841 -2208.1771 -169596.16 152.31929 -169443.84
150 48308 24.797558 -2173.3145 -169591.43 154.84016 -169436.59
160 48308 24.73371 -2188.909 -169593.08 154.44148 -169438.64
170 48308 24.128467 -2220.3404 -169596.96 150.66225 -169446.29
180 48308 22.975708 -2275.1244 -169602.72 143.46422 -169459.26
190 48308 21.936324 -2348.3762 -169610.59 136.97413 -169473.61
200 48308 20.516249 -2432.8447 -169619.98 128.10694 -169491.87
210 48308 19.000566 -2510.2915 -169628.58 118.64276 -169509.93
220 48308 17.490407 -2597.299 -169638.24 109.21307 -169529.03
230 48308 16.062482 -2684.1203 -169648.31 100.29687 -169548.01
240 48308 14.360342 -2768.2313 -169657.7 89.668411 -169568.03
250 48308 12.802315 -2852.6965 -169666.99 79.939831 -169587.05
260 48308 11.258205 -2944.4533 -169677.52 70.298142 -169607.23
270 48308 9.6159129 -3038.6304 -169688.06 60.043393 -169628.02
280 48308 7.972425 -3129.0826 -169698.03 49.781176 -169648.25
290 48308 6.3752377 -3219.2054 -169708.23 39.808067 -169668.42
300 48308 4.7374688 -3306.1468 -169718.27 29.58156 -169688.69
Loop time of 23.0164 on 4 procs for 200 steps with 48308 atoms
Performance: 3.003 ns/day, 7.992 hours/ns, 8.689 timesteps/s
31.8% CPU use with 4 MPI tasks x 1 OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 20.221 | 20.423 | 20.57 | 3.1 | 88.73
Neigh | 0 | 0 | 0 | 0.0 | 0.00
Comm | 0.27748 | 0.42603 | 0.62832 | 21.4 | 1.85
Output | 1.5454 | 1.5473 | 1.5529 | 0.3 | 6.72
Modify | 0.48886 | 0.49773 | 0.50842 | 1.1 | 2.16
Other | | 0.1221 | | | 0.53
Nlocal: 12077 ave 12096 max 12020 min
Histogram: 1 0 0 0 0 0 0 0 0 3
Nghost: 14204 ave 14261 max 14109 min
Histogram: 1 0 0 0 0 1 0 0 0 2
Neighs: 814094 ave 818584 max 809212 min
Histogram: 1 0 0 0 0 2 0 0 0 1
FullNghs: 1.62852e+06 ave 1.63296e+06 max 1.61892e+06 min
Histogram: 1 0 0 0 0 0 0 1 0 2
Total # of neighbors = 6514094
Ave neighs/atom = 134.845
Neighbor list builds = 0
Dangerous builds = 0
Total wall time: 0:00:35

View File

@ -28,7 +28,7 @@ thermo 100
thermo_style multi
timestep 8
run_style respa 3 2 8 bond 1 pair 2 kspace 3
run_style respa 3 2 8 bond 1 dihedral 2 pair 2 kspace 3
velocity all create 200.0 12345678 dist uniform
#dump dump1 all atom 100 4pti.dump

View File

@ -20,7 +20,7 @@ thermo 50
timestep 8
run_style respa 3 2 8 bond 1 pair 2 kspace 3
run_style respa 3 2 8 bond 1 dihedral 2 pair 2 kspace 3
fix 1 all nvt temp 250.0 250.0 100.0 tchain 1
fix cor all filter/corotate m 1.0

View File

@ -1,240 +0,0 @@
LAMMPS (10 Mar 2017)
using 1 OpenMP thread(s) per MPI task
units real
atom_style full
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
pair_style lj/charmm/coul/long 8 10
pair_modify mix arithmetic
kspace_style pppm 1e-4
read_data data.bpti
orthogonal box = (-10 -10 -30) to (50 50 30)
1 by 1 by 1 MPI processor grid
reading atoms ...
892 atoms
scanning bonds ...
4 = max bonds/atom
scanning angles ...
6 = max angles/atom
scanning dihedrals ...
18 = max dihedrals/atom
scanning impropers ...
2 = max impropers/atom
reading bonds ...
906 bonds
reading angles ...
1626 angles
reading dihedrals ...
2501 dihedrals
reading impropers ...
137 impropers
4 = max # of 1-2 neighbors
9 = max # of 1-3 neighbors
19 = max # of 1-4 neighbors
21 = max # of special neighbors
special_bonds charmm
neigh_modify delay 2 every 1
# ------------- MINIMIZE ----------
minimize 1e-4 1e-6 1000 10000
WARNING: Resetting reneighboring criteria during minimization (../min.cpp:168)
PPPM initialization ...
WARNING: System is not charge neutral, net charge = 6 (../kspace.cpp:302)
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.203272
grid = 16 16 16
stencil order = 5
estimated absolute RMS force accuracy = 0.0316399
estimated relative force accuracy = 9.52826e-05
using double precision FFTs
3d grid and FFT values/proc = 9261 4096
Neighbor list info ...
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 12
ghost atom cutoff = 12
binsize = 6, bins = 10 10 10
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair lj/charmm/coul/long, perpetual
attributes: half, newton on
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
Per MPI rank memory usage (min/avg/max) = 17.8596/1/0 Mbytes
Step Temp E_pair E_mol TotEng Press
0 0 -3075.6498 943.91164 -2131.7381 -380.67776
241 0 -4503.313 749.58662 -3753.7264 -29.045104
Loop time of 3.35722 on 1 procs for 241 steps with 892 atoms
99.7% CPU use with 1 MPI tasks x 1 OpenMP threads
Minimization stats:
Stopping criterion = energy tolerance
Energy initial, next-to-last, final =
-2131.73812515 -3753.43984087 -3753.72636847
Force two-norm initial, final = 1086.21 26.3688
Force max component initial, final = 310.811 3.92748
Final line search alpha, max atom move = 0.00596649 0.0234333
Iterations, force evaluations = 241 463
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 2.5003 | 2.5003 | 2.5003 | 0.0 | 74.48
Bond | 0.24287 | 0.24287 | 0.24287 | 0.0 | 7.23
Kspace | 0.53428 | 0.53428 | 0.53428 | 0.0 | 15.91
Neigh | 0.069765 | 0.069765 | 0.069765 | 0.0 | 2.08
Comm | 0.00065374 | 0.00065374 | 0.00065374 | 0.0 | 0.02
Output | 0 | 0 | 0 | 0.0 | 0.00
Modify | 0 | 0 | 0 | 0.0 | 0.00
Other | | 0.009358 | | | 0.28
Nlocal: 892 ave 892 max 892 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 31 ave 31 max 31 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 148891 ave 148891 max 148891 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 148891
Ave neighs/atom = 166.918
Ave special neighs/atom = 10.9395
Neighbor list builds = 15
Dangerous builds = 0
reset_timestep 0
# ------------- RUN ---------------
thermo 100
thermo_style multi
timestep 8
run_style respa 3 2 8 bond 1 pair 2 kspace 3
Respa levels:
1 = bond angle dihedral improper
2 = pair
3 = kspace
velocity all create 200.0 12345678 dist uniform
#dump dump1 all atom 100 4pti.dump
fix 1 all nvt temp 200 300 25
fix cor all filter/corotate m 1.0
163 = # of size 2 clusters
0 = # of size 3 clusters
25 = # of size 4 clusters
0 = # of size 5 clusters
100 = # of frozen angles
run 1000
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.203272
grid = 16 16 16
stencil order = 5
estimated absolute RMS force accuracy = 0.0316399
estimated relative force accuracy = 9.52826e-05
using double precision FFTs
3d grid and FFT values/proc = 9261 4096
Per MPI rank memory usage (min/avg/max) = 19.5425/1/0 Mbytes
---------------- Step 0 ----- CPU = 0.0000 (sec) ----------------
TotEng = -3220.3378 KinEng = 531.1804 Temp = 200.0000
PotEng = -3751.5181 E_bond = 42.2810 E_angle = 345.2592
E_dihed = 337.8361 E_impro = 24.2103 E_vdwl = -288.5339
E_coul = -886.3622 E_long = -3326.2088 Press = 83.2283
---------------- Step 100 ----- CPU = 3.9414 (sec) ----------------
TotEng = -2718.8970 KinEng = 538.6206 Temp = 202.8014
PotEng = -3257.5176 E_bond = 203.3367 E_angle = 566.5317
E_dihed = 397.6202 E_impro = 34.6623 E_vdwl = -248.7451
E_coul = -874.5122 E_long = -3336.4111 Press = 135.8662
---------------- Step 200 ----- CPU = 7.9028 (sec) ----------------
TotEng = -2660.1406 KinEng = 626.3319 Temp = 235.8265
PotEng = -3286.4725 E_bond = 209.5147 E_angle = 591.7773
E_dihed = 388.9591 E_impro = 29.4992 E_vdwl = -243.5808
E_coul = -923.5115 E_long = -3339.1306 Press = 88.9000
---------------- Step 300 ----- CPU = 11.8246 (sec) ----------------
TotEng = -2673.8090 KinEng = 616.7924 Temp = 232.2346
PotEng = -3290.6014 E_bond = 202.8254 E_angle = 568.6860
E_dihed = 378.4182 E_impro = 38.2399 E_vdwl = -221.3236
E_coul = -915.3004 E_long = -3342.1468 Press = 78.8527
---------------- Step 400 ----- CPU = 15.7990 (sec) ----------------
TotEng = -2614.9416 KinEng = 649.3474 Temp = 244.4922
PotEng = -3264.2890 E_bond = 211.6116 E_angle = 617.2026
E_dihed = 399.8744 E_impro = 40.2678 E_vdwl = -211.7790
E_coul = -978.1624 E_long = -3343.3041 Press = -4.1958
---------------- Step 500 ----- CPU = 19.8146 (sec) ----------------
TotEng = -2588.6772 KinEng = 660.1424 Temp = 248.5568
PotEng = -3248.8196 E_bond = 218.4786 E_angle = 620.8605
E_dihed = 390.3220 E_impro = 41.6794 E_vdwl = -226.3657
E_coul = -953.1676 E_long = -3340.6269 Press = 99.3200
---------------- Step 600 ----- CPU = 23.8587 (sec) ----------------
TotEng = -2550.4618 KinEng = 693.3384 Temp = 261.0557
PotEng = -3243.8002 E_bond = 232.3563 E_angle = 606.2922
E_dihed = 396.2469 E_impro = 37.1980 E_vdwl = -235.8425
E_coul = -937.1208 E_long = -3342.9303 Press = -21.7737
---------------- Step 700 ----- CPU = 27.8381 (sec) ----------------
TotEng = -2554.4355 KinEng = 692.8951 Temp = 260.8888
PotEng = -3247.3306 E_bond = 216.3395 E_angle = 637.7785
E_dihed = 391.5940 E_impro = 43.1426 E_vdwl = -187.6159
E_coul = -1008.1694 E_long = -3340.3998 Press = 75.1484
---------------- Step 800 ----- CPU = 31.8039 (sec) ----------------
TotEng = -2508.3551 KinEng = 699.0766 Temp = 263.2163
PotEng = -3207.4317 E_bond = 241.9936 E_angle = 641.3631
E_dihed = 386.2198 E_impro = 43.7793 E_vdwl = -217.7523
E_coul = -964.6070 E_long = -3338.4282 Press = -127.7337
---------------- Step 900 ----- CPU = 35.7700 (sec) ----------------
TotEng = -2452.7644 KinEng = 762.1842 Temp = 286.9776
PotEng = -3214.9485 E_bond = 243.9191 E_angle = 649.8664
E_dihed = 382.4351 E_impro = 39.0029 E_vdwl = -221.3389
E_coul = -970.8965 E_long = -3337.9366 Press = 122.7720
---------------- Step 1000 ----- CPU = 39.7695 (sec) ----------------
TotEng = -2386.6805 KinEng = 799.0253 Temp = 300.8490
PotEng = -3185.7058 E_bond = 265.3649 E_angle = 661.7543
E_dihed = 374.6843 E_impro = 38.6877 E_vdwl = -229.2030
E_coul = -960.7041 E_long = -3336.2899 Press = -17.9910
Loop time of 39.7695 on 1 procs for 1000 steps with 892 atoms
Performance: 17.380 ns/day, 1.381 hours/ns, 25.145 timesteps/s
99.6% CPU use with 1 MPI tasks x 1 OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 29.169 | 29.169 | 29.169 | 0.0 | 73.34
Bond | 7.6249 | 7.6249 | 7.6249 | 0.0 | 19.17
Kspace | 1.1525 | 1.1525 | 1.1525 | 0.0 | 2.90
Neigh | 0.87606 | 0.87606 | 0.87606 | 0.0 | 2.20
Comm | 0.01563 | 0.01563 | 0.01563 | 0.0 | 0.04
Output | 0.00048423 | 0.00048423 | 0.00048423 | 0.0 | 0.00
Modify | 0.80446 | 0.80446 | 0.80446 | 0.0 | 2.02
Other | | 0.1266 | | | 0.32
Nlocal: 892 ave 892 max 892 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 27 ave 27 max 27 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 146206 ave 146206 max 146206 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 146206
Ave neighs/atom = 163.908
Ave special neighs/atom = 10.9395
Neighbor list builds = 186
Dangerous builds = 0
unfix cor
unfix 1
Please see the log.cite file for references relevant to this simulation
Total wall time: 0:00:43

View File

@ -1,240 +0,0 @@
LAMMPS (10 Mar 2017)
using 1 OpenMP thread(s) per MPI task
units real
atom_style full
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
pair_style lj/charmm/coul/long 8 10
pair_modify mix arithmetic
kspace_style pppm 1e-4
read_data data.bpti
orthogonal box = (-10 -10 -30) to (50 50 30)
1 by 2 by 2 MPI processor grid
reading atoms ...
892 atoms
scanning bonds ...
4 = max bonds/atom
scanning angles ...
6 = max angles/atom
scanning dihedrals ...
18 = max dihedrals/atom
scanning impropers ...
2 = max impropers/atom
reading bonds ...
906 bonds
reading angles ...
1626 angles
reading dihedrals ...
2501 dihedrals
reading impropers ...
137 impropers
4 = max # of 1-2 neighbors
9 = max # of 1-3 neighbors
19 = max # of 1-4 neighbors
21 = max # of special neighbors
special_bonds charmm
neigh_modify delay 2 every 1
# ------------- MINIMIZE ----------
minimize 1e-4 1e-6 1000 10000
WARNING: Resetting reneighboring criteria during minimization (../min.cpp:168)
PPPM initialization ...
WARNING: System is not charge neutral, net charge = 6 (../kspace.cpp:302)
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.203272
grid = 16 16 16
stencil order = 5
estimated absolute RMS force accuracy = 0.0316399
estimated relative force accuracy = 9.52826e-05
using double precision FFTs
3d grid and FFT values/proc = 3549 1024
Neighbor list info ...
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 12
ghost atom cutoff = 12
binsize = 6, bins = 10 10 10
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair lj/charmm/coul/long, perpetual
attributes: half, newton on
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
Per MPI rank memory usage (min/avg/max) = 16.9693/0.981879/0 Mbytes
Step Temp E_pair E_mol TotEng Press
0 0 -3075.6498 943.91164 -2131.7381 -380.67776
241 0 -4503.3131 749.58666 -3753.7264 -29.045153
Loop time of 1.26594 on 4 procs for 241 steps with 892 atoms
99.0% CPU use with 4 MPI tasks x 1 OpenMP threads
Minimization stats:
Stopping criterion = energy tolerance
Energy initial, next-to-last, final =
-2131.73812515 -3753.43983927 -3753.72640137
Force two-norm initial, final = 1086.21 26.3688
Force max component initial, final = 310.811 3.92751
Final line search alpha, max atom move = 0.00596649 0.0234334
Iterations, force evaluations = 241 463
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.34267 | 0.63792 | 0.90268 | 25.2 | 50.39
Bond | 0.025776 | 0.063318 | 0.095631 | 10.8 | 5.00
Kspace | 0.21904 | 0.51601 | 0.84895 | 31.3 | 40.76
Neigh | 0.023185 | 0.023363 | 0.023538 | 0.1 | 1.85
Comm | 0.012025 | 0.014189 | 0.016335 | 1.4 | 1.12
Output | 0 | 0 | 0 | 0.0 | 0.00
Modify | 0 | 0 | 0 | 0.0 | 0.00
Other | | 0.01114 | | | 0.88
Nlocal: 223 ave 323 max 89 min
Histogram: 1 0 0 0 1 0 0 0 1 1
Nghost: 613 ave 675 max 557 min
Histogram: 1 0 0 1 0 1 0 0 0 1
Neighs: 37222.8 ave 50005 max 20830 min
Histogram: 1 0 0 0 1 0 0 1 0 1
Total # of neighbors = 148891
Ave neighs/atom = 166.918
Ave special neighs/atom = 10.9395
Neighbor list builds = 15
Dangerous builds = 0
reset_timestep 0
# ------------- RUN ---------------
thermo 100
thermo_style multi
timestep 8
run_style respa 3 2 8 bond 1 pair 2 kspace 3
Respa levels:
1 = bond angle dihedral improper
2 = pair
3 = kspace
velocity all create 200.0 12345678 dist uniform
#dump dump1 all atom 100 4pti.dump
fix 1 all nvt temp 200 300 25
fix cor all filter/corotate m 1.0
163 = # of size 2 clusters
0 = # of size 3 clusters
25 = # of size 4 clusters
0 = # of size 5 clusters
100 = # of frozen angles
run 1000
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.203272
grid = 16 16 16
stencil order = 5
estimated absolute RMS force accuracy = 0.0316399
estimated relative force accuracy = 9.52826e-05
using double precision FFTs
3d grid and FFT values/proc = 3549 1024
Per MPI rank memory usage (min/avg/max) = 17.142/0.97212/0 Mbytes
---------------- Step 0 ----- CPU = 0.0000 (sec) ----------------
TotEng = -3220.3378 KinEng = 531.1804 Temp = 200.0000
PotEng = -3751.5182 E_bond = 42.2810 E_angle = 345.2592
E_dihed = 337.8361 E_impro = 24.2103 E_vdwl = -288.5339
E_coul = -886.3622 E_long = -3326.2088 Press = 83.2282
---------------- Step 100 ----- CPU = 1.5457 (sec) ----------------
TotEng = -2718.9184 KinEng = 538.6205 Temp = 202.8014
PotEng = -3257.5389 E_bond = 203.3365 E_angle = 566.5311
E_dihed = 397.6202 E_impro = 34.6621 E_vdwl = -248.7451
E_coul = -874.5326 E_long = -3336.4111 Press = 135.8435
---------------- Step 200 ----- CPU = 3.0720 (sec) ----------------
TotEng = -2660.1146 KinEng = 626.3474 Temp = 235.8323
PotEng = -3286.4620 E_bond = 209.5168 E_angle = 591.7735
E_dihed = 388.9615 E_impro = 29.5000 E_vdwl = -243.5840
E_coul = -923.4998 E_long = -3339.1299 Press = 88.8857
---------------- Step 300 ----- CPU = 4.5597 (sec) ----------------
TotEng = -2669.7442 KinEng = 619.3625 Temp = 233.2023
PotEng = -3289.1067 E_bond = 203.4405 E_angle = 569.5281
E_dihed = 378.3314 E_impro = 38.2880 E_vdwl = -221.1904
E_coul = -915.3396 E_long = -3342.1646 Press = 79.3780
---------------- Step 400 ----- CPU = 5.9808 (sec) ----------------
TotEng = -2618.9975 KinEng = 644.6145 Temp = 242.7102
PotEng = -3263.6119 E_bond = 209.5864 E_angle = 618.8954
E_dihed = 401.3798 E_impro = 39.9064 E_vdwl = -212.1271
E_coul = -977.1589 E_long = -3344.0940 Press = -7.8938
---------------- Step 500 ----- CPU = 7.4159 (sec) ----------------
TotEng = -2579.7486 KinEng = 666.4643 Temp = 250.9371
PotEng = -3246.2129 E_bond = 219.2549 E_angle = 620.3474
E_dihed = 388.4395 E_impro = 41.4499 E_vdwl = -225.9686
E_coul = -949.3689 E_long = -3340.3672 Press = 113.2543
---------------- Step 600 ----- CPU = 8.9252 (sec) ----------------
TotEng = -2535.8235 KinEng = 708.5919 Temp = 266.7990
PotEng = -3244.4154 E_bond = 243.9451 E_angle = 606.0866
E_dihed = 400.0562 E_impro = 33.9708 E_vdwl = -223.1319
E_coul = -964.9940 E_long = -3340.3482 Press = -102.4475
---------------- Step 700 ----- CPU = 10.4022 (sec) ----------------
TotEng = -2552.6681 KinEng = 702.3080 Temp = 264.4330
PotEng = -3254.9761 E_bond = 250.8834 E_angle = 639.0977
E_dihed = 386.4014 E_impro = 42.3004 E_vdwl = -224.4816
E_coul = -1011.8551 E_long = -3337.3222 Press = 10.6424
---------------- Step 800 ----- CPU = 11.8699 (sec) ----------------
TotEng = -2423.5415 KinEng = 772.1254 Temp = 290.7206
PotEng = -3195.6670 E_bond = 238.5831 E_angle = 640.9180
E_dihed = 377.7994 E_impro = 40.3135 E_vdwl = -216.5705
E_coul = -935.1087 E_long = -3341.6019 Press = -38.2479
---------------- Step 900 ----- CPU = 13.3548 (sec) ----------------
TotEng = -2394.4779 KinEng = 766.6895 Temp = 288.6739
PotEng = -3161.1673 E_bond = 284.8428 E_angle = 671.0959
E_dihed = 380.3406 E_impro = 51.2975 E_vdwl = -219.5211
E_coul = -990.6305 E_long = -3338.5925 Press = -15.2279
---------------- Step 1000 ----- CPU = 14.7908 (sec) ----------------
TotEng = -2340.1471 KinEng = 799.0198 Temp = 300.8469
PotEng = -3139.1669 E_bond = 271.0389 E_angle = 683.8278
E_dihed = 407.0795 E_impro = 39.6209 E_vdwl = -230.5355
E_coul = -974.2981 E_long = -3335.9003 Press = -94.3420
Loop time of 14.7909 on 4 procs for 1000 steps with 892 atoms
Performance: 46.732 ns/day, 0.514 hours/ns, 67.609 timesteps/s
99.1% CPU use with 4 MPI tasks x 1 OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 4.4184 | 7.5543 | 10.133 | 74.2 | 51.07
Bond | 0.94027 | 1.9781 | 2.7492 | 54.4 | 13.37
Kspace | 0.45487 | 0.45887 | 0.46343 | 0.4 | 3.10
Neigh | 0.28145 | 0.28339 | 0.28539 | 0.3 | 1.92
Comm | 0.7515 | 4.1484 | 8.3861 | 135.5 | 28.05
Output | 0.00049973 | 0.00055474 | 0.00066924 | 0.0 | 0.00
Modify | 0.26165 | 0.31142 | 0.35023 | 6.7 | 2.11
Other | | 0.05572 | | | 0.38
Nlocal: 223 ave 313 max 122 min
Histogram: 1 0 0 1 0 0 0 1 0 1
Nghost: 584.5 ave 605 max 553 min
Histogram: 1 0 0 0 0 1 0 0 0 2
Neighs: 35448 ave 42093 max 25175 min
Histogram: 1 0 0 0 0 0 1 1 0 1
Total # of neighbors = 141792
Ave neighs/atom = 158.96
Ave special neighs/atom = 10.9395
Neighbor list builds = 186
Dangerous builds = 0
unfix cor
unfix 1
Please see the log.cite file for references relevant to this simulation
Total wall time: 0:00:16

View File

@ -1,146 +0,0 @@
LAMMPS (10 Mar 2017)
using 1 OpenMP thread(s) per MPI task
# Solvated 5-mer peptide, run for 8ps in NVT
units real
atom_style full
pair_style lj/charmm/coul/long 8.0 10.0 10.0
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
kspace_style pppm 0.0001
read_data data.peptide
orthogonal box = (36.8402 41.0137 29.7681) to (64.2116 68.3851 57.1395)
1 by 1 by 1 MPI processor grid
reading atoms ...
2004 atoms
reading velocities ...
2004 velocities
scanning bonds ...
3 = max bonds/atom
scanning angles ...
6 = max angles/atom
scanning dihedrals ...
14 = max dihedrals/atom
scanning impropers ...
1 = max impropers/atom
reading bonds ...
1365 bonds
reading angles ...
786 angles
reading dihedrals ...
207 dihedrals
reading impropers ...
12 impropers
4 = max # of 1-2 neighbors
7 = max # of 1-3 neighbors
14 = max # of 1-4 neighbors
18 = max # of special neighbors
neighbor 2.0 bin
neigh_modify delay 5
thermo 50
#dump dump1 all atom 100 peptide.dump
timestep 8
run_style respa 3 2 8 bond 1 pair 2 kspace 3
Respa levels:
1 = bond angle dihedral improper
2 = pair
3 = kspace
fix 1 all nvt temp 250.0 250.0 100.0 tchain 1
fix cor all filter/corotate m 1.0
19 = # of size 2 clusters
0 = # of size 3 clusters
3 = # of size 4 clusters
0 = # of size 5 clusters
646 = # of frozen angles
run 1000
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.268725
grid = 15 15 15
stencil order = 5
estimated absolute RMS force accuracy = 0.0228209
estimated relative force accuracy = 6.87243e-05
using double precision FFTs
3d grid and FFT values/proc = 10648 3375
Neighbor list info ...
update every 1 steps, delay 5 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 12
ghost atom cutoff = 12
binsize = 6, bins = 5 5 5
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair lj/charmm/coul/long, perpetual
attributes: half, newton on
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
Per MPI rank memory usage (min/avg/max) = 22.6706/1/0 Mbytes
Step Temp E_pair E_mol TotEng Press
0 190.0857 -6785.6785 70.391457 -5580.3684 19434.821
50 239.46028 -7546.5667 1092.8874 -5023.9668 -24643.891
100 242.81799 -7125.5527 416.0788 -5259.7139 15525.465
150 235.97108 -7531.9334 932.35464 -5190.6987 -14838.489
200 252.06415 -7195.6011 568.02993 -5122.6064 8841.332
250 249.99431 -7586.5092 881.83491 -5212.0676 -9330.345
300 240.3382 -7333.0933 633.29951 -5264.8395 5137.9757
350 255.34529 -7568.2413 856.46371 -5187.2226 -6206.063
400 242.99276 -7419.9031 713.23943 -5255.8602 2447.0091
450 251.10653 -7622.061 844.20584 -5278.6079 -4906.6559
500 255.59314 -7439.253 710.84907 -5202.3691 1571.0032
550 253.2025 -7660.5101 823.05373 -5325.695 -4551.399
600 249.05313 -7509.6729 741.48104 -5281.2046 992.87
650 251.75984 -7593.6589 847.08244 -5243.4286 -3510.1176
700 249.25027 -7601.9112 794.0912 -5319.6557 305.76021
750 255.415 -7602.2674 822.98524 -5254.3109 -2333.421
800 241.99621 -7643.8878 796.53352 -5402.5008 -298.66565
850 253.6428 -7598.3764 816.45457 -5267.5316 -1905.3478
900 247.20231 -7690.2806 789.75999 -5424.5838 -1331.7228
950 255.92583 -7634.7505 831.18272 -5275.5466 -2186.5117
1000 253.2126 -7647.9526 823.93602 -5312.195 -1189.9659
Loop time of 150.664 on 1 procs for 1000 steps with 2004 atoms
Performance: 4.588 ns/day, 5.231 hours/ns, 6.637 timesteps/s
99.7% CPU use with 1 MPI tasks x 1 OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 135.81 | 135.81 | 135.81 | 0.0 | 90.14
Bond | 2.5889 | 2.5889 | 2.5889 | 0.0 | 1.72
Kspace | 2.0379 | 2.0379 | 2.0379 | 0.0 | 1.35
Neigh | 5.893 | 5.893 | 5.893 | 0.0 | 3.91
Comm | 1.6998 | 1.6998 | 1.6998 | 0.0 | 1.13
Output | 0.00077915 | 0.00077915 | 0.00077915 | 0.0 | 0.00
Modify | 2 | 2 | 2 | 0.0 | 1.33
Other | | 0.6352 | | | 0.42
Nlocal: 2004 ave 2004 max 2004 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 11197 ave 11197 max 11197 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 707779 ave 707779 max 707779 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 707779
Ave neighs/atom = 353.183
Ave special neighs/atom = 2.34032
Neighbor list builds = 200
Dangerous builds = 200
unfix cor
unfix 1
Please see the log.cite file for references relevant to this simulation
Total wall time: 0:02:30

View File

@ -1,146 +0,0 @@
LAMMPS (10 Mar 2017)
using 1 OpenMP thread(s) per MPI task
# Solvated 5-mer peptide, run for 8ps in NVT
units real
atom_style full
pair_style lj/charmm/coul/long 8.0 10.0 10.0
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
kspace_style pppm 0.0001
read_data data.peptide
orthogonal box = (36.8402 41.0137 29.7681) to (64.2116 68.3851 57.1395)
1 by 2 by 2 MPI processor grid
reading atoms ...
2004 atoms
reading velocities ...
2004 velocities
scanning bonds ...
3 = max bonds/atom
scanning angles ...
6 = max angles/atom
scanning dihedrals ...
14 = max dihedrals/atom
scanning impropers ...
1 = max impropers/atom
reading bonds ...
1365 bonds
reading angles ...
786 angles
reading dihedrals ...
207 dihedrals
reading impropers ...
12 impropers
4 = max # of 1-2 neighbors
7 = max # of 1-3 neighbors
14 = max # of 1-4 neighbors
18 = max # of special neighbors
neighbor 2.0 bin
neigh_modify delay 5
thermo 50
#dump dump1 all atom 100 peptide.dump
timestep 8
run_style respa 3 2 8 bond 1 pair 2 kspace 3
Respa levels:
1 = bond angle dihedral improper
2 = pair
3 = kspace
fix 1 all nvt temp 250.0 250.0 100.0 tchain 1
fix cor all filter/corotate m 1.0
19 = # of size 2 clusters
0 = # of size 3 clusters
3 = # of size 4 clusters
0 = # of size 5 clusters
646 = # of frozen angles
run 1000
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.268725
grid = 15 15 15
stencil order = 5
estimated absolute RMS force accuracy = 0.0228209
estimated relative force accuracy = 6.87243e-05
using double precision FFTs
3d grid and FFT values/proc = 4312 960
Neighbor list info ...
update every 1 steps, delay 5 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 12
ghost atom cutoff = 12
binsize = 6, bins = 5 5 5
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair lj/charmm/coul/long, perpetual
attributes: half, newton on
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
Per MPI rank memory usage (min/avg/max) = 16.8394/0.98826/0 Mbytes
Step Temp E_pair E_mol TotEng Press
0 190.0857 -6785.6785 70.391457 -5580.3684 19434.821
50 239.46028 -7546.5668 1092.8874 -5023.9668 -24643.891
100 242.81819 -7125.5629 416.08082 -5259.7209 15525.244
150 235.94928 -7531.9186 932.50658 -5190.6621 -14842.431
200 255.85551 -7254.4065 568.8803 -5157.9249 8936.8651
250 247.8705 -7607.4583 858.06087 -5269.4711 -9926.0442
300 257.64176 -7267.424 618.5573 -5110.6004 5173.3307
350 251.65439 -7572.3806 821.15745 -5248.7049 -7092.327
400 256.87927 -7414.2145 655.33178 -5225.169 4119.4095
450 257.12393 -7576.5541 853.39773 -5187.9819 -5224.8823
500 242.42371 -7524.705 705.75357 -5371.5455 2111.3878
550 248.97188 -7541.076 792.86994 -5261.7038 -2278.4185
600 249.81862 -7592.0499 767.17722 -5333.3149 -1149.4759
650 253.31349 -7578.2665 813.75975 -5252.0827 -2915.5706
700 256.61152 -7588.1475 761.03356 -5294.9988 -747.88089
750 248.3606 -7660.457 837.71615 -5339.8883 -3072.8311
800 253.81464 -7638.6089 782.4229 -5340.7698 -1025.909
850 245.69185 -7660.9036 795.66792 -5398.3172 -2717.5851
900 249.13156 -7589.4769 806.43464 -5295.5867 -761.63361
950 251.11482 -7691.4981 869.34937 -5322.852 -3282.3031
1000 241.9195 -7630.9899 828.59107 -5358.0033 -95.962685
Loop time of 45.5507 on 4 procs for 1000 steps with 2004 atoms
Performance: 15.174 ns/day, 1.582 hours/ns, 21.954 timesteps/s
99.4% CPU use with 4 MPI tasks x 1 OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 35.545 | 36.674 | 38.004 | 15.8 | 80.51
Bond | 0.51302 | 0.67796 | 0.86345 | 18.6 | 1.49
Kspace | 0.66031 | 0.68459 | 0.70506 | 2.1 | 1.50
Neigh | 1.5605 | 1.5627 | 1.5649 | 0.1 | 3.43
Comm | 3.4611 | 4.9841 | 6.294 | 47.2 | 10.94
Output | 0.00079799 | 0.00086641 | 0.0010369 | 0.0 | 0.00
Modify | 0.67341 | 0.69059 | 0.71186 | 1.7 | 1.52
Other | | 0.2762 | | | 0.61
Nlocal: 501 ave 523 max 473 min
Histogram: 1 0 0 0 0 0 2 0 0 1
Nghost: 6643.25 ave 6708 max 6566 min
Histogram: 1 1 0 0 0 0 0 0 0 2
Neighs: 176977 ave 185765 max 164931 min
Histogram: 1 0 0 0 1 0 0 0 1 1
Total # of neighbors = 707908
Ave neighs/atom = 353.248
Ave special neighs/atom = 2.34032
Neighbor list builds = 200
Dangerous builds = 200
unfix cor
unfix 1
Please see the log.cite file for references relevant to this simulation
Total wall time: 0:00:45

View File

@ -0,0 +1,241 @@
LAMMPS (20 Jun 2017)
OMP_NUM_THREADS environment is not set. Defaulting to 1 thread. (../comm.cpp:90)
using 1 OpenMP thread(s) per MPI task
units real
atom_style full
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
pair_style lj/charmm/coul/long 8 10
pair_modify mix arithmetic
kspace_style pppm 1e-4
read_data data.bpti
orthogonal box = (-10 -10 -30) to (50 50 30)
1 by 1 by 1 MPI processor grid
reading atoms ...
892 atoms
scanning bonds ...
4 = max bonds/atom
scanning angles ...
6 = max angles/atom
scanning dihedrals ...
18 = max dihedrals/atom
scanning impropers ...
2 = max impropers/atom
reading bonds ...
906 bonds
reading angles ...
1626 angles
reading dihedrals ...
2501 dihedrals
reading impropers ...
137 impropers
4 = max # of 1-2 neighbors
9 = max # of 1-3 neighbors
19 = max # of 1-4 neighbors
21 = max # of special neighbors
special_bonds charmm
neigh_modify delay 2 every 1
# ------------- MINIMIZE ----------
minimize 1e-4 1e-6 1000 10000
WARNING: Resetting reneighboring criteria during minimization (../min.cpp:168)
PPPM initialization ...
WARNING: System is not charge neutral, net charge = 6 (../kspace.cpp:302)
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.203272
grid = 16 16 16
stencil order = 5
estimated absolute RMS force accuracy = 0.0316399
estimated relative force accuracy = 9.52826e-05
using double precision FFTs
3d grid and FFT values/proc = 9261 4096
Neighbor list info ...
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 12
ghost atom cutoff = 12
binsize = 6, bins = 10 10 10
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair lj/charmm/coul/long, perpetual
attributes: half, newton on
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
Per MPI rank memory allocation (min/avg/max) = 17.86 | 17.86 | 17.86 Mbytes
Step Temp E_pair E_mol TotEng Press
0 0 -3075.6498 943.91164 -2131.7381 -380.67776
241 0 -4503.313 749.58662 -3753.7264 -29.045104
Loop time of 7.63279 on 1 procs for 241 steps with 892 atoms
32.0% CPU use with 1 MPI tasks x 1 OpenMP threads
Minimization stats:
Stopping criterion = energy tolerance
Energy initial, next-to-last, final =
-2131.73812515 -3753.43984087 -3753.72636847
Force two-norm initial, final = 1086.21 26.3688
Force max component initial, final = 310.811 3.92748
Final line search alpha, max atom move = 0.00596649 0.0234333
Iterations, force evaluations = 241 463
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 5.8395 | 5.8395 | 5.8395 | 0.0 | 76.51
Bond | 0.46414 | 0.46414 | 0.46414 | 0.0 | 6.08
Kspace | 1.1535 | 1.1535 | 1.1535 | 0.0 | 15.11
Neigh | 0.14908 | 0.14908 | 0.14908 | 0.0 | 1.95
Comm | 0.001932 | 0.001932 | 0.001932 | 0.0 | 0.03
Output | 0 | 0 | 0 | 0.0 | 0.00
Modify | 0 | 0 | 0 | 0.0 | 0.00
Other | | 0.02465 | | | 0.32
Nlocal: 892 ave 892 max 892 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 31 ave 31 max 31 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 148891 ave 148891 max 148891 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 148891
Ave neighs/atom = 166.918
Ave special neighs/atom = 10.9395
Neighbor list builds = 15
Dangerous builds = 0
reset_timestep 0
# ------------- RUN ---------------
thermo 100
thermo_style multi
timestep 8
run_style respa 3 2 8 bond 1 dihedral 2 pair 2 kspace 3
Respa levels:
1 = bond angle
2 = dihedral improper pair
3 = kspace
velocity all create 200.0 12345678 dist uniform
#dump dump1 all atom 100 4pti.dump
fix 1 all nvt temp 200 300 25
fix cor all filter/corotate m 1.0
163 = # of size 2 clusters
0 = # of size 3 clusters
25 = # of size 4 clusters
0 = # of size 5 clusters
100 = # of frozen angles
run 1000
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.203272
grid = 16 16 16
stencil order = 5
estimated absolute RMS force accuracy = 0.0316399
estimated relative force accuracy = 9.52826e-05
using double precision FFTs
3d grid and FFT values/proc = 9261 4096
Per MPI rank memory allocation (min/avg/max) = 19.55 | 19.55 | 19.55 Mbytes
---------------- Step 0 ----- CPU = 0.0000 (sec) ----------------
TotEng = -3220.3378 KinEng = 531.1804 Temp = 200.0000
PotEng = -3751.5181 E_bond = 42.2810 E_angle = 345.2592
E_dihed = 337.8361 E_impro = 24.2103 E_vdwl = -288.5339
E_coul = -886.3622 E_long = -3326.2088 Press = 83.2283
---------------- Step 100 ----- CPU = 8.4380 (sec) ----------------
TotEng = -2718.4258 KinEng = 539.6265 Temp = 203.1802
PotEng = -3258.0524 E_bond = 203.2307 E_angle = 566.1893
E_dihed = 397.6759 E_impro = 34.7696 E_vdwl = -248.6577
E_coul = -874.8466 E_long = -3336.4135 Press = 135.8640
---------------- Step 200 ----- CPU = 16.9012 (sec) ----------------
TotEng = -2661.9611 KinEng = 625.0674 Temp = 235.3503
PotEng = -3287.0285 E_bond = 208.1804 E_angle = 590.8462
E_dihed = 389.1482 E_impro = 30.5882 E_vdwl = -240.5448
E_coul = -926.3091 E_long = -3338.9378 Press = 103.4738
---------------- Step 300 ----- CPU = 25.3046 (sec) ----------------
TotEng = -2662.4139 KinEng = 622.2647 Temp = 234.2951
PotEng = -3284.6785 E_bond = 202.4210 E_angle = 573.6793
E_dihed = 382.8919 E_impro = 41.8973 E_vdwl = -218.9895
E_coul = -924.8414 E_long = -3341.7372 Press = 40.6746
---------------- Step 400 ----- CPU = 33.8063 (sec) ----------------
TotEng = -2604.9431 KinEng = 662.9890 Temp = 249.6286
PotEng = -3267.9321 E_bond = 195.9116 E_angle = 616.1383
E_dihed = 407.8502 E_impro = 43.3560 E_vdwl = -219.0377
E_coul = -966.3118 E_long = -3345.8387 Press = -91.8856
---------------- Step 500 ----- CPU = 42.3470 (sec) ----------------
TotEng = -2609.3867 KinEng = 657.0939 Temp = 247.4090
PotEng = -3266.4806 E_bond = 236.4955 E_angle = 570.6256
E_dihed = 390.5111 E_impro = 41.9250 E_vdwl = -223.9927
E_coul = -939.5249 E_long = -3342.5201 Press = 236.7471
---------------- Step 600 ----- CPU = 50.9590 (sec) ----------------
TotEng = -2564.7161 KinEng = 701.8494 Temp = 264.2603
PotEng = -3266.5655 E_bond = 223.5820 E_angle = 582.7722
E_dihed = 394.6196 E_impro = 43.8581 E_vdwl = -201.7759
E_coul = -967.4136 E_long = -3342.2079 Press = 26.6595
---------------- Step 700 ----- CPU = 59.4791 (sec) ----------------
TotEng = -2510.1142 KinEng = 689.5931 Temp = 259.6455
PotEng = -3199.7072 E_bond = 254.6476 E_angle = 611.9715
E_dihed = 403.0624 E_impro = 44.1360 E_vdwl = -205.6377
E_coul = -964.7455 E_long = -3343.1416 Press = 60.5789
---------------- Step 800 ----- CPU = 67.9330 (sec) ----------------
TotEng = -2452.7408 KinEng = 777.5962 Temp = 292.7805
PotEng = -3230.3370 E_bond = 250.4950 E_angle = 656.6738
E_dihed = 382.4702 E_impro = 39.5378 E_vdwl = -225.0375
E_coul = -994.4519 E_long = -3340.0244 Press = -19.6463
---------------- Step 900 ----- CPU = 76.3690 (sec) ----------------
TotEng = -2339.9766 KinEng = 808.7116 Temp = 304.4961
PotEng = -3148.6883 E_bond = 247.7657 E_angle = 679.0658
E_dihed = 398.2984 E_impro = 43.7890 E_vdwl = -230.2498
E_coul = -945.8152 E_long = -3341.5422 Press = -64.4343
---------------- Step 1000 ----- CPU = 84.8757 (sec) ----------------
TotEng = -2329.1819 KinEng = 822.9820 Temp = 309.8691
PotEng = -3152.1639 E_bond = 264.9609 E_angle = 691.7104
E_dihed = 385.9914 E_impro = 40.5525 E_vdwl = -230.5182
E_coul = -954.6203 E_long = -3350.2405 Press = -146.6649
Loop time of 84.8758 on 1 procs for 1000 steps with 892 atoms
Performance: 8.144 ns/day, 2.947 hours/ns, 11.782 timesteps/s
32.0% CPU use with 1 MPI tasks x 1 OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 68.548 | 68.548 | 68.548 | 0.0 | 80.76
Bond | 10.263 | 10.263 | 10.263 | 0.0 | 12.09
Kspace | 2.4528 | 2.4528 | 2.4528 | 0.0 | 2.89
Neigh | 1.9041 | 1.9041 | 1.9041 | 0.0 | 2.24
Comm | 0.044126 | 0.044126 | 0.044126 | 0.0 | 0.05
Output | 0.000983 | 0.000983 | 0.000983 | 0.0 | 0.00
Modify | 1.4113 | 1.4113 | 1.4113 | 0.0 | 1.66
Other | | 0.2516 | | | 0.30
Nlocal: 892 ave 892 max 892 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 38 ave 38 max 38 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 144068 ave 144068 max 144068 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 144068
Ave neighs/atom = 161.511
Ave special neighs/atom = 10.9395
Neighbor list builds = 190
Dangerous builds = 0
unfix cor
unfix 1
Please see the log.cite file for references relevant to this simulation
Total wall time: 0:01:32

View File

@ -0,0 +1,241 @@
LAMMPS (20 Jun 2017)
OMP_NUM_THREADS environment is not set. Defaulting to 1 thread. (../comm.cpp:90)
using 1 OpenMP thread(s) per MPI task
units real
atom_style full
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
pair_style lj/charmm/coul/long 8 10
pair_modify mix arithmetic
kspace_style pppm 1e-4
read_data data.bpti
orthogonal box = (-10 -10 -30) to (50 50 30)
1 by 2 by 2 MPI processor grid
reading atoms ...
892 atoms
scanning bonds ...
4 = max bonds/atom
scanning angles ...
6 = max angles/atom
scanning dihedrals ...
18 = max dihedrals/atom
scanning impropers ...
2 = max impropers/atom
reading bonds ...
906 bonds
reading angles ...
1626 angles
reading dihedrals ...
2501 dihedrals
reading impropers ...
137 impropers
4 = max # of 1-2 neighbors
9 = max # of 1-3 neighbors
19 = max # of 1-4 neighbors
21 = max # of special neighbors
special_bonds charmm
neigh_modify delay 2 every 1
# ------------- MINIMIZE ----------
minimize 1e-4 1e-6 1000 10000
WARNING: Resetting reneighboring criteria during minimization (../min.cpp:168)
PPPM initialization ...
WARNING: System is not charge neutral, net charge = 6 (../kspace.cpp:302)
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.203272
grid = 16 16 16
stencil order = 5
estimated absolute RMS force accuracy = 0.0316399
estimated relative force accuracy = 9.52826e-05
using double precision FFTs
3d grid and FFT values/proc = 3549 1024
Neighbor list info ...
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 12
ghost atom cutoff = 12
binsize = 6, bins = 10 10 10
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair lj/charmm/coul/long, perpetual
attributes: half, newton on
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
Per MPI rank memory allocation (min/avg/max) = 16.97 | 17.2 | 17.52 Mbytes
Step Temp E_pair E_mol TotEng Press
0 0 -3075.6498 943.91164 -2131.7381 -380.67776
241 0 -4503.3131 749.58665 -3753.7264 -29.044989
Loop time of 3.06327 on 4 procs for 241 steps with 892 atoms
31.9% CPU use with 4 MPI tasks x 1 OpenMP threads
Minimization stats:
Stopping criterion = energy tolerance
Energy initial, next-to-last, final =
-2131.73812515 -3753.4398752 -3753.72640446
Force two-norm initial, final = 1086.21 26.3687
Force max component initial, final = 310.811 3.92765
Final line search alpha, max atom move = 0.0059665 0.0234343
Iterations, force evaluations = 241 463
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.91458 | 1.6235 | 2.2701 | 38.2 | 53.00
Bond | 0.055164 | 0.13173 | 0.19487 | 15.1 | 4.30
Kspace | 0.48966 | 1.1993 | 1.9847 | 48.7 | 39.15
Neigh | 0.053297 | 0.053442 | 0.053576 | 0.0 | 1.74
Comm | 0.031677 | 0.035006 | 0.038061 | 1.5 | 1.14
Output | 0 | 0 | 0 | 0.0 | 0.00
Modify | 0 | 0 | 0 | 0.0 | 0.00
Other | | 0.02021 | | | 0.66
Nlocal: 223 ave 323 max 89 min
Histogram: 1 0 0 0 1 0 0 0 1 1
Nghost: 613 ave 675 max 557 min
Histogram: 1 0 0 1 0 1 0 0 0 1
Neighs: 37222.8 ave 50005 max 20830 min
Histogram: 1 0 0 0 1 0 0 1 0 1
Total # of neighbors = 148891
Ave neighs/atom = 166.918
Ave special neighs/atom = 10.9395
Neighbor list builds = 15
Dangerous builds = 0
reset_timestep 0
# ------------- RUN ---------------
thermo 100
thermo_style multi
timestep 8
run_style respa 3 2 8 bond 1 dihedral 2 pair 2 kspace 3
Respa levels:
1 = bond angle
2 = dihedral improper pair
3 = kspace
velocity all create 200.0 12345678 dist uniform
#dump dump1 all atom 100 4pti.dump
fix 1 all nvt temp 200 300 25
fix cor all filter/corotate m 1.0
163 = # of size 2 clusters
0 = # of size 3 clusters
25 = # of size 4 clusters
0 = # of size 5 clusters
100 = # of frozen angles
run 1000
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.203272
grid = 16 16 16
stencil order = 5
estimated absolute RMS force accuracy = 0.0316399
estimated relative force accuracy = 9.52826e-05
using double precision FFTs
3d grid and FFT values/proc = 3549 1024
Per MPI rank memory allocation (min/avg/max) = 17.14 | 17.63 | 18.14 Mbytes
---------------- Step 0 ----- CPU = 0.0000 (sec) ----------------
TotEng = -3220.3378 KinEng = 531.1804 Temp = 200.0000
PotEng = -3751.5182 E_bond = 42.2810 E_angle = 345.2593
E_dihed = 337.8361 E_impro = 24.2103 E_vdwl = -288.5339
E_coul = -886.3622 E_long = -3326.2088 Press = 83.2284
---------------- Step 100 ----- CPU = 3.4639 (sec) ----------------
TotEng = -2718.4266 KinEng = 539.6246 Temp = 203.1794
PotEng = -3258.0513 E_bond = 203.2306 E_angle = 566.1887
E_dihed = 397.6756 E_impro = 34.7695 E_vdwl = -248.6577
E_coul = -874.8446 E_long = -3336.4135 Press = 135.8653
---------------- Step 200 ----- CPU = 6.8898 (sec) ----------------
TotEng = -2662.0450 KinEng = 625.0178 Temp = 235.3317
PotEng = -3287.0628 E_bond = 208.1691 E_angle = 590.8259
E_dihed = 389.1424 E_impro = 30.5879 E_vdwl = -240.5397
E_coul = -926.3110 E_long = -3338.9375 Press = 103.4843
---------------- Step 300 ----- CPU = 10.2791 (sec) ----------------
TotEng = -2661.8829 KinEng = 623.0352 Temp = 234.5852
PotEng = -3284.9181 E_bond = 203.0274 E_angle = 573.6583
E_dihed = 383.0124 E_impro = 41.9015 E_vdwl = -218.0696
E_coul = -926.5806 E_long = -3341.8675 Press = 45.6868
---------------- Step 400 ----- CPU = 13.5874 (sec) ----------------
TotEng = -2594.5220 KinEng = 672.8693 Temp = 253.3487
PotEng = -3267.3914 E_bond = 201.3378 E_angle = 612.7099
E_dihed = 410.1920 E_impro = 44.0201 E_vdwl = -217.9714
E_coul = -971.6203 E_long = -3346.0595 Press = -121.1015
---------------- Step 500 ----- CPU = 16.9047 (sec) ----------------
TotEng = -2603.9306 KinEng = 668.2122 Temp = 251.5952
PotEng = -3272.1428 E_bond = 238.1081 E_angle = 578.3310
E_dihed = 399.1305 E_impro = 41.4314 E_vdwl = -216.9664
E_coul = -969.4047 E_long = -3342.7729 Press = 156.7851
---------------- Step 600 ----- CPU = 20.1970 (sec) ----------------
TotEng = -2531.1096 KinEng = 728.1698 Temp = 274.1705
PotEng = -3259.2794 E_bond = 232.8396 E_angle = 621.3323
E_dihed = 398.1952 E_impro = 37.0914 E_vdwl = -241.6350
E_coul = -963.1540 E_long = -3343.9488 Press = 58.6784
---------------- Step 700 ----- CPU = 23.4360 (sec) ----------------
TotEng = -2499.9495 KinEng = 742.1211 Temp = 279.4234
PotEng = -3242.0705 E_bond = 240.5622 E_angle = 582.9270
E_dihed = 396.6246 E_impro = 36.6510 E_vdwl = -228.4925
E_coul = -926.8734 E_long = -3343.4695 Press = -60.7458
---------------- Step 800 ----- CPU = 26.6709 (sec) ----------------
TotEng = -2426.0217 KinEng = 760.1083 Temp = 286.1959
PotEng = -3186.1300 E_bond = 266.5863 E_angle = 652.3401
E_dihed = 380.7407 E_impro = 34.6861 E_vdwl = -225.3729
E_coul = -953.2382 E_long = -3341.8721 Press = -57.9824
---------------- Step 900 ----- CPU = 29.8152 (sec) ----------------
TotEng = -2419.4636 KinEng = 780.8361 Temp = 294.0004
PotEng = -3200.2996 E_bond = 269.3237 E_angle = 665.7171
E_dihed = 408.3527 E_impro = 43.7811 E_vdwl = -254.0696
E_coul = -1002.0694 E_long = -3331.3352 Press = -52.0169
---------------- Step 1000 ----- CPU = 32.8748 (sec) ----------------
TotEng = -2398.7244 KinEng = 811.9856 Temp = 305.7288
PotEng = -3210.7099 E_bond = 258.2207 E_angle = 639.3671
E_dihed = 379.3353 E_impro = 41.7602 E_vdwl = -207.2654
E_coul = -983.9330 E_long = -3338.1948 Press = 89.4870
Loop time of 32.8751 on 4 procs for 1000 steps with 892 atoms
Performance: 21.025 ns/day, 1.141 hours/ns, 30.418 timesteps/s
31.9% CPU use with 4 MPI tasks x 1 OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 12.449 | 19.023 | 24.612 | 99.6 | 57.86
Bond | 1.4547 | 2.8768 | 3.9098 | 61.4 | 8.75
Kspace | 1.0537 | 1.0778 | 1.0992 | 2.1 | 3.28
Neigh | 0.67542 | 0.67994 | 0.68323 | 0.3 | 2.07
Comm | 1.8602 | 8.4515 | 16.516 | 182.9 | 25.71
Output | 0.000839 | 0.00147 | 0.003293 | 2.7 | 0.00
Modify | 0.56658 | 0.63186 | 0.69304 | 6.8 | 1.92
Other | | 0.133 | | | 0.40
Nlocal: 223 ave 339 max 136 min
Histogram: 1 1 0 0 0 1 0 0 0 1
Nghost: 590 ave 626 max 552 min
Histogram: 1 0 0 0 1 0 1 0 0 1
Neighs: 36488.2 ave 41965 max 29054 min
Histogram: 1 0 0 0 1 0 0 0 1 1
Total # of neighbors = 145953
Ave neighs/atom = 163.624
Ave special neighs/atom = 10.9395
Neighbor list builds = 189
Dangerous builds = 0
unfix cor
unfix 1
Please see the log.cite file for references relevant to this simulation
Total wall time: 0:00:36

View File

@ -0,0 +1,147 @@
LAMMPS (20 Jun 2017)
OMP_NUM_THREADS environment is not set. Defaulting to 1 thread. (../comm.cpp:90)
using 1 OpenMP thread(s) per MPI task
# Solvated 5-mer peptide, run for 8ps in NVT
units real
atom_style full
pair_style lj/charmm/coul/long 8.0 10.0 10.0
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
kspace_style pppm 0.0001
read_data data.peptide
orthogonal box = (36.8402 41.0137 29.7681) to (64.2116 68.3851 57.1395)
1 by 1 by 1 MPI processor grid
reading atoms ...
2004 atoms
reading velocities ...
2004 velocities
scanning bonds ...
3 = max bonds/atom
scanning angles ...
6 = max angles/atom
scanning dihedrals ...
14 = max dihedrals/atom
scanning impropers ...
1 = max impropers/atom
reading bonds ...
1365 bonds
reading angles ...
786 angles
reading dihedrals ...
207 dihedrals
reading impropers ...
12 impropers
4 = max # of 1-2 neighbors
7 = max # of 1-3 neighbors
14 = max # of 1-4 neighbors
18 = max # of special neighbors
neighbor 2.0 bin
neigh_modify delay 5
thermo 50
#dump dump1 all atom 100 peptide.dump
timestep 8
run_style respa 3 2 8 bond 1 dihedral 2 pair 2 kspace 3
Respa levels:
1 = bond angle
2 = dihedral improper pair
3 = kspace
fix 1 all nvt temp 250.0 250.0 100.0 tchain 1
fix cor all filter/corotate m 1.0
19 = # of size 2 clusters
0 = # of size 3 clusters
3 = # of size 4 clusters
0 = # of size 5 clusters
646 = # of frozen angles
run 1000
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.268725
grid = 15 15 15
stencil order = 5
estimated absolute RMS force accuracy = 0.0228209
estimated relative force accuracy = 6.87243e-05
using double precision FFTs
3d grid and FFT values/proc = 10648 3375
Neighbor list info ...
update every 1 steps, delay 5 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 12
ghost atom cutoff = 12
binsize = 6, bins = 5 5 5
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair lj/charmm/coul/long, perpetual
attributes: half, newton on
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
Per MPI rank memory allocation (min/avg/max) = 22.72 | 22.72 | 22.72 Mbytes
Step Temp E_pair E_mol TotEng Press
0 190.0857 -6442.7438 70.391457 -5237.4338 20361.984
50 239.47667 -7205.1006 1092.7664 -4682.5237 -23733.122
100 244.63086 -6788.0793 422.97204 -4904.5234 16458.011
150 240.79042 -7267.0791 966.31411 -4863.1107 -13554.894
200 254.77122 -6868.5713 591.00071 -4756.4431 10532.563
250 241.87417 -7264.9349 856.9357 -4963.8743 -9043.4359
300 251.37775 -6976.8 650.55612 -4825.3773 6986.2021
350 250.81494 -7286.7011 880.11184 -4909.0829 -6392.4665
400 247.55673 -7104.4036 701.89555 -4924.4551 4720.7811
450 258.54988 -7215.3011 832.23692 -4839.3759 -3446.3859
500 246.80928 -7151.2468 715.61007 -4962.0464 2637.5769
550 246.20721 -7159.0464 805.24974 -4883.8011 -2725.227
600 250.62483 -7201.7688 806.10076 -4899.2968 770.22352
650 247.59777 -7260.1607 802.97277 -4978.8899 -430.42309
700 246.86951 -7286.2971 825.99865 -4986.3486 -427.88651
750 252.79268 -7307.8572 833.4822 -4965.0605 -614.74372
800 251.73191 -7315.2457 839.59859 -4972.666 952.56448
850 246.75844 -7303.6221 816.67112 -5013.6642 -2055.2823
900 251.00123 -7317.4219 825.12165 -4993.6817 -356.53166
950 259.20822 -7252.3466 854.62611 -4850.1016 -1719.5267
1000 245.72486 -7347.5547 811.48146 -5068.9576 -717.6136
Loop time of 357.523 on 1 procs for 1000 steps with 2004 atoms
Performance: 1.933 ns/day, 12.414 hours/ns, 2.797 timesteps/s
32.0% CPU use with 1 MPI tasks x 1 OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 328.2 | 328.2 | 328.2 | 0.0 | 91.80
Bond | 4.4815 | 4.4815 | 4.4815 | 0.0 | 1.25
Kspace | 3.9448 | 3.9448 | 3.9448 | 0.0 | 1.10
Neigh | 12.457 | 12.457 | 12.457 | 0.0 | 3.48
Comm | 3.2147 | 3.2147 | 3.2147 | 0.0 | 0.90
Output | 0.001689 | 0.001689 | 0.001689 | 0.0 | 0.00
Modify | 3.937 | 3.937 | 3.937 | 0.0 | 1.10
Other | | 1.289 | | | 0.36
Nlocal: 2004 ave 2004 max 2004 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 11191 ave 11191 max 11191 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 708610 ave 708610 max 708610 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 708610
Ave neighs/atom = 353.598
Ave special neighs/atom = 2.34032
Neighbor list builds = 200
Dangerous builds = 200
unfix cor
unfix 1
Please see the log.cite file for references relevant to this simulation
Total wall time: 0:05:57

View File

@ -0,0 +1,147 @@
LAMMPS (20 Jun 2017)
OMP_NUM_THREADS environment is not set. Defaulting to 1 thread. (../comm.cpp:90)
using 1 OpenMP thread(s) per MPI task
# Solvated 5-mer peptide, run for 8ps in NVT
units real
atom_style full
pair_style lj/charmm/coul/long 8.0 10.0 10.0
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
kspace_style pppm 0.0001
read_data data.peptide
orthogonal box = (36.8402 41.0137 29.7681) to (64.2116 68.3851 57.1395)
1 by 2 by 2 MPI processor grid
reading atoms ...
2004 atoms
reading velocities ...
2004 velocities
scanning bonds ...
3 = max bonds/atom
scanning angles ...
6 = max angles/atom
scanning dihedrals ...
14 = max dihedrals/atom
scanning impropers ...
1 = max impropers/atom
reading bonds ...
1365 bonds
reading angles ...
786 angles
reading dihedrals ...
207 dihedrals
reading impropers ...
12 impropers
4 = max # of 1-2 neighbors
7 = max # of 1-3 neighbors
14 = max # of 1-4 neighbors
18 = max # of special neighbors
neighbor 2.0 bin
neigh_modify delay 5
thermo 50
#dump dump1 all atom 100 peptide.dump
timestep 8
run_style respa 3 2 8 bond 1 dihedral 2 pair 2 kspace 3
Respa levels:
1 = bond angle
2 = dihedral improper pair
3 = kspace
fix 1 all nvt temp 250.0 250.0 100.0 tchain 1
fix cor all filter/corotate m 1.0
19 = # of size 2 clusters
0 = # of size 3 clusters
3 = # of size 4 clusters
0 = # of size 5 clusters
646 = # of frozen angles
run 1000
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.268725
grid = 15 15 15
stencil order = 5
estimated absolute RMS force accuracy = 0.0228209
estimated relative force accuracy = 6.87243e-05
using double precision FFTs
3d grid and FFT values/proc = 4312 960
Neighbor list info ...
update every 1 steps, delay 5 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 12
ghost atom cutoff = 12
binsize = 6, bins = 5 5 5
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair lj/charmm/coul/long, perpetual
attributes: half, newton on
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
Per MPI rank memory allocation (min/avg/max) = 16.87 | 17.05 | 17.26 Mbytes
Step Temp E_pair E_mol TotEng Press
0 190.0857 -6442.7438 70.391457 -5237.4338 20361.984
50 239.47667 -7205.1005 1092.7664 -4682.5237 -23733.122
100 244.63889 -6788.1152 422.96733 -4904.5161 16457.756
150 239.36917 -7258.7053 967.87775 -4861.6589 -13526.261
200 255.14702 -6864.0525 604.58036 -4736.1009 11013.1
250 252.72919 -7303.0966 898.11178 -4896.0494 -8480.8766
300 250.66477 -6989.2603 652.83649 -4839.8141 6209.3375
350 243.30794 -7218.8575 838.31977 -4927.8525 -5180.4928
400 256.3573 -7090.677 706.24197 -4853.8377 3302.577
450 246.15776 -7274.574 834.31676 -4970.557 -3427.971
500 256.28473 -7082.1447 735.42828 -4816.5524 2846.086
550 251.32327 -7341.739 812.64934 -5028.5484 -1786.9277
600 254.57737 -7152.3448 740.52534 -4891.8494 825.91675
650 244.95305 -7207.1136 790.67659 -4953.9295 -520.79769
700 249.4984 -7204.2699 779.06969 -4935.5544 -940.75384
750 248.46962 -7232.1037 791.6642 -4956.9361 -548.12171
800 260.2974 -7293.1982 793.23282 -4945.8435 -1171.26
850 249.79023 -7258.3759 823.56789 -4943.4198 -499.76275
900 249.97237 -7267.0584 784.57992 -4990.0028 -271.33531
950 251.29018 -7261.0642 823.467 -4937.2534 -538.7168
1000 246.05777 -7285.0948 847.90892 -4968.0826 -2613.1854
Loop time of 94.6835 on 4 procs for 1000 steps with 2004 atoms
Performance: 7.300 ns/day, 3.288 hours/ns, 10.562 timesteps/s
37.9% CPU use with 4 MPI tasks x 1 OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 33.389 | 78.508 | 94.639 | 294.1 | 82.92
Bond | 0.39957 | 1.104 | 1.4443 | 40.6 | 1.17
Kspace | 0.53324 | 1.2631 | 1.5137 | 37.5 | 1.33
Neigh | 1.2668 | 3.011 | 3.5942 | 58.0 | 3.18
Comm | 3.4563 | 8.8707 | 11.494 | 107.9 | 9.37
Output | 0.000435 | 0.0017425 | 0.004136 | 3.4 | 0.00
Modify | 0.59335 | 1.4123 | 1.6921 | 39.8 | 1.49
Other | | 0.5129 | | | 0.54
Nlocal: 501 ave 515 max 476 min
Histogram: 1 0 0 0 0 0 0 1 1 1
Nghost: 6681.5 ave 6740 max 6634 min
Histogram: 2 0 0 0 0 0 0 1 0 1
Neighs: 176872 ave 182642 max 168464 min
Histogram: 1 0 0 0 0 0 1 1 0 1
Total # of neighbors = 707486
Ave neighs/atom = 353.037
Ave special neighs/atom = 2.34032
Neighbor list builds = 200
Dangerous builds = 200
unfix cor
unfix 1
Please see the log.cite file for references relevant to this simulation
Total wall time: 0:01:53

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -18,13 +18,13 @@ read_data ${rep}/lj.data
#dump dump all xyz 1000 ${rep}/dump.xyz
thermo 10
thermo_style custom step temp pe etotal press vol
timestep 1.0
fix fxnpt all npt temp ${T0} ${T0} 1000.0 iso ${press} ${press} 10000.0
fix fxgREM all grem ${lambda} -.03 -30000 fxnpt
thermo 10
thermo_style custom step temp f_fxgREM pe etotal press vol
thermo_modify press fxgREM_press
timestep 1.0
temper/grem 10000 100 ${lambda} fxgREM fxnpt 10294 98392 #${walker}

View File

@ -0,0 +1,177 @@
LAMMPS (19 May 2017)
units real
atom_style full
read_data data.spce
orthogonal box = (0.02645 0.02645 0.02641) to (35.5328 35.5328 35.4736)
1 by 1 by 1 MPI processor grid
reading atoms ...
4500 atoms
scanning bonds ...
2 = max bonds/atom
scanning angles ...
1 = max angles/atom
reading bonds ...
3000 bonds
reading angles ...
1500 angles
2 = max # of 1-2 neighbors
1 = max # of 1-3 neighbors
1 = max # of 1-4 neighbors
2 = max # of special neighbors
pair_style lj/cut/coul/long 12.0 12.0
kspace_style pppm 1.0e-4
pair_coeff 1 1 0.15535 3.166
pair_coeff * 2 0.0000 0.0000
bond_style harmonic
angle_style harmonic
dihedral_style none
improper_style none
bond_coeff 1 1000.00 1.000
angle_coeff 1 100.0 109.47
special_bonds lj/coul 0.0 0.0 1.0
2 = max # of 1-2 neighbors
1 = max # of 1-3 neighbors
2 = max # of special neighbors
neighbor 2.0 bin
fix 1 all shake 0.0001 20 0 b 1 a 1
0 = # of size 2 clusters
0 = # of size 3 clusters
0 = # of size 4 clusters
1500 = # of frozen angles
fix 2 all nvt temp 300.0 300.0 100.0
# make certain that shake constraints are satisfied
run 0 post no
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.218482
grid = 15 15 15
stencil order = 5
estimated absolute RMS force accuracy = 0.0319435
estimated relative force accuracy = 9.61968e-05
using double precision FFTs
3d grid and FFT values/proc = 8000 3375
Neighbor list info ...
update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 14
ghost atom cutoff = 14
binsize = 7, bins = 6 6 6
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair lj/cut/coul/long, perpetual
attributes: half, newton on
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
Per MPI rank memory allocation (min/avg/max) = 26.54 | 26.54 | 26.54 Mbytes
Step Temp E_pair E_mol TotEng Press
0 0 -16692.358 0 -16692.358 -1289.8319
Loop time of 3e-06 on 1 procs for 0 steps with 4500 atoms
group one molecule 1 2
6 atoms in group one
# the following section shows equivalences between using the force/tally compute and other computes and thermo keywords
# compute pairwise force between two molecules and everybody
compute fpa one group/group all pair yes kspace no boundary no
# tally pairwise force between two molecules and the all molecules
compute c1 one force/tally all
# tally the force of all with all (should be zero)
compute c2 all force/tally all
# collect per atom data. only reduce over the first group.
compute one one reduce sum c_c1[1] c_c1[2] c_c1[3]
compute red all reduce sum c_c2[1] c_c2[2] c_c2[3]
# determine magnitude of force
variable fpa equal sqrt(c_fpa[1]*c_fpa[1]+c_fpa[2]*c_fpa[2]+c_fpa[3]*c_fpa[3])
variable for equal sqrt(c_one[1]*c_one[1]+c_one[2]*c_one[2]+c_one[3]*c_one[3])
# round to 10**-10 absolute precision.
variable ref equal round(1e10*sqrt(c_red[1]*c_red[1]+c_red[2]*c_red[2]+c_red[3]*c_red[3]))*1e-10
variable all equal round(1e10*c_c2)*1e-10
velocity all create 300 432567 dist uniform
timestep 2.0
# v_fpa and v_for and c_c1, c_fpa[] and c_one[] should all each have the same value. v_ref and c_c2 should be zero
thermo_style custom step v_fpa v_for c_c1 c_fpa[1] c_one[1] c_fpa[2] c_one[2] c_fpa[3] c_one[3] v_ref v_all
thermo 10
run 50
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.218482
grid = 15 15 15
stencil order = 5
estimated absolute RMS force accuracy = 0.0319435
estimated relative force accuracy = 9.61968e-05
using double precision FFTs
3d grid and FFT values/proc = 8000 3375
WARNING: Compute force/tally only called from pair style (../compute_force_tally.cpp:77)
WARNING: Compute force/tally only called from pair style (../compute_force_tally.cpp:77)
Neighbor list info ...
update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 14
ghost atom cutoff = 14
binsize = 7, bins = 6 6 6
2 neighbor lists, perpetual/occasional/extra = 1 1 0
(1) pair lj/cut/coul/long, perpetual
attributes: half, newton on
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
(2) compute group/group, occasional, copy from (1)
attributes: half, newton on
pair build: copy
stencil: none
bin: none
Per MPI rank memory allocation (min/avg/max) = 28.47 | 28.47 | 28.47 Mbytes
Step v_fpa v_for c_c1 c_fpa[1] c_one[1] c_fpa[2] c_one[2] c_fpa[3] c_one[3] v_ref v_all
0 22.7331 22.7331 22.7331 -17.068295 -17.068295 -8.8348335 -8.8348334 -12.141369 -12.141369 0 0
10 11.736901 11.736901 11.736901 -3.3897029 -3.3897029 9.1193856 9.1193856 -6.5651786 -6.5651786 0 0
20 5.6120339 5.6120339 5.6120339 -0.60046861 -0.60046861 -4.4481306 -4.4481306 3.3687528 3.3687528 0 0
30 17.29261 17.29261 17.29261 6.179302 6.179302 -10.593979 -10.593979 12.190906 12.190906 0 0
40 18.664433 18.664433 18.664433 5.4727782 5.4727782 -6.9329319 -6.9329319 16.442148 16.442148 0 0
50 12.130407 12.130407 12.130407 -1.0321196 -1.0321196 8.0035558 8.0035558 -9.0567428 -9.0567428 0 0
Loop time of 13.9507 on 1 procs for 50 steps with 4500 atoms
Performance: 0.619 ns/day, 38.752 hours/ns, 3.584 timesteps/s
32.0% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 12.594 | 12.594 | 12.594 | 0.0 | 90.27
Bond | 7.3e-05 | 7.3e-05 | 7.3e-05 | 0.0 | 0.00
Kspace | 0.56296 | 0.56296 | 0.56296 | 0.0 | 4.04
Neigh | 0.65858 | 0.65858 | 0.65858 | 0.0 | 4.72
Comm | 0.019093 | 0.019093 | 0.019093 | 0.0 | 0.14
Output | 0.055025 | 0.055025 | 0.055025 | 0.0 | 0.39
Modify | 0.057276 | 0.057276 | 0.057276 | 0.0 | 0.41
Other | | 0.004003 | | | 0.03
Nlocal: 4500 ave 4500 max 4500 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 21131 ave 21131 max 21131 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 2.60198e+06 ave 2.60198e+06 max 2.60198e+06 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 2601983
Ave neighs/atom = 578.218
Ave special neighs/atom = 2
Neighbor list builds = 4
Dangerous builds = 1
Total wall time: 0:00:15

View File

@ -0,0 +1,177 @@
LAMMPS (19 May 2017)
units real
atom_style full
read_data data.spce
orthogonal box = (0.02645 0.02645 0.02641) to (35.5328 35.5328 35.4736)
2 by 2 by 1 MPI processor grid
reading atoms ...
4500 atoms
scanning bonds ...
2 = max bonds/atom
scanning angles ...
1 = max angles/atom
reading bonds ...
3000 bonds
reading angles ...
1500 angles
2 = max # of 1-2 neighbors
1 = max # of 1-3 neighbors
1 = max # of 1-4 neighbors
2 = max # of special neighbors
pair_style lj/cut/coul/long 12.0 12.0
kspace_style pppm 1.0e-4
pair_coeff 1 1 0.15535 3.166
pair_coeff * 2 0.0000 0.0000
bond_style harmonic
angle_style harmonic
dihedral_style none
improper_style none
bond_coeff 1 1000.00 1.000
angle_coeff 1 100.0 109.47
special_bonds lj/coul 0.0 0.0 1.0
2 = max # of 1-2 neighbors
1 = max # of 1-3 neighbors
2 = max # of special neighbors
neighbor 2.0 bin
fix 1 all shake 0.0001 20 0 b 1 a 1
0 = # of size 2 clusters
0 = # of size 3 clusters
0 = # of size 4 clusters
1500 = # of frozen angles
fix 2 all nvt temp 300.0 300.0 100.0
# make certain that shake constraints are satisfied
run 0 post no
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.218482
grid = 15 15 15
stencil order = 5
estimated absolute RMS force accuracy = 0.0319435
estimated relative force accuracy = 9.61968e-05
using double precision FFTs
3d grid and FFT values/proc = 3380 960
Neighbor list info ...
update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 14
ghost atom cutoff = 14
binsize = 7, bins = 6 6 6
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair lj/cut/coul/long, perpetual
attributes: half, newton on
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
Per MPI rank memory allocation (min/avg/max) = 10.6 | 10.61 | 10.61 Mbytes
Step Temp E_pair E_mol TotEng Press
0 0 -16692.358 0 -16692.358 -1289.8319
Loop time of 4.5e-06 on 4 procs for 0 steps with 4500 atoms
group one molecule 1 2
6 atoms in group one
# the following section shows equivalences between using the force/tally compute and other computes and thermo keywords
# compute pairwise force between two molecules and everybody
compute fpa one group/group all pair yes kspace no boundary no
# tally pairwise force between two molecules and the all molecules
compute c1 one force/tally all
# tally the force of all with all (should be zero)
compute c2 all force/tally all
# collect per atom data. only reduce over the first group.
compute one one reduce sum c_c1[1] c_c1[2] c_c1[3]
compute red all reduce sum c_c2[1] c_c2[2] c_c2[3]
# determine magnitude of force
variable fpa equal sqrt(c_fpa[1]*c_fpa[1]+c_fpa[2]*c_fpa[2]+c_fpa[3]*c_fpa[3])
variable for equal sqrt(c_one[1]*c_one[1]+c_one[2]*c_one[2]+c_one[3]*c_one[3])
# round to 10**-10 absolute precision.
variable ref equal round(1e10*sqrt(c_red[1]*c_red[1]+c_red[2]*c_red[2]+c_red[3]*c_red[3]))*1e-10
variable all equal round(1e10*c_c2)*1e-10
velocity all create 300 432567 dist uniform
timestep 2.0
# v_fpa and v_for and c_c1, c_fpa[] and c_one[] should all each have the same value. v_ref and c_c2 should be zero
thermo_style custom step v_fpa v_for c_c1 c_fpa[1] c_one[1] c_fpa[2] c_one[2] c_fpa[3] c_one[3] v_ref v_all
thermo 10
run 50
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.218482
grid = 15 15 15
stencil order = 5
estimated absolute RMS force accuracy = 0.0319435
estimated relative force accuracy = 9.61968e-05
using double precision FFTs
3d grid and FFT values/proc = 3380 960
WARNING: Compute force/tally only called from pair style (../compute_force_tally.cpp:77)
WARNING: Compute force/tally only called from pair style (../compute_force_tally.cpp:77)
Neighbor list info ...
update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 14
ghost atom cutoff = 14
binsize = 7, bins = 6 6 6
2 neighbor lists, perpetual/occasional/extra = 1 1 0
(1) pair lj/cut/coul/long, perpetual
attributes: half, newton on
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
(2) compute group/group, occasional, copy from (1)
attributes: half, newton on
pair build: copy
stencil: none
bin: none
Per MPI rank memory allocation (min/avg/max) = 11.58 | 11.59 | 11.6 Mbytes
Step v_fpa v_for c_c1 c_fpa[1] c_one[1] c_fpa[2] c_one[2] c_fpa[3] c_one[3] v_ref v_all
0 22.7331 22.7331 22.7331 -17.068295 -17.068295 -8.8348335 -8.8348334 -12.141369 -12.141369 0 0
10 11.736901 11.736901 11.736901 -3.3897029 -3.3897029 9.1193856 9.1193856 -6.5651786 -6.5651786 0 0
20 5.6120339 5.6120339 5.6120339 -0.60046861 -0.60046861 -4.4481306 -4.4481306 3.3687528 3.3687528 0 0
30 17.29261 17.29261 17.29261 6.179302 6.179302 -10.593979 -10.593979 12.190906 12.190906 0 0
40 18.664433 18.664433 18.664433 5.4727782 5.4727782 -6.9329319 -6.9329319 16.442148 16.442148 0 0
50 12.130407 12.130407 12.130407 -1.0321196 -1.0321196 8.0035558 8.0035558 -9.0567428 -9.0567428 0 0
Loop time of 4.31614 on 4 procs for 50 steps with 4500 atoms
Performance: 2.002 ns/day, 11.989 hours/ns, 11.584 timesteps/s
31.6% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 3.5075 | 3.6114 | 3.7489 | 4.7 | 83.67
Bond | 8.6e-05 | 0.00010525 | 0.000141 | 0.0 | 0.00
Kspace | 0.2581 | 0.39489 | 0.49723 | 14.2 | 9.15
Neigh | 0.19826 | 0.19888 | 0.19918 | 0.1 | 4.61
Comm | 0.034639 | 0.037137 | 0.038938 | 0.9 | 0.86
Output | 0.025465 | 0.025997 | 0.027558 | 0.6 | 0.60
Modify | 0.044022 | 0.044175 | 0.044407 | 0.1 | 1.02
Other | | 0.003593 | | | 0.08
Nlocal: 1125 ave 1148 max 1097 min
Histogram: 1 0 0 1 0 0 0 0 1 1
Nghost: 12212.5 ave 12269 max 12162 min
Histogram: 1 0 0 1 0 1 0 0 0 1
Neighs: 650496 ave 675112 max 631353 min
Histogram: 1 0 0 1 1 0 0 0 0 1
Total # of neighbors = 2601983
Ave neighs/atom = 578.218
Ave special neighs/atom = 2
Neighbor list builds = 4
Dangerous builds = 1
Total wall time: 0:00:04

View File

@ -1,5 +1,4 @@
LAMMPS (21 Aug 2015-ICMS)
using 1 OpenMP thread(s) per MPI task
LAMMPS (19 May 2017)
units real
atom_style full
@ -50,6 +49,35 @@ fix 1 all shake 0.0001 20 0 b 1 a 1
1500 = # of frozen angles
fix 2 all nvt temp 300.0 300.0 100.0
# make certain that shake constraints are satisfied
run 0 post no
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.218482
grid = 15 15 15
stencil order = 5
estimated absolute RMS force accuracy = 0.0319435
estimated relative force accuracy = 9.61968e-05
using double precision FFTs
3d grid and FFT values/proc = 8000 3375
Neighbor list info ...
update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 14
ghost atom cutoff = 14
binsize = 7, bins = 6 6 6
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair lj/cut/coul/long, perpetual
attributes: half, newton on
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
Per MPI rank memory allocation (min/avg/max) = 26.54 | 26.54 | 26.54 Mbytes
Step Temp E_pair E_mol TotEng Press
0 0 -16692.358 0 -16692.358 -1289.8319
Loop time of 1e-06 on 1 procs for 0 steps with 4500 atoms
group oxy type 1
1500 atoms in group oxy
group hyd type 2
@ -88,6 +116,7 @@ thermo 10
run 50
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.218482
grid = 15 15 15
stencil order = 5
@ -95,38 +124,49 @@ PPPM initialization ...
estimated relative force accuracy = 9.61968e-05
using double precision FFTs
3d grid and FFT values/proc = 8000 3375
WARNING: Compute pe/tally only called from pair style (../compute_pe_tally.cpp:75)
WARNING: Compute pe/tally only called from pair style (../compute_pe_tally.cpp:75)
WARNING: Compute pe/tally only called from pair style (../compute_pe_tally.cpp:77)
WARNING: Compute pe/tally only called from pair style (../compute_pe_tally.cpp:77)
Neighbor list info ...
2 neighbor list requests
update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 14
ghost atom cutoff = 14
binsize = 7 -> bins = 6 6 6
Memory usage per processor = 17.381 Mbytes
Step epa epa E_vdwl vdwl E_coul coul eref pe c2 pair
0 -516632.19 -516632.19 3169.9382 3169.9382 46213.889 46213.889 49383.827 49383.827 49383.827 49383.827
10 -517027.36 -517027.36 3099.1322 3099.1322 45891.84 45891.84 48990.972 48990.972 48990.972 48990.972
20 -516828.06 -516828.06 3101.4321 3101.4321 45884.14 45884.14 48985.572 48985.572 48985.572 48985.572
30 -517032.1 -517032.1 3198.5939 3198.5939 45793.571 45793.571 48992.165 48992.165 48992.165 48992.165
40 -517095.56 -517095.56 3244.0797 3244.0797 45715.265 45715.265 48959.345 48959.345 48959.345 48959.345
50 -517273.54 -517273.54 3274.9142 3274.9142 45665.997 45665.997 48940.911 48940.911 48940.911 48940.911
binsize = 7, bins = 6 6 6
2 neighbor lists, perpetual/occasional/extra = 1 1 0
(1) pair lj/cut/coul/long, perpetual
attributes: half, newton on
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
(2) compute group/group, occasional, copy from (1)
attributes: half, newton on
pair build: copy
stencil: none
bin: none
Per MPI rank memory allocation (min/avg/max) = 29.08 | 29.08 | 29.08 Mbytes
Step c_epa v_epa E_vdwl v_vdwl E_coul v_coul v_eref v_pe c_c2 v_pair
0 -516634.27 -516634.27 3169.9427 3169.9427 46212.482 46212.482 49382.425 49382.425 49382.425 49382.425
10 -517027.35 -517027.35 3099.1374 3099.1374 45891.866 45891.866 48991.003 48991.003 48991.003 48991.003
20 -516828.05 -516828.05 3101.4373 3101.4373 45884.156 45884.156 48985.594 48985.594 48985.594 48985.594
30 -517032.07 -517032.07 3198.5951 3198.5951 45793.595 45793.595 48992.191 48992.191 48992.191 48992.191
40 -517095.54 -517095.54 3244.0771 3244.0771 45715.292 45715.292 48959.369 48959.369 48959.369 48959.369
50 -517273.5 -517273.5 3274.9097 3274.9097 45666.025 45666.025 48940.935 48940.935 48940.935 48940.935
Loop time of 15.3339 on 1 procs for 50 steps with 4500 atoms
Loop time of 4.31105 on 1 procs for 50 steps with 4500 atoms
100.1% CPU use with 1 MPI tasks x 1 OpenMP threads
Performance: 2.004 ns/day 11.975 hours/ns 11.598 timesteps/s
Performance: 0.563 ns/day, 42.594 hours/ns, 3.261 timesteps/s
32.0% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timings breakdown:
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 3.5071 | 3.5071 | 3.5071 | 0.0 | 81.35
Bond | 0.00025034 | 0.00025034 | 0.00025034 | 0.0 | 0.01
Kspace | 0.19991 | 0.19991 | 0.19991 | 0.0 | 4.64
Neigh | 0.31459 | 0.31459 | 0.31459 | 0.0 | 7.30
Comm | 0.010338 | 0.010338 | 0.010338 | 0.0 | 0.24
Output | 0.24722 | 0.24722 | 0.24722 | 0.0 | 5.73
Modify | 0.029466 | 0.029466 | 0.029466 | 0.0 | 0.68
Other | | 0.002182 | | | 0.05
Pair | 13.432 | 13.432 | 13.432 | 0.0 | 87.60
Bond | 0.000365 | 0.000365 | 0.000365 | 0.0 | 0.00
Kspace | 0.581 | 0.581 | 0.581 | 0.0 | 3.79
Neigh | 0.66081 | 0.66081 | 0.66081 | 0.0 | 4.31
Comm | 0.019908 | 0.019908 | 0.019908 | 0.0 | 0.13
Output | 0.57731 | 0.57731 | 0.57731 | 0.0 | 3.76
Modify | 0.058515 | 0.058515 | 0.058515 | 0.0 | 0.38
Other | | 0.003889 | | | 0.03
Nlocal: 4500 ave 4500 max 4500 min
Histogram: 1 0 0 0 0 0 0 0 0 0
@ -135,10 +175,10 @@ Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 2.60198e+06 ave 2.60198e+06 max 2.60198e+06 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 2601984
Ave neighs/atom = 578.219
Total # of neighbors = 2601983
Ave neighs/atom = 578.218
Ave special neighs/atom = 2
Neighbor list builds = 4
Dangerous builds = 1
Total wall time: 0:00:04
Total wall time: 0:00:16

View File

@ -1,5 +1,4 @@
LAMMPS (21 Aug 2015-ICMS)
using 1 OpenMP thread(s) per MPI task
LAMMPS (19 May 2017)
units real
atom_style full
@ -50,6 +49,35 @@ fix 1 all shake 0.0001 20 0 b 1 a 1
1500 = # of frozen angles
fix 2 all nvt temp 300.0 300.0 100.0
# make certain that shake constraints are satisfied
run 0 post no
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.218482
grid = 15 15 15
stencil order = 5
estimated absolute RMS force accuracy = 0.0319435
estimated relative force accuracy = 9.61968e-05
using double precision FFTs
3d grid and FFT values/proc = 3380 960
Neighbor list info ...
update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 14
ghost atom cutoff = 14
binsize = 7, bins = 6 6 6
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair lj/cut/coul/long, perpetual
attributes: half, newton on
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
Per MPI rank memory allocation (min/avg/max) = 10.6 | 10.61 | 10.61 Mbytes
Step Temp E_pair E_mol TotEng Press
0 0 -16692.358 0 -16692.358 -1289.8319
Loop time of 1.75e-06 on 4 procs for 0 steps with 4500 atoms
group oxy type 1
1500 atoms in group oxy
group hyd type 2
@ -88,6 +116,7 @@ thermo 10
run 50
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.218482
grid = 15 15 15
stencil order = 5
@ -95,38 +124,49 @@ PPPM initialization ...
estimated relative force accuracy = 9.61968e-05
using double precision FFTs
3d grid and FFT values/proc = 3380 960
WARNING: Compute pe/tally only called from pair style (../compute_pe_tally.cpp:75)
WARNING: Compute pe/tally only called from pair style (../compute_pe_tally.cpp:75)
WARNING: Compute pe/tally only called from pair style (../compute_pe_tally.cpp:77)
WARNING: Compute pe/tally only called from pair style (../compute_pe_tally.cpp:77)
Neighbor list info ...
2 neighbor list requests
update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 14
ghost atom cutoff = 14
binsize = 7 -> bins = 6 6 6
Memory usage per processor = 8.44413 Mbytes
Step epa epa E_vdwl vdwl E_coul coul eref pe c2 pair
0 -516632.19 -516632.19 3169.9382 3169.9382 46213.889 46213.889 49383.827 49383.827 49383.827 49383.827
10 -517027.36 -517027.36 3099.1322 3099.1322 45891.84 45891.84 48990.972 48990.972 48990.972 48990.972
20 -516828.06 -516828.06 3101.4321 3101.4321 45884.14 45884.14 48985.572 48985.572 48985.572 48985.572
30 -517032.1 -517032.1 3198.5939 3198.5939 45793.571 45793.571 48992.165 48992.165 48992.165 48992.165
40 -517095.56 -517095.56 3244.0797 3244.0797 45715.265 45715.265 48959.345 48959.345 48959.345 48959.345
50 -517273.54 -517273.54 3274.9142 3274.9142 45665.997 45665.997 48940.911 48940.911 48940.911 48940.911
binsize = 7, bins = 6 6 6
2 neighbor lists, perpetual/occasional/extra = 1 1 0
(1) pair lj/cut/coul/long, perpetual
attributes: half, newton on
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
(2) compute group/group, occasional, copy from (1)
attributes: half, newton on
pair build: copy
stencil: none
bin: none
Per MPI rank memory allocation (min/avg/max) = 11.86 | 11.87 | 11.88 Mbytes
Step c_epa v_epa E_vdwl v_vdwl E_coul v_coul v_eref v_pe c_c2 v_pair
0 -516634.27 -516634.27 3169.9427 3169.9427 46212.482 46212.482 49382.425 49382.425 49382.425 49382.425
10 -517027.35 -517027.35 3099.1374 3099.1374 45891.866 45891.866 48991.003 48991.003 48991.003 48991.003
20 -516828.05 -516828.05 3101.4373 3101.4373 45884.156 45884.156 48985.594 48985.594 48985.594 48985.594
30 -517032.07 -517032.07 3198.5951 3198.5951 45793.595 45793.595 48992.191 48992.191 48992.191 48992.191
40 -517095.54 -517095.54 3244.0771 3244.0771 45715.292 45715.292 48959.369 48959.369 48959.369 48959.369
50 -517273.5 -517273.5 3274.9097 3274.9097 45666.025 45666.025 48940.935 48940.935 48940.935 48940.935
Loop time of 2.32344 on 4 procs for 50 steps with 4500 atoms
Loop time of 1.20533 on 4 procs for 50 steps with 4500 atoms
100.0% CPU use with 4 MPI tasks x 1 OpenMP threads
Performance: 7.168 ns/day 3.348 hours/ns 41.482 timesteps/s
Performance: 3.719 ns/day, 6.454 hours/ns, 21.520 timesteps/s
64.0% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timings breakdown:
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.87053 | 0.90325 | 0.94364 | 2.8 | 74.94
Bond | 0.00015402 | 0.00018191 | 0.00020909 | 0.2 | 0.02
Kspace | 0.061657 | 0.10164 | 0.13394 | 8.4 | 8.43
Neigh | 0.088292 | 0.088332 | 0.088373 | 0.0 | 7.33
Comm | 0.017319 | 0.017806 | 0.018291 | 0.4 | 1.48
Output | 0.07067 | 0.070706 | 0.070813 | 0.0 | 5.87
Modify | 0.021655 | 0.021694 | 0.02173 | 0.0 | 1.80
Other | | 0.001719 | | | 0.14
Pair | 1.5561 | 1.8883 | 2.0327 | 14.1 | 81.27
Bond | 8.8e-05 | 0.000116 | 0.000135 | 0.0 | 0.00
Kspace | 0.094718 | 0.1933 | 0.26055 | 14.1 | 8.32
Neigh | 0.085117 | 0.1073 | 0.1147 | 3.9 | 4.62
Comm | 0.014156 | 0.017907 | 0.020005 | 1.8 | 0.77
Output | 0.071634 | 0.090599 | 0.097665 | 3.6 | 3.90
Modify | 0.019447 | 0.024101 | 0.026277 | 1.8 | 1.04
Other | | 0.001804 | | | 0.08
Nlocal: 1125 ave 1148 max 1097 min
Histogram: 1 0 0 1 0 0 0 0 1 1
@ -135,10 +175,10 @@ Histogram: 1 0 0 1 0 1 0 0 0 1
Neighs: 650496 ave 675112 max 631353 min
Histogram: 1 0 0 1 1 0 0 0 0 1
Total # of neighbors = 2601984
Ave neighs/atom = 578.219
Total # of neighbors = 2601983
Ave neighs/atom = 578.218
Ave special neighs/atom = 2
Neighbor list builds = 4
Dangerous builds = 1
Total wall time: 0:00:01
Total wall time: 0:00:02

View File

@ -1,5 +1,4 @@
LAMMPS (21 Aug 2015-ICMS)
using 1 OpenMP thread(s) per MPI task
LAMMPS (19 May 2017)
units real
atom_style full
@ -50,6 +49,35 @@ fix 1 all shake 0.0001 20 0 b 1 a 1
1500 = # of frozen angles
fix 2 all nvt temp 300.0 300.0 100.0
# make certain that shake constraints are satisfied
run 0 post no
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.218482
grid = 15 15 15
stencil order = 5
estimated absolute RMS force accuracy = 0.0319435
estimated relative force accuracy = 9.61968e-05
using double precision FFTs
3d grid and FFT values/proc = 8000 3375
Neighbor list info ...
update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 14
ghost atom cutoff = 14
binsize = 7, bins = 6 6 6
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair lj/cut/coul/long, perpetual
attributes: half, newton on
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
Per MPI rank memory allocation (min/avg/max) = 26.54 | 26.54 | 26.54 Mbytes
Step Temp E_pair E_mol TotEng Press
0 0 -16692.358 0 -16692.358 -1289.8319
Loop time of 2e-06 on 1 procs for 0 steps with 4500 atoms
group one molecule 1 2
6 atoms in group one
@ -79,6 +107,7 @@ thermo 10
run 50
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.218482
grid = 15 15 15
stencil order = 5
@ -86,38 +115,32 @@ PPPM initialization ...
estimated relative force accuracy = 9.61968e-05
using double precision FFTs
3d grid and FFT values/proc = 8000 3375
WARNING: Compute stress/tally only called from pair style (../compute_stress_tally.cpp:75)
WARNING: Compute stress/tally only called from pair style (../compute_stress_tally.cpp:75)
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 10 steps, check yes
master list distance cutoff = 14
ghost atom cutoff = 14
binsize = 7 -> bins = 6 6 6
Memory usage per processor = 24.631 Mbytes
Step press spa press one ref
0 26497.547 26497.547 26497.547 -2357033.6 -2357033.6
10 23665.073 23665.073 23665.073 -2096057.3 -2096057.3
20 23338.149 23338.149 23338.149 -2034283 -2034283
30 25946.4 25946.4 25946.4 -2002817 -2002817
40 27238.349 27238.349 27238.349 -2155411.5 -2155411.5
50 27783.092 27783.092 27783.092 -1862190.3 -1862190.3
WARNING: Compute stress/tally only called from pair style (../compute_stress_tally.cpp:79)
WARNING: Compute stress/tally only called from pair style (../compute_stress_tally.cpp:79)
Per MPI rank memory allocation (min/avg/max) = 35.9 | 35.9 | 35.9 Mbytes
Step c_press v_spa v_press v_one v_ref
0 26496.811 26496.811 26496.811 -2356992.7 -2356992.7
10 23665.129 23665.129 23665.129 -2096059 -2096059
20 23338.197 23338.197 23338.197 -2034284.1 -2034284.1
30 25946.434 25946.434 25946.434 -2002815.3 -2002815.3
40 27238.374 27238.374 27238.374 -2155408.7 -2155408.7
50 27783.107 27783.107 27783.107 -1862191.5 -1862191.5
Loop time of 14.2089 on 1 procs for 50 steps with 4500 atoms
Loop time of 4.15609 on 1 procs for 50 steps with 4500 atoms
100.1% CPU use with 1 MPI tasks x 1 OpenMP threads
Performance: 2.079 ns/day 11.545 hours/ns 12.031 timesteps/s
Performance: 0.608 ns/day, 39.469 hours/ns, 3.519 timesteps/s
32.0% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timings breakdown:
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 3.6444 | 3.6444 | 3.6444 | 0.0 | 87.69
Bond | 0.0016105 | 0.0016105 | 0.0016105 | 0.0 | 0.04
Kspace | 0.22345 | 0.22345 | 0.22345 | 0.0 | 5.38
Neigh | 0.23588 | 0.23588 | 0.23588 | 0.0 | 5.68
Comm | 0.010035 | 0.010035 | 0.010035 | 0.0 | 0.24
Output | 0.0084085 | 0.0084085 | 0.0084085 | 0.0 | 0.20
Modify | 0.029978 | 0.029978 | 0.029978 | 0.0 | 0.72
Other | | 0.002368 | | | 0.06
Pair | 12.983 | 12.983 | 12.983 | 0.0 | 91.37
Bond | 0.002788 | 0.002788 | 0.002788 | 0.0 | 0.02
Kspace | 0.62745 | 0.62745 | 0.62745 | 0.0 | 4.42
Neigh | 0.49839 | 0.49839 | 0.49839 | 0.0 | 3.51
Comm | 0.018597 | 0.018597 | 0.018597 | 0.0 | 0.13
Output | 0.015852 | 0.015852 | 0.015852 | 0.0 | 0.11
Modify | 0.058415 | 0.058415 | 0.058415 | 0.0 | 0.41
Other | | 0.004126 | | | 0.03
Nlocal: 4500 ave 4500 max 4500 min
Histogram: 1 0 0 0 0 0 0 0 0 0
@ -132,4 +155,4 @@ Ave special neighs/atom = 2
Neighbor list builds = 3
Dangerous builds = 0
Total wall time: 0:00:04
Total wall time: 0:00:15

Some files were not shown because too many files have changed in this diff Show More