Compare commits
271 Commits
patch_26Se
...
patch_5Oct
| Author | SHA1 | Date | |
|---|---|---|---|
| 02bfa898ee | |||
| 030df745bc | |||
| 6a97211932 | |||
| c46be7db62 | |||
| 4381db846b | |||
| e2caf5c105 | |||
| 11c2892e54 | |||
| 91be47a0d0 | |||
| ab92529b19 | |||
| e079362776 | |||
| c3ff8812b3 | |||
| 03766dbda7 | |||
| 6e719f2d94 | |||
| 45d2cc2895 | |||
| 690f91300b | |||
| 3b94627dfe | |||
| c2e11dffa2 | |||
| 1985db4fb1 | |||
| a3e05a2bac | |||
| 035279de87 | |||
| e2c7acabac | |||
| 91edee2530 | |||
| b9d0f96a19 | |||
| d45e333f7c | |||
| 5bb85b482d | |||
| d4b074d85b | |||
| 6d200061ca | |||
| cb7bd2799e | |||
| 4337f2c240 | |||
| 0eeb240730 | |||
| c88acc9613 | |||
| f7b5afee82 | |||
| a315dcda9b | |||
| f6c77c3aba | |||
| 5b2becd09b | |||
| 78a22be93f | |||
| 596b260f5d | |||
| 446e7e7369 | |||
| 189825489c | |||
| bdd0f665ca | |||
| 6897cc803f | |||
| f511c177c6 | |||
| 1ec3987b31 | |||
| 8c1d0031c9 | |||
| 45e50b46c3 | |||
| 829d11e88b | |||
| 1adf3858a9 | |||
| 96f31d6dad | |||
| 35705217f4 | |||
| 9a2f738673 | |||
| f82e0c53b6 | |||
| 1fbddc97d1 | |||
| 1cfa49f03d | |||
| 3486b7d503 | |||
| 6fedf8d899 | |||
| 56b0856e2f | |||
| f9c2049724 | |||
| e1c6b6b7d1 | |||
| 3333e4b475 | |||
| a3a3af691c | |||
| f9677e6d7b | |||
| 2ae966c26f | |||
| d1b8ffd924 | |||
| b66039b8bb | |||
| 995ecea5ed | |||
| 43633180eb | |||
| b68e954761 | |||
| 2b88050a1f | |||
| 063307c71c | |||
| f280bd32a6 | |||
| 53eac4431d | |||
| a3277117e2 | |||
| 67d4c07689 | |||
| 877a504933 | |||
| 8a951f9d79 | |||
| 69a8842ecb | |||
| 2af5c75f42 | |||
| 158599fca2 | |||
| 7732548b3c | |||
| 2c5f6e1a99 | |||
| d0aa13b543 | |||
| c31b026797 | |||
| 47b52ed2dd | |||
| fb64ae612f | |||
| c87f9aeb9f | |||
| 5769c10189 | |||
| 7453a4f55f | |||
| 50d59454d2 | |||
| 24ff008a0f | |||
| da480bd4d4 | |||
| 8a6e5ed3ce | |||
| 756cac0f60 | |||
| 8662662afe | |||
| f718c54430 | |||
| 08f0bf9025 | |||
| 2a30b76277 | |||
| 31e41707e0 | |||
| 32cec47ffb | |||
| c22df8db57 | |||
| d0bbf3fb97 | |||
| 32872a7b35 | |||
| 6dd4480482 | |||
| 26e16ed968 | |||
| ca5ad04b01 | |||
| 0329aaaf72 | |||
| fc434b36b3 | |||
| a1364adce1 | |||
| c382759406 | |||
| e7fb82a645 | |||
| 03c5ce601b | |||
| d7c6f57fe4 | |||
| 0bcd90195d | |||
| d3406df6a0 | |||
| 72c5792230 | |||
| a4c8c9b1f9 | |||
| f1183cb97c | |||
| 71f7dde12a | |||
| f8c8434c44 | |||
| 3eee584956 | |||
| 26b9b955a9 | |||
| fe73c3e4e3 | |||
| 8944d48bd1 | |||
| f86bd1fceb | |||
| f1d3637b03 | |||
| ce3676677e | |||
| f81f0da734 | |||
| ed9f13663b | |||
| 4f941abdfd | |||
| af4a42345f | |||
| df0ed58bbd | |||
| 8b80d0cf9a | |||
| 558303072d | |||
| 900c83960e | |||
| 484122b8b6 | |||
| ed532358ad | |||
| 5336ec0735 | |||
| 7d77aea42d | |||
| 6fd60f50ad | |||
| 54b2f3c970 | |||
| e14eab610e | |||
| 2049fa7380 | |||
| cf33c0e7fb | |||
| b23e9f0d54 | |||
| 40b68820d9 | |||
| 90e22a7909 | |||
| b29782d5ab | |||
| 0f6d21acda | |||
| 206f4e18a6 | |||
| b3fa20718f | |||
| 9d0e853925 | |||
| babaa839b0 | |||
| 9f3118341a | |||
| 342421babb | |||
| 423052134b | |||
| fd5363fb6e | |||
| d913f5e094 | |||
| a8d7ca367d | |||
| 99d5bf89bc | |||
| 1dd7a13d82 | |||
| b190abea39 | |||
| 06b7d56e16 | |||
| ee4a1f0452 | |||
| d3694613fd | |||
| bf0c18a0f2 | |||
| 39be4185c4 | |||
| 1ad033ec0c | |||
| f67a9722ea | |||
| 06bac161ae | |||
| 5277242cfe | |||
| 83f139642e | |||
| 5568320bd6 | |||
| 74d0bc4df6 | |||
| 56945a56aa | |||
| f9c106897f | |||
| 626ae8d85c | |||
| 4282107e5d | |||
| 1e11d2d923 | |||
| c21cf0364f | |||
| 688b1f1efc | |||
| fc80281fd9 | |||
| 519a3ee242 | |||
| a4914bc9d8 | |||
| b4785cd038 | |||
| 0f7873c0b8 | |||
| 3769f9077f | |||
| 159d722cc2 | |||
| f94bbc0de0 | |||
| fab2f01a58 | |||
| ae458497bf | |||
| bcb2e6dd38 | |||
| 93c6c26b83 | |||
| eac7217720 | |||
| 083ff54c0c | |||
| e3d0a32272 | |||
| 93401a83c6 | |||
| 82859c4e25 | |||
| 8f6439843d | |||
| 9d8027c900 | |||
| 10edfa297b | |||
| 76acb8caf1 | |||
| ba444a4c6b | |||
| dbaaf4dbbd | |||
| 958e3e6a80 | |||
| 2993aec312 | |||
| 236241b100 | |||
| a62bae7d33 | |||
| 57b24b5668 | |||
| fc4e63130c | |||
| 0ec104088f | |||
| 4f49acf903 | |||
| 5714890627 | |||
| 18d05e04a2 | |||
| 90e6032f97 | |||
| 646d5bb1b9 | |||
| 5348c1c70f | |||
| 56628fe2b6 | |||
| 8a7fecbd91 | |||
| cc4b2dd6ed | |||
| 3366136493 | |||
| b2470fd80d | |||
| 484e726c78 | |||
| 67958a8bfa | |||
| bfb01b84e6 | |||
| e96ac8eb59 | |||
| 29d04c1fbb | |||
| a411023a75 | |||
| 647ffab74f | |||
| 662335db13 | |||
| 1e1f68c30d | |||
| 7646321bfb | |||
| 7bf1d9b40f | |||
| d007faca51 | |||
| 89fc866ba7 | |||
| 74b1caf2e6 | |||
| 243137d552 | |||
| 40fd97bd4c | |||
| 8492212c4b | |||
| 1976314f40 | |||
| 17c1d3a941 | |||
| fec59ee3b9 | |||
| 33a98d79fe | |||
| 0902b600fb | |||
| 7f20afe122 | |||
| 7e0dc7a74d | |||
| b954283ec2 | |||
| ecc136b6dc | |||
| 4a536d71eb | |||
| 460bc14822 | |||
| bb40f63a34 | |||
| c6699e19e6 | |||
| 2574891160 | |||
| 332d6821ca | |||
| b20108bddb | |||
| 8d38db07c7 | |||
| 4114bafc28 | |||
| 23a48916d7 | |||
| 34b34d8410 | |||
| a5d38c0875 | |||
| eb273ab9ea | |||
| 3cf6715d40 | |||
| 0b0db201d1 | |||
| f76f2c881b | |||
| 7d08d9991e | |||
| 85cafde77c | |||
| db734c3003 | |||
| cc77679851 | |||
| b8ae885de8 | |||
| 66b4c9b847 | |||
| 85f58624a7 | |||
| fc6270e590 | |||
| f784f07b87 |
49
doc/README
49
doc/README
@ -1,10 +1,46 @@
|
||||
Generation of LAMMPS Documentation
|
||||
LAMMPS Documentation
|
||||
|
||||
Depending on how you obtained LAMMPS, this directory has 2 or 3
|
||||
sub-directories and optionally 2 PDF files:
|
||||
|
||||
src content files for LAMMPS documentation
|
||||
html HTML version of the LAMMPS manual (see html/Manual.html)
|
||||
tools tools and settings for building the documentation
|
||||
Manual.pdf large PDF version of entire manual
|
||||
Developer.pdf small PDF with info about how LAMMPS is structured
|
||||
|
||||
If you downloaded LAMMPS as a tarball from the web site, all these
|
||||
directories and files should be included.
|
||||
|
||||
If you downloaded LAMMPS from the public SVN or Git repositories, then
|
||||
the HTML and PDF files are not included. Instead you need to create
|
||||
them, in one of three ways:
|
||||
|
||||
(a) You can "fetch" the current HTML and PDF files from the LAMMPS web
|
||||
site. Just type "make fetch". This should create a html_www dir and
|
||||
Manual_www.pdf/Developer_www.pdf files. Note that if new LAMMPS
|
||||
features have been added more recently than the date of your version,
|
||||
the fetched documentation will include those changes (but your source
|
||||
code will not, unless you update your local repository).
|
||||
|
||||
(b) You can build the HTML and PDF files yourself, by typing "make
|
||||
html" followed by "make pdf". Note that the PDF make requires the
|
||||
HTML files already exist. This requires various tools including
|
||||
Sphinx, which the build process will attempt to download and install
|
||||
on your system, if not already available. See more details below.
|
||||
|
||||
(c) You can genererate an older, simpler, less-fancy style of HTML
|
||||
documentation by typing "make old". This will create an "old"
|
||||
directory. This can be useful if (b) does not work on your box for
|
||||
some reason, or you want to quickly view the HTML version of a doc
|
||||
page you have created or edited yourself within the src directory.
|
||||
E.g. if you are planning to submit a new feature to LAMMPS.
|
||||
|
||||
----------------
|
||||
|
||||
The generation of all documentation is managed by the Makefile in this
|
||||
dir.
|
||||
|
||||
----------------
|
||||
|
||||
Options:
|
||||
|
||||
make html # generate HTML in html dir using Sphinx
|
||||
@ -51,3 +87,10 @@ Once Python 3 is installed, open a Terminal and type
|
||||
pip3 install virtualenv
|
||||
|
||||
This will install virtualenv from the Python Package Index.
|
||||
|
||||
----------------
|
||||
|
||||
Installing prerequisites for PDF build
|
||||
|
||||
|
||||
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
<!-- HTML_ONLY -->
|
||||
<HEAD>
|
||||
<TITLE>LAMMPS Users Manual</TITLE>
|
||||
<META NAME="docnumber" CONTENT="26 Sep 2016 version">
|
||||
<META NAME="docnumber" CONTENT="5 Oct 2016 version">
|
||||
<META NAME="author" CONTENT="http://lammps.sandia.gov - Sandia National Laboratories">
|
||||
<META NAME="copyright" CONTENT="Copyright (2003) Sandia Corporation. This software and manual is distributed under the GNU General Public License.">
|
||||
</HEAD>
|
||||
@ -21,7 +21,7 @@
|
||||
<H1></H1>
|
||||
|
||||
LAMMPS Documentation :c,h3
|
||||
26 Sep 2016 version :c,h4
|
||||
5 Oct 2016 version :c,h4
|
||||
|
||||
Version info: :h4
|
||||
|
||||
|
||||
Binary file not shown.
@ -896,7 +896,7 @@ KOKKOS, o = USER-OMP, t = OPT.
|
||||
"lubricate/poly (o)"_pair_lubricate.html,
|
||||
"lubricateU"_pair_lubricateU.html,
|
||||
"lubricateU/poly"_pair_lubricateU.html,
|
||||
"meam (o)"_pair_meam.html,
|
||||
"meam"_pair_meam.html,
|
||||
"mie/cut (o)"_pair_mie.html,
|
||||
"morse (got)"_pair_morse.html,
|
||||
"nb3b/harmonic (o)"_pair_nb3b_harmonic.html,
|
||||
@ -956,7 +956,7 @@ package"_Section_start.html#start_3.
|
||||
"lj/sdk/coul/long (go)"_pair_sdk.html,
|
||||
"lj/sdk/coul/msm (o)"_pair_sdk.html,
|
||||
"lj/sf (o)"_pair_lj_sf.html,
|
||||
"meam/spline"_pair_meam_spline.html,
|
||||
"meam/spline (o)"_pair_meam_spline.html,
|
||||
"meam/sw/spline"_pair_meam_sw_spline.html,
|
||||
"mgpt"_pair_mgpt.html,
|
||||
"morse/smooth/linear"_pair_morse.html,
|
||||
|
||||
@ -2123,7 +2123,7 @@ thermo_style custom step temp press v_pxy v_pxz v_pyz v_v11 v_v22 v_v33
|
||||
run 100000
|
||||
variable v equal (v_v11+v_v22+v_v33)/3.0
|
||||
variable ndens equal count(all)/vol
|
||||
print "average viscosity: $v \[Pa.s/] @ $T K, $\{ndens\} /A^3" :pre
|
||||
print "average viscosity: $v \[Pa.s\] @ $T K, $\{ndens\} /A^3" :pre
|
||||
|
||||
The fifth method is related to the above Green-Kubo method,
|
||||
but uses the Einstein formulation, analogous to the Einstein
|
||||
|
||||
@ -845,7 +845,7 @@ PYTHON package :link(PYTHON),h5
|
||||
Contents: A "python"_python.html command which allow you to execute
|
||||
Python code from a LAMMPS input script. The code can be in a separate
|
||||
file or embedded in the input script itself. See "Section
|
||||
11.2"_Section_python.html#py-2 for an overview of using Python from
|
||||
11.2"_Section_python.html#py_2 for an overview of using Python from
|
||||
LAMMPS and for other ways to use LAMMPS and Python together.
|
||||
|
||||
Building with the PYTHON package assumes you have a Python shared
|
||||
|
||||
@ -10,7 +10,7 @@ balance command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
balance thresh style args ... keyword value ... :pre
|
||||
balance thresh style args ... keyword args ... :pre
|
||||
|
||||
thresh = imbalance threshhold that must be exceeded to perform a re-balance :ulb,l
|
||||
one style/arg pair can be used (or multiple for {x},{y},{z}) :l
|
||||
@ -32,9 +32,23 @@ style = {x} or {y} or {z} or {shift} or {rcb} :l
|
||||
Niter = # of times to iterate within each dimension of dimstr sequence
|
||||
stopthresh = stop balancing when this imbalance threshhold is reached
|
||||
{rcb} args = none :pre
|
||||
zero or more keyword/value pairs may be appended :l
|
||||
keyword = {out} :l
|
||||
{out} value = filename
|
||||
zero or more keyword/arg pairs may be appended :l
|
||||
keyword = {weight} or {out} :l
|
||||
{weight} style args = use weighted particle counts for the balancing
|
||||
{style} = {group} or {neigh} or {time} or {var} or {store}
|
||||
{group} args = Ngroup group1 weight1 group2 weight2 ...
|
||||
Ngroup = number of groups with assigned weights
|
||||
group1, group2, ... = group IDs
|
||||
weight1, weight2, ... = corresponding weight factors
|
||||
{neigh} factor = compute weight based on number of neighbors
|
||||
factor = scaling factor (> 0)
|
||||
{time} factor = compute weight based on time spend computing
|
||||
factor = scaling factor (> 0)
|
||||
{var} name = take weight from atom-style variable
|
||||
name = name of the atom-style variable
|
||||
{store} name = store weight in custom atom property defined by "fix property/atom"_fix_property_atom.html command
|
||||
name = atom property name (without d_ prefix)
|
||||
{out} arg = filename
|
||||
filename = write each processor's sub-domain to a file :pre
|
||||
:ule
|
||||
|
||||
@ -44,28 +58,42 @@ balance 0.9 x uniform y 0.4 0.5 0.6
|
||||
balance 1.2 shift xz 5 1.1
|
||||
balance 1.0 shift xz 5 1.1
|
||||
balance 1.1 rcb
|
||||
balance 1.0 shift x 10 1.1 weight group 2 fast 0.5 slow 2.0
|
||||
balance 1.0 shift x 10 1.1 weight time 0.8 weight neigh 0.5 weight store balance
|
||||
balance 1.0 shift x 20 1.0 out tmp.balance :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
This command adjusts the size and shape of processor sub-domains
|
||||
within the simulation box, to attempt to balance the number of
|
||||
particles and thus the computational cost (load) evenly across
|
||||
processors. The load balancing is "static" in the sense that this
|
||||
command performs the balancing once, before or between simulations.
|
||||
The processor sub-domains will then remain static during the
|
||||
subsequent run. To perform "dynamic" balancing, see the "fix
|
||||
within the simulation box, to attempt to balance the number of atoms
|
||||
or particles and thus indirectly the computational cost (load) more
|
||||
evenly across processors. The load balancing is "static" in the sense
|
||||
that this command performs the balancing once, before or between
|
||||
simulations. The processor sub-domains will then remain static during
|
||||
the subsequent run. To perform "dynamic" balancing, see the "fix
|
||||
balance"_fix_balance.html command, which can adjust processor
|
||||
sub-domain sizes and shapes on-the-fly during a "run"_run.html.
|
||||
|
||||
Load-balancing is typically only useful if the particles in the
|
||||
simulation box have a spatially-varying density distribution. E.g. a
|
||||
model of a vapor/liquid interface, or a solid with an irregular-shaped
|
||||
geometry containing void regions. In this case, the LAMMPS default of
|
||||
Load-balancing is typically most useful if the particles in the
|
||||
simulation box have a spatially-varying density distribution or when
|
||||
the computational cost varies signficantly between different
|
||||
particles. E.g. a model of a vapor/liquid interface, or a solid with
|
||||
an irregular-shaped geometry containing void regions, or "hybrid pair
|
||||
style simulations"_pair_hybrid.html which combine pair styles with
|
||||
different computational cost. In these cases, the LAMMPS default of
|
||||
dividing the simulation box volume into a regular-spaced grid of 3d
|
||||
bricks, with one equal-volume sub-domain per procesor, may assign very
|
||||
different numbers of particles per processor. This can lead to poor
|
||||
performance when the simulation is run in parallel.
|
||||
bricks, with one equal-volume sub-domain per procesor, may assign
|
||||
numbers of particles per processor in a way that the computational
|
||||
effort varies significantly. This can lead to poor performance when
|
||||
the simulation is run in parallel.
|
||||
|
||||
The balancing can be performed with or without per-particle weighting.
|
||||
With no weighting, the balancing attempts to assign an equal number of
|
||||
particles to each processor. With weighting, the balancing attempts
|
||||
to assign an equal aggregate computational weight to each processor,
|
||||
which typically inducces a diffrent number of atoms assigned to each
|
||||
processor. Details on the various weighting options and examples for
|
||||
how they can be used are "given below"_#weighted_balance.
|
||||
|
||||
Note that the "processors"_processors.html command allows some control
|
||||
over how the box volume is split across processors. Specifically, for
|
||||
@ -78,9 +106,9 @@ sub-domains will still have the same shape and same volume.
|
||||
The requested load-balancing operation is only performed if the
|
||||
current "imbalance factor" in particles owned by each processor
|
||||
exceeds the specified {thresh} parameter. The imbalance factor is
|
||||
defined as the maximum number of particles owned by any processor,
|
||||
divided by the average number of particles per processor. Thus an
|
||||
imbalance factor of 1.0 is perfect balance.
|
||||
defined as the maximum number of particles (or weight) owned by any
|
||||
processor, divided by the average number of particles (or weight) per
|
||||
processor. Thus an imbalance factor of 1.0 is perfect balance.
|
||||
|
||||
As an example, for 10000 particles running on 10 processors, if the
|
||||
most heavily loaded processor has 1200 particles, then the factor is
|
||||
@ -108,7 +136,7 @@ defined above. But depending on the method a perfect balance (1.0)
|
||||
may not be achieved. For example, "grid" methods (defined below) that
|
||||
create a logical 3d grid cannot achieve perfect balance for many
|
||||
irregular distributions of particles. Likewise, if a portion of the
|
||||
system is a perfect lattice, e.g. the intiial system is generated by
|
||||
system is a perfect lattice, e.g. the initial system is generated by
|
||||
the "create_atoms"_create_atoms.html command, then "grid" methods may
|
||||
be unable to achieve exact balance. This is because entire lattice
|
||||
planes will be owned or not owned by a single processor.
|
||||
@ -134,11 +162,11 @@ The {x}, {y}, {z}, and {shift} styles are "grid" methods which produce
|
||||
a logical 3d grid of processors. They operate by changing the cutting
|
||||
planes (or lines) between processors in 3d (or 2d), to adjust the
|
||||
volume (area in 2d) assigned to each processor, as in the following 2d
|
||||
diagram where processor sub-domains are shown and atoms are colored by
|
||||
the processor that owns them. The leftmost diagram is the default
|
||||
partitioning of the simulation box across processors (one sub-box for
|
||||
each of 16 processors); the middle diagram is after a "grid" method
|
||||
has been applied.
|
||||
diagram where processor sub-domains are shown and particles are
|
||||
colored by the processor that owns them. The leftmost diagram is the
|
||||
default partitioning of the simulation box across processors (one
|
||||
sub-box for each of 16 processors); the middle diagram is after a
|
||||
"grid" method has been applied.
|
||||
|
||||
:image(JPG/balance_uniform_small.jpg,JPG/balance_uniform.jpg),image(JPG/balance_nonuniform_small.jpg,JPG/balance_nonuniform.jpg),image(JPG/balance_rcb_small.jpg,JPG/balance_rcb.jpg)
|
||||
:c
|
||||
@ -146,8 +174,8 @@ has been applied.
|
||||
The {rcb} style is a "tiling" method which does not produce a logical
|
||||
3d grid of processors. Rather it tiles the simulation domain with
|
||||
rectangular sub-boxes of varying size and shape in an irregular
|
||||
fashion so as to have equal numbers of particles in each sub-box, as
|
||||
in the rightmost diagram above.
|
||||
fashion so as to have equal numbers of particles (or weight) in each
|
||||
sub-box, as in the rightmost diagram above.
|
||||
|
||||
The "grid" methods can be used with either of the
|
||||
"comm_style"_comm_style.html command options, {brick} or {tiled}. The
|
||||
@ -230,7 +258,7 @@ counts do not match the target value for the plane, the position of
|
||||
the cut is adjusted to be halfway between a low and high bound. The
|
||||
low and high bounds are adjusted on each iteration, using new count
|
||||
information, so that they become closer together over time. Thus as
|
||||
the recustion progresses, the count of particles on either side of the
|
||||
the recursion progresses, the count of particles on either side of the
|
||||
plane gets closer to the target value.
|
||||
|
||||
Once the rebalancing is complete and final processor sub-domains
|
||||
@ -262,21 +290,155 @@ the longest dimension, leaving one new box on either side of the cut.
|
||||
All the processors are also partitioned into 2 groups, half assigned
|
||||
to the box on the lower side of the cut, and half to the box on the
|
||||
upper side. (If the processor count is odd, one side gets an extra
|
||||
processor.) The cut is positioned so that the number of atoms in the
|
||||
lower box is exactly the number that the processors assigned to that
|
||||
box should own for load balance to be perfect. This also makes load
|
||||
balance for the upper box perfect. The positioning is done
|
||||
iteratively, by a bisectioning method. Note that counting atoms on
|
||||
either side of the cut requires communication between all processors
|
||||
at each iteration.
|
||||
processor.) The cut is positioned so that the number of particles in
|
||||
the lower box is exactly the number that the processors assigned to
|
||||
that box should own for load balance to be perfect. This also makes
|
||||
load balance for the upper box perfect. The positioning is done
|
||||
iteratively, by a bisectioning method. Note that counting particles
|
||||
on either side of the cut requires communication between all
|
||||
processors at each iteration.
|
||||
|
||||
That is the procedure for the first cut. Subsequent cuts are made
|
||||
recursively, in exactly the same manner. The subset of processors
|
||||
assigned to each box make a new cut in the longest dimension of that
|
||||
box, splitting the box, the subset of processsors, and the atoms in
|
||||
the box in two. The recursion continues until every processor is
|
||||
assigned a sub-box of the entire simulation domain, and owns the atoms
|
||||
in that sub-box.
|
||||
box, splitting the box, the subset of processsors, and the particles
|
||||
in the box in two. The recursion continues until every processor is
|
||||
assigned a sub-box of the entire simulation domain, and owns the
|
||||
particles in that sub-box.
|
||||
|
||||
:line
|
||||
|
||||
This sub-section describes how to perform weighted load balancing
|
||||
using the {weight} keyword. :link(weighted_balance)
|
||||
|
||||
By default, all particles have a weight of 1.0, which means each
|
||||
particle is assumed to require the same amount of computation during a
|
||||
timestep. There are, however, scenarios where this is not a good
|
||||
assumption. Measuring the computational cost for each particle
|
||||
accurately would be impractical and slow down the computation.
|
||||
Instead the {weight} keyword implements several ways to influence the
|
||||
per-particle weights empirically by properties readily available or
|
||||
using the user's knowledge of the system. Note that the absolute
|
||||
value of the weights are not important; only their relative ratios
|
||||
affect which particle is assigned to which processor. A particle with
|
||||
a weight of 2.5 is assumed to require 5x more computational than a
|
||||
particle with a weight of 0.5. For all the options below the weight
|
||||
assigned to a particle must be a positive value; an error will be be
|
||||
generated if a weight is <= 0.0.
|
||||
|
||||
Below is a list of possible weight options with a short description of
|
||||
their usage and some example scenarios where they might be applicable.
|
||||
It is possible to apply multiple weight flags and the weightings they
|
||||
induce will be combined through multiplication. Most of the time,
|
||||
however, it is sufficient to use just one method.
|
||||
|
||||
The {group} weight style assigns weight factors to specified
|
||||
"groups"_group.html of particles. The {group} style keyword is
|
||||
followed by the number of groups, then pairs of group IDs and the
|
||||
corresponding weight factor. If a particle belongs to none of the
|
||||
specified groups, its weight is not changed. If it belongs to
|
||||
multiple groups, its weight is the product of the weight factors.
|
||||
|
||||
This weight style is useful in combination with pair style
|
||||
"hybrid"_pair_hybrid.html, e.g. when combining a more costly manybody
|
||||
potential with a fast pair-wise potential. It is also useful when
|
||||
using "run_style respa"_run_style.html where some portions of the
|
||||
system have many bonded interactions and others none. It assumes that
|
||||
the computational cost for each group remains constant over time.
|
||||
This is a purely empirical weighting, so a series test runs to tune
|
||||
the assigned weight factors for optimal performance is recommended.
|
||||
|
||||
The {neigh} weight style assigns the same weight to each particle
|
||||
owned by a processor based on the total count of neighbors in the
|
||||
neighbor list owned by that processor. The motivation is that more
|
||||
neighbors means a higher computational cost. The style does not use
|
||||
neighbors per atom to assign a unique weight to each atom, because
|
||||
that value can vary depending on how the neighbor list is built.
|
||||
|
||||
The {factor} setting is applied as an overall scale factor to the
|
||||
{neigh} weights which allows adjustment of their impact on the
|
||||
balancing operation. The specified {factor} value must be positive.
|
||||
A value > 1.0 will increase the weights so that the ratio of max
|
||||
weight to min weight increases by {factor}. A value < 1.0 will
|
||||
decrease the weights so that the ratio of max weight to min weight
|
||||
decreases by {factor}. In both cases the intermediate weight values
|
||||
increase/decrease proportionally as well. A value = 1.0 has no effect
|
||||
on the {neigh} weights. As a rule of thumb, we have found a {factor}
|
||||
of about 0.8 often results in the best performance, since the number
|
||||
of neighbors is likely to overestimate the ideal weight.
|
||||
|
||||
This weight style is useful for systems where there are different
|
||||
cutoffs used for different pairs of interations, or the density
|
||||
fluctuates, or a large number of particles are in the vicinity of a
|
||||
wall, or a combination of these effects. If a simulation uses
|
||||
multiple neighbor lists, this weight style will use the first suitable
|
||||
neighbor list it finds. It will not request or compute a new list. A
|
||||
warning will be issued if there is no suitable neighbor list available
|
||||
or if it is not current, e.g. if the balance command is used before a
|
||||
"run"_run.html or "minimize"_minimize.html command is used, in which
|
||||
case the neighbor list may not yet have been built. In this case no
|
||||
weights are computed. Inserting a "run 0 post no"_run.html command
|
||||
before issuing the {balance} command, may be a workaround for this
|
||||
case, as it will induce the neighbor list to be built.
|
||||
|
||||
The {time} weight style uses "timer data"_timer.html to estimate
|
||||
weights. It assigns the same weight to each particle owned by a
|
||||
processor based on the total computational time spent by that
|
||||
processor. See details below on what time window is used. It uses
|
||||
the same timing information as is used for the "MPI task timing
|
||||
breakdown"_Section_start.html#start_8, namely, for sections {Pair},
|
||||
{Bond}, {Kspace}, and {Neigh}. The time spent in those portions of
|
||||
the timestep are measured for each MPI rank, summed, then divided by
|
||||
the number of particles owned by that processor. I.e. the weight is
|
||||
an effective CPU time/particle averaged over the particles on that
|
||||
processor.
|
||||
|
||||
The {factor} setting is applied as an overall scale factor to the
|
||||
{time} weights which allows adjustment of their impact on the
|
||||
balancing operation. The specified {factor} value must be positive.
|
||||
A value > 1.0 will increase the weights so that the ratio of max
|
||||
weight to min weight increases by {factor}. A value < 1.0 will
|
||||
decrease the weights so that the ratio of max weight to min weight
|
||||
decreases by {factor}. In both cases the intermediate weight values
|
||||
increase/decrease proportionally as well. A value = 1.0 has no effect
|
||||
on the {time} weights. As a rule of thumb, effective values to use
|
||||
are typicall between 0.5 and 1.2. Note that the timer quantities
|
||||
mentioned above can be affected by communication which occurs in the
|
||||
middle of the operations, e.g. pair styles with intermediate exchange
|
||||
of data witin the force computation, and likewise for KSpace solves.
|
||||
|
||||
When using the {time} weight style with the {balance} command, the
|
||||
timing data is taken from the preceding run command, i.e. the timings
|
||||
are for the entire previous run. For the {fix balance} command the
|
||||
timing data is for only the timesteps since the last balancing
|
||||
operation was performed. If timing information for the required
|
||||
sections is not available, e.g. at the beginning of a run, or when the
|
||||
"timer"_timer.html command is set to either {loop} or {off}, a warning
|
||||
is issued. In this case no weights are computed.
|
||||
|
||||
NOTE: The {time} weight style is the most generic option, and should
|
||||
be tried first, unless the {group} style is easily applicable.
|
||||
However, since the computed cost function is averaged over all
|
||||
particles on a processor, the weights may not be highly accurate.
|
||||
This style can also be effective as a secondary weight in combination
|
||||
with either {group} or {neigh} to offset some of inaccuracies in
|
||||
either of those heuristics.
|
||||
|
||||
The {var} weight style assigns per-particle weights by evaluating an
|
||||
"atom-style variable"_variable.html specified by {name}. This is
|
||||
provided as a more flexible alternative to the {group} weight style,
|
||||
allowing definition of a more complex heuristics based on information
|
||||
(global and per atom) available inside of LAMMPS. For example,
|
||||
atom-style variables can reference the position of a particle, its
|
||||
velocity, the volume of its Voronoi cell, etc.
|
||||
|
||||
The {store} weight style does not compute a weight factor. Instead it
|
||||
stores the current accumulated weights in a custom per-atom property
|
||||
specified by {name}. This must be a property defined as {d_name} via
|
||||
the "fix property/atom"_fix_property_atom.html command. Note that
|
||||
these custom per-atom properties can be output in a "dump"_dump.html
|
||||
file, so this is a way to examine, debug, or visualize the
|
||||
per-particle weights computed during the load-balancing operation.
|
||||
|
||||
:line
|
||||
|
||||
@ -342,6 +504,7 @@ appear in {dimstr} for the {shift} style.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
"processors"_processors.html, "fix balance"_fix_balance.html
|
||||
"group"_group.html, "processors"_processors.html,
|
||||
"fix balance"_fix_balance.html
|
||||
|
||||
[Default:] none
|
||||
|
||||
@ -49,8 +49,8 @@ keyword = {append} or {buffer} or {element} or {every} or {fileper} or {first} o
|
||||
-N = sort per-atom lines in descending order by the Nth column
|
||||
{thresh} args = attribute operation value
|
||||
attribute = same attributes (x,fy,etotal,sxx,etc) used by dump custom style
|
||||
operation = "<" or "<=" or ">" or ">=" or "==" or "!="
|
||||
value = numeric value to compare to
|
||||
operation = "<" or "<=" or ">" or ">=" or "==" or "!=" or "|^"
|
||||
value = numeric value to compare to, or LAST
|
||||
these 3 args can be replaced by the word "none" to turn off thresholding
|
||||
{unwrap} arg = {yes} or {no} :pre
|
||||
these keywords apply only to the {image} and {movie} "styles"_dump_image.html :l
|
||||
@ -458,16 +458,59 @@ as well as memory, versus unsorted output.
|
||||
|
||||
The {thresh} keyword only applies to the dump {custom}, {cfg},
|
||||
{image}, and {movie} styles. Multiple thresholds can be specified.
|
||||
Specifying "none" turns off all threshold criteria. If thresholds are
|
||||
Specifying {none} turns off all threshold criteria. If thresholds are
|
||||
specified, only atoms whose attributes meet all the threshold criteria
|
||||
are written to the dump file or included in the image. The possible
|
||||
attributes that can be tested for are the same as those that can be
|
||||
specified in the "dump custom"_dump.html command, with the exception
|
||||
of the {element} attribute, since it is not a numeric value. Note
|
||||
that different attributes can be output by the dump custom command
|
||||
than are used as threshold criteria by the dump_modify command.
|
||||
E.g. you can output the coordinates and stress of atoms whose energy
|
||||
is above some threshold.
|
||||
that a different attributes can be used than those output by the "dump
|
||||
custom"_dump.html command. E.g. you can output the coordinates and
|
||||
stress of atoms whose energy is above some threshold.
|
||||
|
||||
If an atom-style variable is used as the attribute, then it can
|
||||
produce continuous numeric values or effective Boolean 0/1 values
|
||||
which may be useful for the comparision operation. Boolean values can
|
||||
be generated by variable formulas that use comparison or Boolean math
|
||||
operators or special functions like gmask() and rmask() and grmask().
|
||||
See the "variable"_variable.html command doc page for details.
|
||||
|
||||
NOTE: The LAST option, discussed below, is not yet implemented. It
|
||||
will be soon.
|
||||
|
||||
The specified value must be a simple numeric value or the word LAST.
|
||||
If LAST is used, it refers to the value of the attribute the last time
|
||||
the dump command was invoked to produce a snapshot. This is a way to
|
||||
only dump atoms whose attribute has changed (or not changed).
|
||||
Three examples follow.
|
||||
|
||||
dump_modify ... thresh ix != LAST :pre
|
||||
|
||||
This will dump atoms which have crossed the periodic x boundary of the
|
||||
simulation box since the last dump. (Note that atoms that crossed
|
||||
once and then crossed back between the two dump timesteps would not be
|
||||
included.)
|
||||
|
||||
region foo sphere 10 20 10 15
|
||||
variable inregion atom rmask(foo)
|
||||
dump_modify ... thresh v_inregion |^ LAST
|
||||
|
||||
This will dump atoms which crossed the boundary of the spherical
|
||||
region since the last dump.
|
||||
|
||||
variable charge atom "(q > 0.5) || (q < -0.5)"
|
||||
dump_modify ... thresh v_charge |^ LAST
|
||||
|
||||
This will dump atoms whose charge has changed from an absolute value
|
||||
less than 1/2 to greater than 1/2 (or vice versa) since the last dump.
|
||||
E.g. due to reactions and subsequent charge equilibration in a
|
||||
reactive force field.
|
||||
|
||||
The choice of operations are the usual comparison operators. The XOR
|
||||
operation (exclusive or) is also included as "|^". In this context,
|
||||
XOR means that if either the attribute or value is 0.0 and the other
|
||||
is non-zero, then the result is "true" and the threshold criterion is
|
||||
met. Otherwise it is not met.
|
||||
|
||||
:line
|
||||
|
||||
|
||||
@ -10,7 +10,7 @@ fix balance command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
fix ID group-ID balance Nfreq thresh style args keyword value ... :pre
|
||||
fix ID group-ID balance Nfreq thresh style args keyword args ... :pre
|
||||
|
||||
ID, group-ID are documented in "fix"_fix.html command :ulb,l
|
||||
balance = style name of this fix command :l
|
||||
@ -21,10 +21,24 @@ style = {shift} or {rcb} :l
|
||||
dimstr = sequence of letters containing "x" or "y" or "z", each not more than once
|
||||
Niter = # of times to iterate within each dimension of dimstr sequence
|
||||
stopthresh = stop balancing when this imbalance threshhold is reached
|
||||
rcb args = none :pre
|
||||
zero or more keyword/value pairs may be appended :l
|
||||
keyword = {out} :l
|
||||
{out} value = filename
|
||||
{rcb} args = none :pre
|
||||
zero or more keyword/arg pairs may be appended :l
|
||||
keyword = {weight} or {out} :l
|
||||
{weight} style args = use weighted particle counts for the balancing
|
||||
{style} = {group} or {neigh} or {time} or {var} or {store}
|
||||
{group} args = Ngroup group1 weight1 group2 weight2 ...
|
||||
Ngroup = number of groups with assigned weights
|
||||
group1, group2, ... = group IDs
|
||||
weight1, weight2, ... = corresponding weight factors
|
||||
{neigh} factor = compute weight based on number of neighbors
|
||||
factor = scaling factor (> 0)
|
||||
{time} factor = compute weight based on time spend computing
|
||||
factor = scaling factor (> 0)
|
||||
{var} name = take weight from atom-style variable
|
||||
name = name of the atom-style variable
|
||||
{store} name = store weight in custom atom property defined by "fix property/atom"_fix_property_atom.html command
|
||||
name = atom property name (without d_ prefix)
|
||||
{out} arg = filename
|
||||
filename = write each processor's sub-domain to a file, at each re-balancing :pre
|
||||
:ule
|
||||
|
||||
@ -32,6 +46,9 @@ keyword = {out} :l
|
||||
|
||||
fix 2 all balance 1000 1.05 shift x 10 1.05
|
||||
fix 2 all balance 100 0.9 shift xy 20 1.1 out tmp.balance
|
||||
fix 2 all balance 100 0.9 shift xy 20 1.1 weight group 3 substrate 3.0 solvent 1.0 solute 0.8 out tmp.balance
|
||||
fix 2 all balance 100 1.0 shift x 10 1.1 weight time 0.8
|
||||
fix 2 all balance 100 1.0 shift xy 5 1.1 weight var myweight weight neigh 0.6 weight store allweight
|
||||
fix 2 all balance 1000 1.1 rcb :pre
|
||||
|
||||
[Description:]
|
||||
@ -44,14 +61,32 @@ rebalancing is performed periodically during the simulation. To
|
||||
perform "static" balancing, before or between runs, see the
|
||||
"balance"_balance.html command.
|
||||
|
||||
Load-balancing is typically only useful if the particles in the
|
||||
simulation box have a spatially-varying density distribution. E.g. a
|
||||
model of a vapor/liquid interface, or a solid with an irregular-shaped
|
||||
geometry containing void regions. In this case, the LAMMPS default of
|
||||
dividing the simulation box volume into a regular-spaced grid of 3d
|
||||
bricks, with one equal-volume sub-domain per processor, may assign
|
||||
very different numbers of particles per processor. This can lead to
|
||||
poor performance when the simulation is run in parallel.
|
||||
Load-balancing is typically most useful if the particles in the
|
||||
simulation box have a spatially-varying density distribution or
|
||||
where the computational cost varies signficantly between different
|
||||
atoms. E.g. a model of a vapor/liquid interface, or a solid with
|
||||
an irregular-shaped geometry containing void regions, or
|
||||
"hybrid pair style simulations"_pair_hybrid.html which combine
|
||||
pair styles with different computational cost. In these cases, the
|
||||
LAMMPS default of dividing the simulation box volume into a
|
||||
regular-spaced grid of 3d bricks, with one equal-volume sub-domain
|
||||
per procesor, may assign numbers of particles per processor in a
|
||||
way that the computational effort varies significantly. This can
|
||||
lead to poor performance when the simulation is run in parallel.
|
||||
|
||||
The balancing can be performed with or without per-particle weighting.
|
||||
With no weighting, the balancing attempts to assign an equal number of
|
||||
particles to each processor. With weighting, the balancing attempts
|
||||
to assign an equal aggregate computational weight to each processor,
|
||||
which typically inducces a diffrent number of atoms assigned to each
|
||||
processor.
|
||||
|
||||
NOTE: The weighting options listed above are documented with the
|
||||
"balance"_balance.html command in "this section of the balance
|
||||
command"_balance.html#weighted_balance doc page. That section
|
||||
describes the various weighting options and gives a few examples of
|
||||
how they can be used. The weighting options are the same for both the
|
||||
fix balance and "balance"_balance.html commands.
|
||||
|
||||
Note that the "processors"_processors.html command allows some control
|
||||
over how the box volume is split across processors. Specifically, for
|
||||
@ -64,9 +99,9 @@ sub-domains will still have the same shape and same volume.
|
||||
On a particular timestep, a load-balancing operation is only performed
|
||||
if the current "imbalance factor" in particles owned by each processor
|
||||
exceeds the specified {thresh} parameter. The imbalance factor is
|
||||
defined as the maximum number of particles owned by any processor,
|
||||
divided by the average number of particles per processor. Thus an
|
||||
imbalance factor of 1.0 is perfect balance.
|
||||
defined as the maximum number of particles (or weight) owned by any
|
||||
processor, divided by the average number of particles (or weight) per
|
||||
processor. Thus an imbalance factor of 1.0 is perfect balance.
|
||||
|
||||
As an example, for 10000 particles running on 10 processors, if the
|
||||
most heavily loaded processor has 1200 particles, then the factor is
|
||||
@ -117,8 +152,8 @@ applied.
|
||||
The {rcb} style is a "tiling" method which does not produce a logical
|
||||
3d grid of processors. Rather it tiles the simulation domain with
|
||||
rectangular sub-boxes of varying size and shape in an irregular
|
||||
fashion so as to have equal numbers of particles in each sub-box, as
|
||||
in the rightmost diagram above.
|
||||
fashion so as to have equal numbers of particles (or weight) in each
|
||||
sub-box, as in the rightmost diagram above.
|
||||
|
||||
The "grid" methods can be used with either of the
|
||||
"comm_style"_comm_style.html command options, {brick} or {tiled}. The
|
||||
@ -139,12 +174,9 @@ from scratch.
|
||||
|
||||
:line
|
||||
|
||||
The {group-ID} is currently ignored. In the future it may be used to
|
||||
determine what particles are considered for balancing. Normally it
|
||||
would only makes sense to use the {all} group. But in some cases it
|
||||
may be useful to balance on a subset of the particles, e.g. when
|
||||
modeling large nanoparticles in a background of small solvent
|
||||
particles.
|
||||
The {group-ID} is ignored. However the impact of balancing on
|
||||
different groups of atoms can be affected by using the {group} weight
|
||||
style as described below.
|
||||
|
||||
The {Nfreq} setting determines how often a rebalance is performed. If
|
||||
{Nfreq} > 0, then rebalancing will occur every {Nfreq} steps. Each
|
||||
@ -225,7 +257,7 @@ than {Niter} and exit early.
|
||||
|
||||
The {rcb} style invokes a "tiled" method for balancing, as described
|
||||
above. It performs a recursive coordinate bisectioning (RCB) of the
|
||||
simulation domain. The basic idea is as follows.
|
||||
simulation domain. The basic idea is as follows.
|
||||
|
||||
The simulation domain is cut into 2 boxes by an axis-aligned cut in
|
||||
the longest dimension, leaving one new box on either side of the cut.
|
||||
@ -250,10 +282,10 @@ in that sub-box.
|
||||
|
||||
:line
|
||||
|
||||
The {out} keyword writes a text file to the specified {filename} with
|
||||
the results of each rebalancing operation. The file contains the
|
||||
bounds of the sub-domain for each processor after the balancing
|
||||
operation completes. The format of the file is compatible with the
|
||||
The {out} keyword writes text to the specified {filename} with the
|
||||
results of each rebalancing operation. The file contains the bounds
|
||||
of the sub-domain for each processor after the balancing operation
|
||||
completes. The format of the file is compatible with the
|
||||
"Pizza.py"_pizza {mdump} tool which has support for manipulating and
|
||||
visualizing mesh files. An example is shown here for a balancing by 4
|
||||
processors for a 2d problem:
|
||||
@ -321,8 +353,8 @@ values in the vector are as follows:
|
||||
3 = imbalance factor right before the last rebalance was performed :ul
|
||||
|
||||
As explained above, the imbalance factor is the ratio of the maximum
|
||||
number of particles on any processor to the average number of
|
||||
particles per processor.
|
||||
number of particles (or total weight) on any processor to the average
|
||||
number of particles (or total weight) per processor.
|
||||
|
||||
These quantities can be accessed by various "output
|
||||
commands"_Section_howto.html#howto_15. The scalar and vector values
|
||||
@ -336,11 +368,11 @@ minimization"_minimize.html.
|
||||
|
||||
[Restrictions:]
|
||||
|
||||
For 2d simulations, a "z" cannot appear in {dimstr} for the {shift}
|
||||
style.
|
||||
For 2d simulations, the {z} style cannot be used. Nor can a "z"
|
||||
appear in {dimstr} for the {shift} style.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
"processors"_processors.html, "balance"_balance.html
|
||||
"group"_group.html, "processors"_processors.html, "balance"_balance.html
|
||||
|
||||
[Default:] none
|
||||
|
||||
@ -56,7 +56,7 @@ CMAP :pre
|
||||
|
||||
1 1 8 10 12 18 20
|
||||
2 5 18 20 22 25 27
|
||||
...
|
||||
\[...\]
|
||||
N 3 314 315 317 318 330 :pre
|
||||
|
||||
The first column is an index from 1 to N to enumerate the CMAP terms;
|
||||
@ -66,7 +66,7 @@ remaining 5 columns are the atom IDs of the atoms in the two 4-atom
|
||||
dihedrals that overlap to create the CMAP 5-body interaction. Note
|
||||
that the "crossterm" and "CMAP" keywords for the header and body
|
||||
sections match those specified in the read_data command following the
|
||||
data file name; see the "read_data"_doc/read_data.html doc page for
|
||||
data file name; see the "read_data"_read_data.html doc page for
|
||||
more details.
|
||||
|
||||
A data file containing CMAP crossterms can be generated from a PDB
|
||||
@ -124,9 +124,9 @@ LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
:line
|
||||
|
||||
(Buck)
|
||||
Buck, Bouguet-Bonnet, Pastor, MacKerell Jr., Biophys J, 90, L36
|
||||
:link(Buck)
|
||||
[(Buck)] Buck, Bouguet-Bonnet, Pastor, MacKerell Jr., Biophys J, 90, L36
|
||||
(2006).
|
||||
|
||||
(Brooks)
|
||||
Brooks, Brooks, MacKerell Jr., J Comput Chem, 30, 1545 (2009).
|
||||
:link(Brooks)
|
||||
[(Brooks)] Brooks, Brooks, MacKerell Jr., J Comput Chem, 30, 1545 (2009).
|
||||
|
||||
@ -39,8 +39,8 @@ metadynamics, Steered Molecular Dynamics (SMD) and Umbrella Sampling
|
||||
(US) via a flexible harmonic restraint bias. The colvars library is
|
||||
hosted at "http://colvars.github.io/"_http://colvars.github.io/
|
||||
|
||||
This documentation describes only the fix colvars command itself and
|
||||
LAMMPS specific parts of the code. The full documentation of the
|
||||
This documentation describes only the fix colvars command itself and
|
||||
LAMMPS specific parts of the code. The full documentation of the
|
||||
colvars library is available as "this supplementary PDF document"_PDF/colvars-refman-lammps.pdf
|
||||
|
||||
A detailed discussion of the implementation of the portable collective
|
||||
@ -122,7 +122,7 @@ not a limitation of functionality.
|
||||
|
||||
[Default:]
|
||||
|
||||
The default options are input = NULL, output = out, seed = 1966, unwrap yes,
|
||||
The default options are input = NULL, output = out, seed = 1966, unwrap yes,
|
||||
and tstat = NULL.
|
||||
|
||||
:line
|
||||
|
||||
@ -24,6 +24,7 @@ Fixes :h1
|
||||
fix_bond_create
|
||||
fix_bond_swap
|
||||
fix_box_relax
|
||||
fix_cmap
|
||||
fix_colvars
|
||||
fix_controller
|
||||
fix_deform
|
||||
|
||||
@ -139,7 +139,7 @@ InP, myString, a123, ab_23_cd, etc :pre
|
||||
|
||||
and Boolean operators:
|
||||
|
||||
A == B, A != B, A < B, A <= B, A > B, A >= B, A && B, A || B, !A :pre
|
||||
A == B, A != B, A < B, A <= B, A > B, A >= B, A && B, A || B, A |^ B, !A :pre
|
||||
|
||||
Each A and B is a number or string or a variable reference like $a or
|
||||
$\{abc\}, or A or B can be another Boolean expression.
|
||||
@ -155,9 +155,10 @@ precedence: the unary logical NOT operator "!" has the highest
|
||||
precedence, the 4 relational operators "<", "<=", ">", and ">=" are
|
||||
next; the two remaining relational operators "==" and "!=" are next;
|
||||
then the logical AND operator "&&"; and finally the logical OR
|
||||
operator "||" has the lowest precedence. Parenthesis can be used to
|
||||
group one or more portions of an expression and/or enforce a different
|
||||
order of evaluation than what would occur with the default precedence.
|
||||
operator "||" and logical XOR (exclusive or) operator "|^" have the
|
||||
lowest precedence. Parenthesis can be used to group one or more
|
||||
portions of an expression and/or enforce a different order of
|
||||
evaluation than what would occur with the default precedence.
|
||||
|
||||
When the 6 relational operators (first 6 in list above) compare 2
|
||||
numbers, they return either a 1.0 or 0.0 depending on whether the
|
||||
@ -171,9 +172,11 @@ relationship between A and B is TRUE or FALSE (or just A). The
|
||||
logical AND operator will return 1.0 if both its arguments are
|
||||
non-zero, else it returns 0.0. The logical OR operator will return
|
||||
1.0 if either of its arguments is non-zero, else it returns 0.0. The
|
||||
logical NOT operator returns 1.0 if its argument is 0.0, else it
|
||||
returns 0.0. The 3 logical operators can only be used to operate on
|
||||
numbers, not on strings.
|
||||
logical XOR operator will return 1.0 if one of its arguments is zero
|
||||
and the other non-zero, else it returns 0.0. The logical NOT operator
|
||||
returns 1.0 if its argument is 0.0, else it returns 0.0. The 3
|
||||
logical operators can only be used to operate on numbers, not on
|
||||
strings.
|
||||
|
||||
The overall Boolean expression produces a TRUE result if the result is
|
||||
non-zero. If the result is zero, the expression result is FALSE.
|
||||
|
||||
@ -147,6 +147,7 @@ fix_bond_break.html
|
||||
fix_bond_create.html
|
||||
fix_bond_swap.html
|
||||
fix_box_relax.html
|
||||
fix_cmap.html
|
||||
fix_colvars.html
|
||||
fix_controller.html
|
||||
fix_deform.html
|
||||
|
||||
@ -48,17 +48,14 @@ follows the discussion in these 3 papers: "(HenkelmanA)"_#HenkelmanA,
|
||||
|
||||
Each replica runs on a partition of one or more processors. Processor
|
||||
partitions are defined at run-time using the -partition command-line
|
||||
switch; see "Section 2.7"_Section_start.html#start_7 of the
|
||||
manual. Note that if you have MPI installed, you can run a
|
||||
multi-replica simulation with more replicas (partitions) than you have
|
||||
physical processors, e.g you can run a 10-replica simulation on just
|
||||
one or two processors. You will simply not get the performance
|
||||
speed-up you would see with one or more physical processors per
|
||||
replica. See "this section"_Section_howto.html#howto_5 of the manual
|
||||
for further discussion.
|
||||
|
||||
NOTE: The current NEB implementation in LAMMPS only allows there to be
|
||||
one processor per replica.
|
||||
switch; see "Section 2.7"_Section_start.html#start_7 of the manual.
|
||||
Note that if you have MPI installed, you can run a multi-replica
|
||||
simulation with more replicas (partitions) than you have physical
|
||||
processors, e.g you can run a 10-replica simulation on just one or two
|
||||
processors. You will simply not get the performance speed-up you
|
||||
would see with one or more physical processors per replica. See
|
||||
"Section 6.5"_Section_howto.html#howto_5 of the manual for further
|
||||
discussion.
|
||||
|
||||
NOTE: As explained below, a NEB calculation perfoms a damped dynamics
|
||||
minimization across all the replicas. The mimimizer uses whatever
|
||||
@ -255,12 +252,6 @@ An atom map must be defined which it is not by default for "atom_style
|
||||
atomic"_atom_style.html problems. The "atom_modify
|
||||
map"_atom_modify.html command can be used to do this.
|
||||
|
||||
The "atom_modify sort 0 0.0" command should be used to turn off atom
|
||||
sorting.
|
||||
|
||||
NOTE: This sorting restriction will be removed in a future version of
|
||||
NEB in LAMMPS.
|
||||
|
||||
The minimizers in LAMMPS operate on all atoms in your system, even
|
||||
non-NEB atoms, as defined above. To prevent non-NEB atoms from moving
|
||||
during the minimization, you should use the "fix
|
||||
|
||||
@ -63,14 +63,14 @@ event to occur.
|
||||
|
||||
Each replica runs on a partition of one or more processors. Processor
|
||||
partitions are defined at run-time using the -partition command-line
|
||||
switch; see "Section 2.7"_Section_start.html#start_7 of the
|
||||
manual. Note that if you have MPI installed, you can run a
|
||||
multi-replica simulation with more replicas (partitions) than you have
|
||||
physical processors, e.g you can run a 10-replica simulation on one or
|
||||
two processors. For PRD, this makes little sense, since this offers
|
||||
no effective parallel speed-up in searching for infrequent events. See
|
||||
"Section 6.5"_Section_howto.html#howto_5 of the manual for further
|
||||
discussion.
|
||||
switch; see "Section 2.7"_Section_start.html#start_7 of the manual.
|
||||
Note that if you have MPI installed, you can run a multi-replica
|
||||
simulation with more replicas (partitions) than you have physical
|
||||
processors, e.g you can run a 10-replica simulation on one or two
|
||||
processors. However for PRD, this makes little sense, since running a
|
||||
replica on virtual instead of physical processors,offers no effective
|
||||
parallel speed-up in searching for infrequent events. See "Section
|
||||
6.5"_Section_howto.html#howto_5 of the manual for further discussion.
|
||||
|
||||
When a PRD simulation is performed, it is assumed that each replica is
|
||||
running the same model, though LAMMPS does not check for this.
|
||||
@ -163,7 +163,7 @@ runs for {N} timesteps. If the {time} value is {clock}, then the
|
||||
simulation runs until {N} aggregate timesteps across all replicas have
|
||||
elapsed. This aggregate time is the "clock" time defined below, which
|
||||
typically advances nearly M times faster than the timestepping on a
|
||||
single replica.
|
||||
single replica, where M is the number of replicas.
|
||||
|
||||
:line
|
||||
|
||||
@ -183,25 +183,26 @@ coincident events, and the replica number of the chosen event.
|
||||
|
||||
The timestep is the usual LAMMPS timestep, except that time does not
|
||||
advance during dephasing or quenches, but only during dynamics. Note
|
||||
that are two kinds of dynamics in the PRD loop listed above. The
|
||||
first is when all replicas are performing independent dynamics,
|
||||
waiting for an event to occur. The second is when correlated events
|
||||
are being searched for and only one replica is running dynamics.
|
||||
that are two kinds of dynamics in the PRD loop listed above that
|
||||
contribute to this timestepping. The first is when all replicas are
|
||||
performing independent dynamics, waiting for an event to occur. The
|
||||
second is when correlated events are being searched for, but only one
|
||||
replica is running dynamics.
|
||||
|
||||
The CPU time is the total processor time since the start of the PRD
|
||||
run.
|
||||
The CPU time is the total elapsed time on each processor, since the
|
||||
start of the PRD run.
|
||||
|
||||
The clock is the same as the timestep except that it advances by M
|
||||
steps every timestep during the first kind of dynamics when the M
|
||||
steps per timestep during the first kind of dynamics when the M
|
||||
replicas are running independently. The clock advances by only 1 step
|
||||
per timestep during the second kind of dynamics, since only a single
|
||||
per timestep during the second kind of dynamics, when only a single
|
||||
replica is checking for a correlated event. Thus "clock" time
|
||||
represents the aggregate time (in steps) that effectively elapses
|
||||
represents the aggregate time (in steps) that has effectively elapsed
|
||||
during a PRD simulation on M replicas. If most of the PRD run is
|
||||
spent in the second stage of the loop above, searching for infrequent
|
||||
events, then the clock will advance nearly M times faster than it
|
||||
would if a single replica was running. Note the clock time between
|
||||
events will be drawn from p(t).
|
||||
successive events should be drawn from p(t).
|
||||
|
||||
The event number is a counter that increments with each event, whether
|
||||
it is uncorrelated or correlated.
|
||||
@ -212,14 +213,15 @@ replicas are running independently. The correlation flag will be 1
|
||||
when a correlated event occurs during the third stage of the loop
|
||||
listed above, i.e. when only one replica is running dynamics.
|
||||
|
||||
When more than one replica detects an event at the end of the second
|
||||
stage, then one of them is chosen at random. The number of coincident
|
||||
events is the number of replicas that detected an event. Normally, we
|
||||
expect this value to be 1. If it is often greater than 1, then either
|
||||
the number of replicas is too large, or {t_event} is too large.
|
||||
When more than one replica detects an event at the end of the same
|
||||
event check (every {t_event} steps) during the the second stage, then
|
||||
one of them is chosen at random. The number of coincident events is
|
||||
the number of replicas that detected an event. Normally, this value
|
||||
should be 1. If it is often greater than 1, then either the number of
|
||||
replicas is too large, or {t_event} is too large.
|
||||
|
||||
The replica number is the ID of the replica (from 0 to M-1) that
|
||||
found the event.
|
||||
The replica number is the ID of the replica (from 0 to M-1) in which
|
||||
the event occurred.
|
||||
|
||||
:line
|
||||
|
||||
@ -286,7 +288,7 @@ This command can only be used if LAMMPS was built with the REPLICA
|
||||
package. See the "Making LAMMPS"_Section_start.html#start_3 section
|
||||
for more info on packages.
|
||||
|
||||
{N} and {t_correlate} settings must be integer multiples of
|
||||
The {N} and {t_correlate} settings must be integer multiples of
|
||||
{t_event}.
|
||||
|
||||
Runs restarted from restart file written during a PRD run will not
|
||||
|
||||
@ -47,7 +47,7 @@ style = {delete} or {index} or {loop} or {world} or {universe} or {uloop} or {st
|
||||
constants = PI, version, on, off, true, false, yes, no
|
||||
thermo keywords = vol, ke, press, etc from "thermo_style"_thermo_style.html
|
||||
math operators = (), -x, x+y, x-y, x*y, x/y, x^y, x%y,
|
||||
x == y, x != y, x < y, x <= y, x > y, x >= y, x && y, x || y, !x
|
||||
x == y, x != y, x < y, x <= y, x > y, x >= y, x && y, x || y, x |^ y, !x
|
||||
math functions = sqrt(x), exp(x), ln(x), log(x), abs(x),
|
||||
sin(x), cos(x), tan(x), asin(x), acos(x), atan(x), atan2(y,x),
|
||||
random(x,y,z), normal(x,y,z), ceil(x), floor(x), round(x)
|
||||
@ -450,7 +450,7 @@ Number: 0.2, 100, 1.0e20, -15.4, etc
|
||||
Constant: PI, version, on, off, true, false, yes, no
|
||||
Thermo keywords: vol, pe, ebond, etc
|
||||
Math operators: (), -x, x+y, x-y, x*y, x/y, x^y, x%y, \
|
||||
x == y, x != y, x < y, x <= y, x > y, x >= y, x && y, x || y, !x
|
||||
x == y, x != y, x < y, x <= y, x > y, x >= y, x && y, x || y, x |^ y, !x
|
||||
Math functions: sqrt(x), exp(x), ln(x), log(x), abs(x), \
|
||||
sin(x), cos(x), tan(x), asin(x), acos(x), atan(x), atan2(y,x), \
|
||||
random(x,y,z), normal(x,y,z), ceil(x), floor(x), round(x), \
|
||||
@ -551,9 +551,10 @@ division and the modulo operator "%" are next; addition and
|
||||
subtraction are next; the 4 relational operators "<", "<=", ">", and
|
||||
">=" are next; the two remaining relational operators "==" and "!="
|
||||
are next; then the logical AND operator "&&"; and finally the logical
|
||||
OR operator "||" has the lowest precedence. Parenthesis can be used
|
||||
to group one or more portions of a formula and/or enforce a different
|
||||
order of evaluation than what would occur with the default precedence.
|
||||
OR operator "||" and logical XOR (exclusive or) operator "|^" have the
|
||||
lowest precedence. Parenthesis can be used to group one or more
|
||||
portions of a formula and/or enforce a different order of evaluation
|
||||
than what would occur with the default precedence.
|
||||
|
||||
NOTE: Because a unary minus is higher precedence than exponentiation,
|
||||
the formula "-2^2" will evaluate to 4, not -4. This convention is
|
||||
@ -568,8 +569,10 @@ return 1.0 for all atoms whose x-coordinate is less than 10.0, and 0.0
|
||||
for the others. The logical AND operator will return 1.0 if both its
|
||||
arguments are non-zero, else it returns 0.0. The logical OR operator
|
||||
will return 1.0 if either of its arguments is non-zero, else it
|
||||
returns 0.0. The logical NOT operator returns 1.0 if its argument is
|
||||
0.0, else it returns 0.0.
|
||||
returns 0.0. The logical XOR operator will return 1.0 if one of its
|
||||
arguments is zero and the other non-zero, else it returns 0.0. The
|
||||
logical NOT operator returns 1.0 if its argument is 0.0, else it
|
||||
returns 0.0.
|
||||
|
||||
These relational and logical operators can be used as a masking or
|
||||
selection operation in a formula. For example, the number of atoms
|
||||
|
||||
@ -90,3 +90,24 @@ def promote_doc_keywords(content):
|
||||
|
||||
def filter_multiple_horizontal_rules(content):
|
||||
return re.sub(r"----------[\s\n]+----------", '', content)
|
||||
|
||||
|
||||
def merge_preformatted_sections(content):
|
||||
mergable_section_pattern = re.compile(r"\.\. parsed-literal::\n"
|
||||
r"\n"
|
||||
r"(?P<listingA>(( [^\n]+\n)|(^\n))+)\n\s*"
|
||||
r"^\.\. parsed-literal::\n"
|
||||
r"\n"
|
||||
r"(?P<listingB>(( [^\n]+\n)|(^\n))+)\n", re.MULTILINE | re.DOTALL)
|
||||
|
||||
m = mergable_section_pattern.search(content)
|
||||
|
||||
while m:
|
||||
content = mergable_section_pattern.sub(r".. parsed-literal::\n"
|
||||
r"\n"
|
||||
r"\g<listingA>"
|
||||
r"\g<listingB>"
|
||||
r"\n", content)
|
||||
m = mergable_section_pattern.search(content)
|
||||
|
||||
return content
|
||||
|
||||
@ -73,10 +73,13 @@ class RSTMarkup(Markup):
|
||||
def unescape_rst_chars(self, text):
|
||||
text = text.replace('\\*', '*')
|
||||
text = text.replace('\\^', '^')
|
||||
text = text.replace('\\_', '_')
|
||||
text = self.unescape_underscore(text)
|
||||
text = text.replace('\\|', '|')
|
||||
return text
|
||||
|
||||
def unescape_underscore(self, text):
|
||||
return text.replace('\\_', '_')
|
||||
|
||||
def inline_math(self, text):
|
||||
start_pos = text.find("\\(")
|
||||
end_pos = text.find("\\)")
|
||||
@ -136,6 +139,7 @@ class RSTFormatting(Formatting):
|
||||
return content.strip()
|
||||
|
||||
def preformat(self, content):
|
||||
content = self.markup.unescape_underscore(content)
|
||||
if self.indent_level > 0:
|
||||
return self.list_indent("\n.. parsed-literal::\n\n" + self.indent(content.rstrip()), self.indent_level)
|
||||
return "\n.. parsed-literal::\n\n" + self.indent(content.rstrip())
|
||||
@ -355,6 +359,7 @@ class Txt2Rst(TxtParser):
|
||||
self.document_filters.append(lammps_filters.detect_and_add_command_to_index)
|
||||
self.document_filters.append(lammps_filters.filter_multiple_horizontal_rules)
|
||||
self.document_filters.append(lammps_filters.promote_doc_keywords)
|
||||
self.document_filters.append(lammps_filters.merge_preformatted_sections)
|
||||
|
||||
def is_ignored_textblock_begin(self, line):
|
||||
return line.startswith('<!-- HTML_ONLY -->')
|
||||
|
||||
@ -169,6 +169,13 @@ class TestFormatting(unittest.TestCase):
|
||||
" Hello\n"
|
||||
" World\n\n", s)
|
||||
|
||||
def test_preformat_formatting_with_underscore(self):
|
||||
s = self.txt2rst.convert("if MPI.COMM_WORLD.rank == 0:\n"
|
||||
" print(\"Potential energy: \", L.eval(\"pe\")) :pre\n")
|
||||
self.assertEqual("\n.. parsed-literal::\n\n"
|
||||
" if MPI.COMM_WORLD.rank == 0:\n"
|
||||
" print(\"Potential energy: \", L.eval(\"pe\"))\n\n", s)
|
||||
|
||||
def test_header_formatting(self):
|
||||
s = self.txt2rst.convert("Level 1 :h1\n"
|
||||
"Level 2 :h2\n"
|
||||
|
||||
@ -43,7 +43,7 @@ fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi $x 1 1 2.5
|
||||
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi $y 1 1 2.5
|
||||
|
||||
comm_style tiled
|
||||
comm_modify cutoff 7.5
|
||||
comm_modify cutoff 10.0 # because bonds stretch a long ways
|
||||
fix 10 all balance 50 0.9 rcb
|
||||
|
||||
#compute 1 all property/atom proc
|
||||
|
||||
54
examples/balance/in.balance.clock.dynamic
Normal file
54
examples/balance/in.balance.clock.dynamic
Normal file
@ -0,0 +1,54 @@
|
||||
# 3d Lennard-Jones melt
|
||||
|
||||
units lj
|
||||
atom_style atomic
|
||||
processors * 1 1
|
||||
|
||||
lattice fcc 0.8442
|
||||
region box block 0 10 0 10 0 10
|
||||
create_box 3 box
|
||||
create_atoms 1 box
|
||||
mass * 1.0
|
||||
|
||||
region long block 3 6 0 10 0 10
|
||||
set region long type 2
|
||||
|
||||
velocity all create 1.0 87287
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff * * 1.0 1.0 2.5
|
||||
pair_coeff * 2 1.0 1.0 5.0
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify every 2 delay 4 check yes
|
||||
fix p all property/atom d_WEIGHT
|
||||
compute p all property/atom d_WEIGHT
|
||||
fix 0 all balance 50 1.0 shift x 10 1.0 &
|
||||
weight time 1.0 weight store WEIGHT
|
||||
variable maximb equal f_0[1]
|
||||
variable iter equal f_0[2]
|
||||
variable prev equal f_0[3]
|
||||
variable final equal f_0
|
||||
|
||||
#fix 3 all print 50 "${iter} ${prev} ${final} ${maximb}"
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
#dump id all atom 50 dump.melt
|
||||
#dump id all custom 50 dump.lammpstrj id type x y z c_p
|
||||
|
||||
#dump 2 all image 25 image.*.jpg type type &
|
||||
# axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 2 pad 3
|
||||
|
||||
#dump 3 all movie 25 movie.mpg type type &
|
||||
# axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 3 pad 3
|
||||
|
||||
thermo 50
|
||||
run 500
|
||||
run 500
|
||||
fix 0 all balance 50 1.0 shift x 5 1.0 &
|
||||
weight neigh 0.5 weight time 0.66 weight store WEIGHT
|
||||
run 500
|
||||
run 500
|
||||
48
examples/balance/in.balance.clock.static
Normal file
48
examples/balance/in.balance.clock.static
Normal file
@ -0,0 +1,48 @@
|
||||
# 3d Lennard-Jones melt
|
||||
|
||||
units lj
|
||||
atom_style atomic
|
||||
processors * 1 1
|
||||
|
||||
variable factor index 1.0
|
||||
|
||||
lattice fcc 0.8442
|
||||
region box block 0 10 0 10 0 10
|
||||
create_box 3 box
|
||||
create_atoms 1 box
|
||||
mass * 1.0
|
||||
|
||||
region long block 3 6 0 10 0 10
|
||||
set region long type 2
|
||||
|
||||
velocity all create 1.0 87287
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff * * 1.0 1.0 2.5
|
||||
pair_coeff * 2 1.0 1.0 5.0
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify every 2 delay 4 check yes
|
||||
|
||||
group fast type 1
|
||||
group slow type 2
|
||||
balance 1.0 shift x 5 1.1 weight time 1.0 # out unweighted.txt
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
#dump id all atom 50 dump.melt
|
||||
|
||||
#dump 2 all image 25 image.*.jpg type type &
|
||||
# axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 2 pad 3
|
||||
|
||||
#dump 3 all movie 25 movie.mpg type type &
|
||||
# axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 3 pad 3
|
||||
|
||||
thermo 50
|
||||
run 250
|
||||
balance 1.0 shift x 5 1.1 weight time 1.0 # out unweighted.txt
|
||||
run 250
|
||||
balance 1.0 shift x 5 1.1 weight time 1.0 # out unweighted.txt
|
||||
run 250
|
||||
47
examples/balance/in.balance.group.dynamic
Normal file
47
examples/balance/in.balance.group.dynamic
Normal file
@ -0,0 +1,47 @@
|
||||
# 3d Lennard-Jones melt
|
||||
|
||||
units lj
|
||||
atom_style atomic
|
||||
processors * 1 1
|
||||
|
||||
variable factor index 1.0
|
||||
|
||||
lattice fcc 0.8442
|
||||
region box block 0 10 0 10 0 10
|
||||
create_box 3 box
|
||||
create_atoms 1 box
|
||||
mass * 1.0
|
||||
|
||||
region long block 3 6 0 10 0 10
|
||||
set region long type 2
|
||||
|
||||
velocity all create 1.0 87287
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff * * 1.0 1.0 2.5
|
||||
pair_coeff * 2 1.0 1.0 5.0
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify every 2 delay 4 check yes
|
||||
|
||||
group fast type 1
|
||||
group slow type 2
|
||||
balance 1.0 shift x 5 1.1 &
|
||||
weight group 2 fast 1.0 slow ${factor} # out weighted.txt
|
||||
fix 0 all balance 10 1.0 shift x 5 1.1 &
|
||||
weight group 2 fast 1.0 slow ${factor}
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
#dump id all atom 50 dump.melt
|
||||
|
||||
#dump 2 all image 25 image.*.jpg type type &
|
||||
# axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 2 pad 3
|
||||
|
||||
#dump 3 all movie 25 movie.mpg type type &
|
||||
# axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 3 pad 3
|
||||
|
||||
thermo 50
|
||||
run 250
|
||||
54
examples/balance/in.balance.group.static
Normal file
54
examples/balance/in.balance.group.static
Normal file
@ -0,0 +1,54 @@
|
||||
# 3d Lennard-Jones melt
|
||||
|
||||
units lj
|
||||
atom_style atomic
|
||||
processors * 1 1
|
||||
|
||||
variable factor index 1.0
|
||||
|
||||
lattice fcc 0.8442
|
||||
region box block 0 10 0 10 0 10
|
||||
create_box 3 box
|
||||
create_atoms 1 box
|
||||
mass * 1.0
|
||||
|
||||
region long block 3 6 0 10 0 10
|
||||
set region long type 2
|
||||
|
||||
velocity all create 1.0 87287
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff * * 1.0 1.0 2.5
|
||||
pair_coeff * 2 1.0 1.0 5.0
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify every 2 delay 4 check yes
|
||||
|
||||
balance 1.0 shift x 5 1.1 # out unweighted.txt
|
||||
|
||||
balance 1.0 x uniform
|
||||
|
||||
variable weight atom (type==1)*1.0+(type==2)*v_factor
|
||||
balance 1.0 shift x 5 1.1 weight var weight # out weighted_var.txt
|
||||
|
||||
balance 1.0 x uniform
|
||||
|
||||
group fast type 1
|
||||
group slow type 2
|
||||
balance 1.0 shift x 5 1.1 &
|
||||
weight group 2 fast 1.0 slow ${factor} # out weighted_group.txt
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
#dump id all atom 50 dump.melt
|
||||
|
||||
#dump 2 all image 25 image.*.jpg type type &
|
||||
# axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 2 pad 3
|
||||
|
||||
#dump 3 all movie 25 movie.mpg type type &
|
||||
# axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 3 pad 3
|
||||
|
||||
thermo 50
|
||||
run 250
|
||||
47
examples/balance/in.balance.kspace
Normal file
47
examples/balance/in.balance.kspace
Normal file
@ -0,0 +1,47 @@
|
||||
# 3d Lennard-Jones melt
|
||||
|
||||
units lj
|
||||
#atom_style charge
|
||||
processors * 1 1
|
||||
|
||||
lattice fcc 0.8442
|
||||
region box block 0 10 0 10 0 10
|
||||
create_box 3 box
|
||||
create_atoms 1 box
|
||||
mass * 1.0
|
||||
|
||||
region long block 3 6 0 10 0 10
|
||||
set region long type 2
|
||||
#set type 1:2 charge 0.0
|
||||
|
||||
velocity all create 1.0 87287
|
||||
|
||||
pair_style lj/long/coul/long long off 2.5
|
||||
pair_coeff * * 1.0 1.0 2.5
|
||||
pair_coeff * 2 1.0 1.0 5.0
|
||||
|
||||
kspace_style pppm/disp 1.0e-4
|
||||
kspace_modify gewald/disp 0.1
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify every 2 delay 4 check yes
|
||||
|
||||
group fast type 1
|
||||
group slow type 2
|
||||
fix 0 all balance 20 1.0 shift x 5 1.0 &
|
||||
weight group 2 fast 1.0 slow 2.0 weight time 0.66
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
#dump id all atom 50 dump.melt
|
||||
|
||||
#dump 2 all image 25 image.*.jpg type type &
|
||||
# axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 2 pad 3
|
||||
|
||||
#dump 3 all movie 25 movie.mpg type type &
|
||||
# axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 3 pad 3
|
||||
|
||||
thermo 50
|
||||
run 500
|
||||
53
examples/balance/in.balance.neigh.dynamic
Normal file
53
examples/balance/in.balance.neigh.dynamic
Normal file
@ -0,0 +1,53 @@
|
||||
# 3d Lennard-Jones melt
|
||||
|
||||
units lj
|
||||
atom_style atomic
|
||||
processors * 1 1
|
||||
|
||||
lattice fcc 0.8442
|
||||
region box block 0 10 0 10 0 10
|
||||
create_box 3 box
|
||||
create_atoms 1 box
|
||||
mass * 1.0
|
||||
|
||||
region long block 3 6 0 10 0 10
|
||||
set region long type 2
|
||||
|
||||
velocity all create 1.0 87287
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff * * 1.0 1.0 2.5
|
||||
pair_coeff * 2 1.0 1.0 5.0
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify every 2 delay 4 check yes
|
||||
fix p all property/atom d_WEIGHT
|
||||
fix 0 all balance 50 1.0 shift x 5 1.0 &
|
||||
weight neigh 0.8 weight store WEIGHT
|
||||
compute p all property/atom d_WEIGHT
|
||||
variable maximb equal f_0[1]
|
||||
variable iter equal f_0[2]
|
||||
variable prev equal f_0[3]
|
||||
variable final equal f_0
|
||||
|
||||
#fix 3 all print 50 "${iter} ${prev} ${final} ${maximb}"
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
#dump id all atom 50 dump.melt
|
||||
#dump id all custom 50 dump.lammpstrj id type x y z c_p
|
||||
|
||||
#dump 2 all image 25 image.*.jpg type type &
|
||||
# axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 2 pad 3
|
||||
|
||||
#dump 3 all movie 25 movie.mp4 c_p type &
|
||||
# axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 3 pad 3 amap 0.0 2.0 cf 0.1 3 min blue 0.5 green max red
|
||||
|
||||
thermo 50
|
||||
run 500
|
||||
run 500
|
||||
run 500
|
||||
run 500
|
||||
|
||||
53
examples/balance/in.balance.neigh.rcb
Normal file
53
examples/balance/in.balance.neigh.rcb
Normal file
@ -0,0 +1,53 @@
|
||||
# 3d Lennard-Jones melt
|
||||
|
||||
units lj
|
||||
atom_style atomic
|
||||
processors * 1 1
|
||||
|
||||
lattice fcc 0.8442
|
||||
region box block 0 10 0 10 0 10
|
||||
create_box 3 box
|
||||
create_atoms 1 box
|
||||
mass * 1.0
|
||||
|
||||
region long block 3 6 0 10 0 10
|
||||
set region long type 2
|
||||
|
||||
velocity all create 1.0 87287
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff * * 1.0 1.0 2.5
|
||||
pair_coeff * 2 1.0 1.0 5.0
|
||||
|
||||
comm_style tiled
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify every 2 delay 4 check yes
|
||||
fix p all property/atom d_WEIGHT
|
||||
fix 0 all balance 50 1.0 rcb weight neigh 0.8 weight store WEIGHT
|
||||
compute p all property/atom d_WEIGHT
|
||||
variable maximb equal f_0[1]
|
||||
variable iter equal f_0[2]
|
||||
variable prev equal f_0[3]
|
||||
variable final equal f_0
|
||||
|
||||
#fix 3 all print 50 "${iter} ${prev} ${final} ${maximb}"
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
#dump id all atom 50 dump.melt
|
||||
#dump id all custom 50 dump.lammpstrj id type x y z c_p
|
||||
|
||||
#dump 2 all image 25 image.*.jpg type type &
|
||||
# axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 2 pad 3
|
||||
|
||||
#dump 3 all movie 25 movie.mpg type type &
|
||||
# axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 3 pad 3
|
||||
|
||||
thermo 50
|
||||
|
||||
run 250
|
||||
run 250
|
||||
|
||||
51
examples/balance/in.balance.neigh.static
Normal file
51
examples/balance/in.balance.neigh.static
Normal file
@ -0,0 +1,51 @@
|
||||
# 3d Lennard-Jones melt
|
||||
|
||||
units lj
|
||||
atom_style atomic
|
||||
processors * 1 1
|
||||
|
||||
variable factor index 1.0
|
||||
|
||||
lattice fcc 0.8442
|
||||
region box block 0 10 0 10 0 10
|
||||
create_box 3 box
|
||||
create_atoms 1 box
|
||||
mass * 1.0
|
||||
|
||||
region long block 3 6 0 10 0 10
|
||||
set region long type 2
|
||||
|
||||
velocity all create 1.0 87287
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff * * 1.0 1.0 2.5
|
||||
pair_coeff * 2 1.0 1.0 5.0
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify every 2 delay 4 check yes
|
||||
|
||||
balance 1.0 shift x 10 1.0 weight neigh 0.8 # out weighted_var.txt
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
#dump id all atom 50 dump.melt
|
||||
|
||||
#dump 2 all image 25 image.*.jpg type type &
|
||||
# axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 2 pad 3
|
||||
|
||||
#dump 3 all movie 25 movie.mpg type type &
|
||||
# axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 3 pad 3
|
||||
|
||||
thermo 50
|
||||
run 250 post no
|
||||
balance 1.0 shift x 10 1.0 weight neigh 0.8
|
||||
run 250 post no
|
||||
balance 1.0 shift x 10 1.0 weight neigh 0.8
|
||||
run 250 post no
|
||||
balance 1.0 shift x 10 1.0 weight neigh 0.8 weight time 0.6
|
||||
run 250
|
||||
balance 1.0 shift x 10 1.0 weight neigh 0.8 weight time 0.6
|
||||
run 250
|
||||
|
||||
66
examples/balance/in.balance.var.dynamic
Normal file
66
examples/balance/in.balance.var.dynamic
Normal file
@ -0,0 +1,66 @@
|
||||
# 3d Lennard-Jones melt
|
||||
|
||||
units lj
|
||||
atom_style atomic
|
||||
processors * 1 1
|
||||
|
||||
lattice fcc 0.8442
|
||||
region box block 0 10 0 10 0 10
|
||||
create_box 3 box
|
||||
create_atoms 1 box
|
||||
mass * 1.0
|
||||
|
||||
region long block 3 6 0 10 0 10
|
||||
set region long type 2
|
||||
|
||||
velocity all create 1.0 87287
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff * * 1.0 1.0 2.5
|
||||
pair_coeff * 2 1.0 1.0 5.0
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify every 2 delay 4 check yes
|
||||
fix p all property/atom d_WEIGHT
|
||||
compute p all property/atom d_WEIGHT
|
||||
|
||||
group fast type 1
|
||||
group slow type 2
|
||||
balance 1.0 shift x 10 1.0 &
|
||||
weight group 2 fast 0.8 slow 2.5 weight store WEIGHT
|
||||
variable lastweight atom c_p
|
||||
|
||||
fix 0 all balance 50 1.0 shift x 10 1.0 &
|
||||
weight var lastweight weight time 0.5 weight store WEIGHT
|
||||
variable maximb equal f_0[1]
|
||||
variable iter equal f_0[2]
|
||||
variable prev equal f_0[3]
|
||||
variable final equal f_0
|
||||
|
||||
#fix 3 all print 50 "${iter} ${prev} ${final} ${maximb}"
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
#dump id all atom 50 dump.melt
|
||||
#dump id all custom 50 dump.lammpstrj id type x y z c_p
|
||||
|
||||
#dump 2 all image 25 image.*.jpg type type &
|
||||
# axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 2 pad 3
|
||||
|
||||
#dump 3 all movie 25 movie.mpg type type &
|
||||
# axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 3 pad 3
|
||||
|
||||
thermo 50
|
||||
run 500
|
||||
run 500
|
||||
|
||||
balance 1.0 shift x 10 1.0 &
|
||||
weight group 2 fast 0.8 slow 2.5 weight store WEIGHT
|
||||
|
||||
fix 0 all balance 50 1.0 shift x 5 1.0 &
|
||||
weight var lastweight weight neigh 0.5 weight store WEIGHT
|
||||
|
||||
run 500
|
||||
run 500
|
||||
@ -1,225 +0,0 @@
|
||||
LAMMPS (15 Feb 2016)
|
||||
# 2d circle of particles inside a box with LJ walls
|
||||
|
||||
variable b index 0
|
||||
|
||||
variable x index 50
|
||||
variable y index 20
|
||||
variable d index 20
|
||||
variable v index 5
|
||||
variable w index 2
|
||||
|
||||
units lj
|
||||
dimension 2
|
||||
atom_style bond
|
||||
boundary f f p
|
||||
|
||||
lattice hex 0.85
|
||||
Lattice spacing in x,y,z = 1.16553 2.01877 1.16553
|
||||
region box block 0 $x 0 $y -0.5 0.5
|
||||
region box block 0 50 0 $y -0.5 0.5
|
||||
region box block 0 50 0 20 -0.5 0.5
|
||||
create_box 1 box bond/types 1 extra/bond/per/atom 6
|
||||
Created orthogonal box = (0 0 -0.582767) to (58.2767 40.3753 0.582767)
|
||||
1 by 1 by 1 MPI processor grid
|
||||
region circle sphere $(v_d/2+1) $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
|
||||
region circle sphere 11 $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
|
||||
region circle sphere 11 6.7735026918962581988 0.0 $(v_d/2)
|
||||
region circle sphere 11 6.7735026918962581988 0.0 10
|
||||
create_atoms 1 region circle
|
||||
Created 361 atoms
|
||||
mass 1 1.0
|
||||
|
||||
velocity all create 0.5 87287 loop geom
|
||||
velocity all set $v $w 0 sum yes
|
||||
velocity all set 5 $w 0 sum yes
|
||||
velocity all set 5 2 0 sum yes
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff 1 1 10.0 1.0 2.5
|
||||
|
||||
bond_style harmonic
|
||||
bond_coeff 1 10.0 1.2
|
||||
|
||||
# need to preserve 1-3, 1-4 pairwise interactions during hard collisions
|
||||
|
||||
special_bonds lj/coul 0 1 1
|
||||
0 = max # of 1-2 neighbors
|
||||
1 = max # of special neighbors
|
||||
create_bonds all all 1 1.0 1.5
|
||||
Neighbor list info ...
|
||||
2 neighbor list requests
|
||||
update every 1 steps, delay 10 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 2.8
|
||||
ghost atom cutoff = 2.8
|
||||
binsize = 1.4 -> bins = 42 29 1
|
||||
Added 1014 bonds, new total = 1014
|
||||
6 = max # of 1-2 neighbors
|
||||
6 = max # of special neighbors
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify delay 0 every 1 check yes
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi $x 1 1 2.5
|
||||
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi 50 1 1 2.5
|
||||
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi $y 1 1 2.5
|
||||
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi 20 1 1 2.5
|
||||
|
||||
comm_style tiled
|
||||
comm_modify cutoff 7.5
|
||||
fix 10 all balance 50 0.9 rcb
|
||||
|
||||
#compute 1 all property/atom proc
|
||||
#variable p atom (c_1%10)+1
|
||||
#dump 2 all custom 50 tmp.dump id v_p x y z
|
||||
|
||||
#dump 3 all image 50 image.*.jpg v_p type bond atom 0.25 # adiam 1.0 view 0 0 zoom 1.8 subbox yes 0.02
|
||||
#variable colors string # "red green blue yellow white # purple pink orange lime gray"
|
||||
#dump_modify 3 pad 5 amap 0 10 sa 1 10 ${colors}
|
||||
|
||||
thermo_style custom step temp epair press f_10[3] f_10
|
||||
thermo 100
|
||||
|
||||
run 10000
|
||||
Neighbor list info ...
|
||||
1 neighbor list requests
|
||||
update every 1 steps, delay 0 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 2.8
|
||||
ghost atom cutoff = 7.5
|
||||
binsize = 1.4 -> bins = 42 29 1
|
||||
Memory usage per processor = 4.44301 Mbytes
|
||||
Step Temp E_pair Press 10[3] 10
|
||||
0 25.701528 -2.2032569 3.1039469 1 1
|
||||
100 27.623422 -6.228166 2.6542136 1 1
|
||||
200 33.35302 -15.746749 3.2018248 1 1
|
||||
300 39.17734 -24.1557 4.9116986 1 1
|
||||
400 41.660701 -27.615203 8.6214678 1 1
|
||||
500 37.154935 -24.096962 3.2656162 1 1
|
||||
600 35.061294 -21.52655 2.3693223 1 1
|
||||
700 37.204395 -22.313267 2.7108913 1 1
|
||||
800 39.050704 -24.972147 5.5398741 1 1
|
||||
900 38.37275 -24.777769 3.9291488 1 1
|
||||
1000 39.147816 -26.003699 4.3586203 1 1
|
||||
1100 36.084337 -24.88638 4.5496174 1 1
|
||||
1200 32.404559 -20.810803 6.0760128 1 1
|
||||
1300 32.625538 -19.709411 4.3718289 1 1
|
||||
1400 32.246777 -18.785184 3.435959 1 1
|
||||
1500 29.174368 -17.434726 2.2702916 1 1
|
||||
1600 27.359273 -15.40756 1.033659 1 1
|
||||
1700 26.046626 -14.318045 0.87714473 1 1
|
||||
1800 24.540401 -13.017686 0.84464169 1 1
|
||||
1900 26.259688 -12.777739 0.80954004 1 1
|
||||
2000 27.491023 -13.363863 1.4519188 1 1
|
||||
2100 27.839831 -13.709118 3.0184763 1 1
|
||||
2200 26.669065 -12.710422 1.4560094 1 1
|
||||
2300 26.86742 -12.730386 0.16986139 1 1
|
||||
2400 26.375504 -12.476682 1.907352 1 1
|
||||
2500 26.581263 -12.530908 1.5507765 1 1
|
||||
2600 27.67091 -12.922702 2.0391206 1 1
|
||||
2700 27.158784 -13.306789 3.7355268 1 1
|
||||
2800 25.635671 -13.502047 2.9431633 1 1
|
||||
2900 24.648357 -12.388002 0.44910075 1 1
|
||||
3000 22.988768 -10.685349 0.37214853 1 1
|
||||
3100 21.788719 -10.171928 -0.95734833 1 1
|
||||
3200 22.707514 -9.6682633 -0.32868418 1 1
|
||||
3300 22.907772 -10.612766 -0.024319089 1 1
|
||||
3400 24.276426 -10.802246 0.44731188 1 1
|
||||
3500 25.086959 -10.797849 2.3218091 1 1
|
||||
3600 26.064365 -12.589537 1.2460738 1 1
|
||||
3700 24.656426 -11.956895 0.57862216 1 1
|
||||
3800 22.316856 -11.174148 -0.7567936 1 1
|
||||
3900 22.590299 -9.5928781 0.4127727 1 1
|
||||
4000 22.353461 -9.5887736 -0.34247396 1 1
|
||||
4100 24.103395 -9.76584 0.98989862 1 1
|
||||
4200 23.92261 -10.566828 -0.71536268 1 1
|
||||
4300 24.44409 -11.358378 0.37166197 1 1
|
||||
4400 24.772419 -11.324888 0.26732853 1 1
|
||||
4500 23.150748 -11.309892 -0.43134573 1 1
|
||||
4600 24.008361 -10.212365 0.43277527 1 1
|
||||
4700 25.107401 -9.5753673 0.020406689 1 1
|
||||
4800 23.658604 -8.9131426 0.46554745 1 1
|
||||
4900 22.530251 -9.023311 -0.014405315 1 1
|
||||
5000 23.110692 -9.6567397 0.9033234 1 1
|
||||
5100 23.760144 -9.7623416 0.32059726 1 1
|
||||
5200 25.048012 -9.6748253 0.66411561 1 1
|
||||
5300 24.09835 -9.7867216 0.61128267 1 1
|
||||
5400 22.984982 -9.9464053 0.28096544 1 1
|
||||
5500 22.502003 -9.9294451 -0.53666181 1 1
|
||||
5600 23.712298 -10.054318 0.64334761 1 1
|
||||
5700 23.350796 -10.217344 2.1979894 1 1
|
||||
5800 25.246549 -12.458753 0.055553025 1 1
|
||||
5900 24.422272 -10.641177 0.82506839 1 1
|
||||
6000 22.478315 -10.629525 -0.774321 1 1
|
||||
6100 22.970846 -10.218868 0.59819592 1 1
|
||||
6200 24.500063 -10.355481 0.55427078 1 1
|
||||
6300 22.358071 -9.9041539 0.89500518 1 1
|
||||
6400 23.924951 -11.121442 0.045999129 1 1
|
||||
6500 24.83773 -10.464191 2.0048038 1 1
|
||||
6600 24.752158 -9.9939162 0.53794465 1 1
|
||||
6700 23.073765 -9.3662561 0.38618685 1 1
|
||||
6800 21.940219 -8.4948475 -0.25184019 1 1
|
||||
6900 22.23783 -8.8668868 0.0072863367 1 1
|
||||
7000 25.667836 -10.473211 0.59852886 1 1
|
||||
7100 23.352123 -9.0862268 0.85289283 1 1
|
||||
7200 24.072107 -9.4020576 0.090222808 1 1
|
||||
7300 22.806746 -8.4687857 -0.46892989 1 1
|
||||
7400 24.798425 -9.1144357 -0.38738146 1 1
|
||||
7500 24.748499 -9.1560558 0.94929896 1 1
|
||||
7600 25.364753 -10.176533 0.2649225 1 1
|
||||
7700 25.137988 -9.6617897 1.3920543 1 1
|
||||
7800 25.502583 -10.320832 0.64812816 1 1
|
||||
7900 24.5208 -9.9466543 -0.084071026 1 1
|
||||
8000 24.653522 -10.312942 0.32535023 1 1
|
||||
8100 23.129565 -9.6250435 0.016356303 1 1
|
||||
8200 23.82421 -9.7608023 0.11631418 1 1
|
||||
8300 25.081262 -9.3510452 0.92337854 1 1
|
||||
8400 24.328205 -9.2875396 0.28266968 1 1
|
||||
8500 25.041711 -11.254976 -0.21368615 1 1
|
||||
8600 24.111473 -9.0389585 1.2102938 1 1
|
||||
8700 23.50066 -9.0926498 0.78819229 1 1
|
||||
8800 23.840962 -9.3434474 0.091313007 1 1
|
||||
8900 23.081841 -9.0635966 0.56672001 1 1
|
||||
9000 24.712103 -9.3243213 0.60301629 1 1
|
||||
9100 24.457422 -9.439298 -0.60457515 1 1
|
||||
9200 25.070662 -9.1945782 1.2399235 1 1
|
||||
9300 25.019869 -8.7910068 0.42340497 1 1
|
||||
9400 24.23662 -9.3111098 -0.75379175 1 1
|
||||
9500 24.836827 -8.7324281 0.81857501 1 1
|
||||
9600 24.901993 -8.6624128 0.84890877 1 1
|
||||
9700 24.936686 -8.9869503 1.9627894 1 1
|
||||
9800 25.393368 -9.8538595 0.45344428 1 1
|
||||
9900 25.942336 -9.7854728 0.68352091 1 1
|
||||
10000 24.636319 -9.3369442 0.62793231 1 1
|
||||
Loop time of 1.67474 on 1 procs for 10000 steps with 361 atoms
|
||||
|
||||
Performance: 2579511.004 tau/day, 5971.090 timesteps/s
|
||||
99.8% CPU use with 1 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.47884 | 0.47884 | 0.47884 | 0.0 | 28.59
|
||||
Bond | 0.24918 | 0.24918 | 0.24918 | 0.0 | 14.88
|
||||
Neigh | 0.82974 | 0.82974 | 0.82974 | 0.0 | 49.54
|
||||
Comm | 0.01265 | 0.01265 | 0.01265 | 0.0 | 0.76
|
||||
Output | 0.00085878 | 0.00085878 | 0.00085878 | 0.0 | 0.05
|
||||
Modify | 0.075636 | 0.075636 | 0.075636 | 0.0 | 4.52
|
||||
Other | | 0.02783 | | | 1.66
|
||||
|
||||
Nlocal: 361 ave 361 max 361 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Nghost: 0 ave 0 max 0 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Neighs: 2421 ave 2421 max 2421 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
|
||||
Total # of neighbors = 2421
|
||||
Ave neighs/atom = 6.70637
|
||||
Ave special neighs/atom = 5.61773
|
||||
Neighbor list builds = 4937
|
||||
Dangerous builds = 5
|
||||
Total wall time: 0:00:01
|
||||
@ -1,225 +0,0 @@
|
||||
LAMMPS (15 Feb 2016)
|
||||
# 2d circle of particles inside a box with LJ walls
|
||||
|
||||
variable b index 0
|
||||
|
||||
variable x index 50
|
||||
variable y index 20
|
||||
variable d index 20
|
||||
variable v index 5
|
||||
variable w index 2
|
||||
|
||||
units lj
|
||||
dimension 2
|
||||
atom_style bond
|
||||
boundary f f p
|
||||
|
||||
lattice hex 0.85
|
||||
Lattice spacing in x,y,z = 1.16553 2.01877 1.16553
|
||||
region box block 0 $x 0 $y -0.5 0.5
|
||||
region box block 0 50 0 $y -0.5 0.5
|
||||
region box block 0 50 0 20 -0.5 0.5
|
||||
create_box 1 box bond/types 1 extra/bond/per/atom 6
|
||||
Created orthogonal box = (0 0 -0.582767) to (58.2767 40.3753 0.582767)
|
||||
2 by 2 by 1 MPI processor grid
|
||||
region circle sphere $(v_d/2+1) $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
|
||||
region circle sphere 11 $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
|
||||
region circle sphere 11 6.7735026918962581988 0.0 $(v_d/2)
|
||||
region circle sphere 11 6.7735026918962581988 0.0 10
|
||||
create_atoms 1 region circle
|
||||
Created 361 atoms
|
||||
mass 1 1.0
|
||||
|
||||
velocity all create 0.5 87287 loop geom
|
||||
velocity all set $v $w 0 sum yes
|
||||
velocity all set 5 $w 0 sum yes
|
||||
velocity all set 5 2 0 sum yes
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff 1 1 10.0 1.0 2.5
|
||||
|
||||
bond_style harmonic
|
||||
bond_coeff 1 10.0 1.2
|
||||
|
||||
# need to preserve 1-3, 1-4 pairwise interactions during hard collisions
|
||||
|
||||
special_bonds lj/coul 0 1 1
|
||||
0 = max # of 1-2 neighbors
|
||||
1 = max # of special neighbors
|
||||
create_bonds all all 1 1.0 1.5
|
||||
Neighbor list info ...
|
||||
2 neighbor list requests
|
||||
update every 1 steps, delay 10 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 2.8
|
||||
ghost atom cutoff = 2.8
|
||||
binsize = 1.4 -> bins = 42 29 1
|
||||
Added 1014 bonds, new total = 1014
|
||||
6 = max # of 1-2 neighbors
|
||||
6 = max # of special neighbors
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify delay 0 every 1 check yes
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi $x 1 1 2.5
|
||||
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi 50 1 1 2.5
|
||||
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi $y 1 1 2.5
|
||||
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi 20 1 1 2.5
|
||||
|
||||
comm_style tiled
|
||||
comm_modify cutoff 7.5
|
||||
fix 10 all balance 50 0.9 rcb
|
||||
|
||||
#compute 1 all property/atom proc
|
||||
#variable p atom (c_1%10)+1
|
||||
#dump 2 all custom 50 tmp.dump id v_p x y z
|
||||
|
||||
#dump 3 all image 50 image.*.jpg v_p type bond atom 0.25 # adiam 1.0 view 0 0 zoom 1.8 subbox yes 0.02
|
||||
#variable colors string # "red green blue yellow white # purple pink orange lime gray"
|
||||
#dump_modify 3 pad 5 amap 0 10 sa 1 10 ${colors}
|
||||
|
||||
thermo_style custom step temp epair press f_10[3] f_10
|
||||
thermo 100
|
||||
|
||||
run 10000
|
||||
Neighbor list info ...
|
||||
1 neighbor list requests
|
||||
update every 1 steps, delay 0 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 2.8
|
||||
ghost atom cutoff = 7.5
|
||||
binsize = 1.4 -> bins = 42 29 1
|
||||
Memory usage per processor = 4.49421 Mbytes
|
||||
Step Temp E_pair Press 10[3] 10
|
||||
0 25.701528 -2.2032569 3.1039469 3.2354571 1.0526316
|
||||
100 27.623422 -6.228166 2.6542136 1.2631579 1.0083102
|
||||
200 33.35302 -15.746749 3.2018248 1.2963989 1.0193906
|
||||
300 39.17734 -24.1557 4.9116986 1.2963989 1.0193906
|
||||
400 41.660701 -27.615203 8.6214679 1.3518006 1.0083102
|
||||
500 37.154928 -24.096947 3.2656178 1.3296399 1.0193906
|
||||
600 35.059889 -21.524279 2.372849 1.3296399 1.0083102
|
||||
700 36.70516 -21.98396 3.2995108 1.3296399 1.0083102
|
||||
800 39.53521 -25.672748 4.3257712 1.3961219 1.0083102
|
||||
900 38.566797 -24.778382 4.1874914 1.3739612 1.0083102
|
||||
1000 37.506157 -25.381025 5.6634589 1.4182825 1.0193906
|
||||
1100 34.186888 -23.460558 5.2123037 1.2963989 1.0083102
|
||||
1200 33.302788 -22.509552 4.9394032 1.1745152 1.0193906
|
||||
1300 33.271956 -22.831342 4.5519649 1.1966759 1.0083102
|
||||
1400 30.344677 -20.654604 4.1641375 1.0969529 1.0193906
|
||||
1500 27.292624 -18.180523 1.0686706 1.1412742 1.0083102
|
||||
1600 26.787948 -15.907011 1.7236133 1.1745152 1.0193906
|
||||
1700 25.708419 -15.568774 0.73006531 1.1080332 1.0193906
|
||||
1800 26.523196 -14.641077 0.78443231 1.1301939 1.0083102
|
||||
1900 25.151151 -13.927975 1.1760729 1.1080332 1.0193906
|
||||
2000 27.637036 -15.055467 1.5903524 1.1301939 1.0083102
|
||||
2100 27.642772 -14.038356 2.4101976 1.2077562 1.0083102
|
||||
2200 27.178261 -13.277262 1.9252291 1.1745152 1.0193906
|
||||
2300 25.615526 -12.67851 0.88527229 1.1634349 1.0083102
|
||||
2400 24.918218 -13.029669 0.95714212 1.1966759 1.0193906
|
||||
2500 27.302154 -13.02629 1.3556788 1.1080332 1.0193906
|
||||
2600 26.798157 -13.78042 2.703198 1.1855956 1.0083102
|
||||
2700 27.24573 -16.504845 3.1771274 1.1523546 1.0193906
|
||||
2800 24.592313 -14.795322 1.6473982 1.0969529 1.0193906
|
||||
2900 22.803769 -13.043913 0.71978239 1.0969529 1.0083102
|
||||
3000 21.388681 -13.323114 -1.3437735 1.0858726 1.0083102
|
||||
3100 21.929044 -11.627262 -0.38509856 1.1191136 1.0083102
|
||||
3200 22.350115 -10.438826 0.7833392 1.0526316 1.0083102
|
||||
3300 22.619011 -9.9110914 1.4143766 1.1191136 1.0193906
|
||||
3400 24.251234 -11.712256 1.4299187 1.0969529 1.0193906
|
||||
3500 25.633796 -12.609976 1.4809529 1.0969529 1.0083102
|
||||
3600 23.070279 -11.178798 0.35315388 1.1191136 1.0083102
|
||||
3700 22.635771 -10.360523 0.060253018 1.1412742 1.0193906
|
||||
3800 20.746426 -9.7066538 0.24549731 1.0526316 1.0083102
|
||||
3900 22.467121 -10.469368 0.9854352 1.0969529 1.0193906
|
||||
4000 22.658639 -10.781605 0.014232783 1.1191136 1.0083102
|
||||
4100 22.839698 -10.528796 1.3995223 1.0526316 1.0083102
|
||||
4200 23.52621 -12.150065 0.74863439 1.0747922 1.0193906
|
||||
4300 24.401948 -11.703236 0.25019621 1.0637119 1.0193906
|
||||
4400 22.769001 -11.763045 -0.033044917 1.1412742 1.0083102
|
||||
4500 22.170178 -11.572473 -0.40444128 1.0526316 1.0083102
|
||||
4600 22.409231 -10.761099 -0.012942618 1.0747922 1.0083102
|
||||
4700 22.953641 -10.999181 0.17199357 1.0637119 1.0083102
|
||||
4800 22.746977 -10.69943 -0.050664647 1.0526316 1.0083102
|
||||
4900 23.784023 -10.353932 0.55400224 1.0747922 1.0304709
|
||||
5000 23.250563 -11.567067 -0.23735032 1.0637119 1.0083102
|
||||
5100 22.521138 -10.661998 0.50094359 1.0747922 1.0083102
|
||||
5200 21.318659 -9.5996948 0.75683786 1.0637119 1.0193906
|
||||
5300 21.603355 -10.042239 -0.2376815 1.0637119 1.0083102
|
||||
5400 21.350407 -10.181041 -0.87085628 1.1745152 1.0193906
|
||||
5500 22.430002 -10.535576 0.47962005 1.1191136 1.0193906
|
||||
5600 22.459036 -11.914086 0.47719353 1.0858726 1.0193906
|
||||
5700 23.348257 -12.888911 0.55511547 1.0858726 1.0193906
|
||||
5800 23.357742 -12.328566 0.734193 1.0526316 1.0193906
|
||||
5900 24.002277 -11.439187 0.23688862 1.0858726 1.0193906
|
||||
6000 22.398563 -10.682615 0.28777592 1.0747922 1.0193906
|
||||
6100 22.23883 -10.838986 -0.17956279 1.1080332 1.0083102
|
||||
6200 21.930735 -11.182485 0.044031465 1.0526316 1.0193906
|
||||
6300 22.658226 -11.142419 0.060550217 1.0526316 1.0193906
|
||||
6400 22.375935 -11.1764 -0.027267206 1.0526316 1.0193906
|
||||
6500 21.553541 -9.9609653 1.0562139 1.0858726 1.0193906
|
||||
6600 23.339323 -10.988956 0.19462502 1.0526316 1.0083102
|
||||
6700 22.506968 -11.276791 0.50225378 1.0969529 1.0083102
|
||||
6800 22.991741 -10.292043 1.3278137 1.0858726 1.0193906
|
||||
6900 22.716461 -10.540264 1.090723 1.0304709 1.0083102
|
||||
7000 20.88433 -10.566053 -0.47976012 1.0969529 1.0193906
|
||||
7100 22.034864 -10.27774 0.24169213 1.0193906 1.0083102
|
||||
7200 23.107403 -10.304771 0.39888005 1.0969529 1.0304709
|
||||
7300 22.734104 -9.8038963 1.1986757 1.0858726 1.0083102
|
||||
7400 23.566402 -10.560548 1.0213434 1.1080332 1.0193906
|
||||
7500 23.651346 -10.596902 1.290057 1.0969529 1.0083102
|
||||
7600 23.181407 -10.247073 0.80701327 1.0526316 1.0083102
|
||||
7700 23.778698 -10.659208 0.54327672 1.0304709 1.0193906
|
||||
7800 22.655159 -10.183303 0.81382393 1.0747922 1.0193906
|
||||
7900 22.897008 -10.849819 0.56424197 1.0415512 1.0083102
|
||||
8000 23.698074 -10.398048 0.42170034 1.0747922 1.0083102
|
||||
8100 22.726563 -9.8563277 0.30293638 1.0193906 1.0193906
|
||||
8200 23.424699 -10.687885 0.54222367 1.0415512 1.0083102
|
||||
8300 22.921826 -10.919492 0.55264172 1.0747922 1.0083102
|
||||
8400 23.220159 -9.7725217 1.2872547 1.1080332 1.0083102
|
||||
8500 23.606204 -9.7070499 1.0340181 1.0747922 1.0193906
|
||||
8600 23.008166 -10.451507 -0.42524326 1.0747922 1.0083102
|
||||
8700 22.4959 -10.278782 0.19535494 1.0858726 1.0083102
|
||||
8800 25.153658 -10.757 1.5966743 1.0193906 1.0193906
|
||||
8900 23.206798 -10.486994 1.2031737 1.0637119 1.0083102
|
||||
9000 22.726684 -10.406196 0.10165144 1.0858726 1.0304709
|
||||
9100 22.504045 -9.638919 -0.80560991 1.0747922 1.0083102
|
||||
9200 21.431928 -9.073801 0.3773795 1.0415512 1.0193906
|
||||
9300 23.596502 -11.045041 -0.3135787 1.0858726 1.0083102
|
||||
9400 25.308669 -11.931174 1.3143518 1.0526316 1.0193906
|
||||
9500 24.394499 -10.661499 0.82236963 1.0969529 1.0193906
|
||||
9600 21.987451 -9.5632699 0.30728292 1.0858726 1.0193906
|
||||
9700 22.150748 -9.5707928 -0.1239396 1.0526316 1.0193906
|
||||
9800 23.347328 -9.7899306 0.29737715 1.0193906 1.0083102
|
||||
9900 20.310207 -9.4839992 -1.2980277 1.0193906 1.0193906
|
||||
10000 22.978427 -9.9593786 -0.45943368 1.0526316 1.0083102
|
||||
Loop time of 0.815364 on 4 procs for 10000 steps with 361 atoms
|
||||
|
||||
Performance: 5298244.819 tau/day, 12264.456 timesteps/s
|
||||
98.9% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.12547 | 0.13632 | 0.14796 | 2.6 | 16.72
|
||||
Bond | 0.05547 | 0.06023 | 0.064582 | 1.7 | 7.39
|
||||
Neigh | 0.28201 | 0.28972 | 0.298 | 1.1 | 35.53
|
||||
Comm | 0.16858 | 0.19467 | 0.22096 | 4.3 | 23.88
|
||||
Output | 0.0017931 | 0.0019639 | 0.0023253 | 0.5 | 0.24
|
||||
Modify | 0.039718 | 0.040559 | 0.041364 | 0.4 | 4.97
|
||||
Other | | 0.09189 | | | 11.27
|
||||
|
||||
Nlocal: 90.25 ave 91 max 90 min
|
||||
Histogram: 3 0 0 0 0 0 0 0 0 1
|
||||
Nghost: 195.25 ave 202 max 185 min
|
||||
Histogram: 1 0 0 0 0 1 0 0 1 1
|
||||
Neighs: 629.5 ave 731 max 543 min
|
||||
Histogram: 1 1 0 0 0 0 1 0 0 1
|
||||
|
||||
Total # of neighbors = 2518
|
||||
Ave neighs/atom = 6.97507
|
||||
Ave special neighs/atom = 5.61773
|
||||
Neighbor list builds = 4874
|
||||
Dangerous builds = 0
|
||||
Total wall time: 0:00:00
|
||||
@ -1,524 +0,0 @@
|
||||
LAMMPS (15 Feb 2016)
|
||||
# 2d circle of particles inside a box with LJ walls
|
||||
|
||||
variable b index 0
|
||||
|
||||
variable x index 50
|
||||
variable y index 20
|
||||
variable d index 20
|
||||
|
||||
# careful not to slam into wall too hard
|
||||
|
||||
variable v index 0.3
|
||||
variable w index 0.08
|
||||
|
||||
units lj
|
||||
dimension 2
|
||||
atom_style bond
|
||||
boundary f f p
|
||||
|
||||
lattice hex 0.85
|
||||
Lattice spacing in x,y,z = 1.16553 2.01877 1.16553
|
||||
region box block 0 $x 0 $y -0.5 0.5
|
||||
region box block 0 50 0 $y -0.5 0.5
|
||||
region box block 0 50 0 20 -0.5 0.5
|
||||
create_box 1 box bond/types 1 extra/bond/per/atom 6
|
||||
Created orthogonal box = (0 0 -0.582767) to (58.2767 40.3753 0.582767)
|
||||
1 by 1 by 1 MPI processor grid
|
||||
region circle sphere $(v_d/2+1) $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
|
||||
region circle sphere 11 $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
|
||||
region circle sphere 11 6.7735026918962581988 0.0 $(v_d/2)
|
||||
region circle sphere 11 6.7735026918962581988 0.0 10
|
||||
create_atoms 1 region circle
|
||||
Created 361 atoms
|
||||
mass 1 1.0
|
||||
|
||||
velocity all create 0.5 87287 loop geom
|
||||
velocity all set $v $w 0 sum yes
|
||||
velocity all set 0.3 $w 0 sum yes
|
||||
velocity all set 0.3 0.08 0 sum yes
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff 1 1 10.0 1.0 2.5
|
||||
|
||||
bond_style harmonic
|
||||
bond_coeff 1 10.0 1.2
|
||||
|
||||
create_bonds all all 1 1.0 1.5
|
||||
Neighbor list info ...
|
||||
2 neighbor list requests
|
||||
update every 1 steps, delay 10 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 2.8
|
||||
ghost atom cutoff = 2.8
|
||||
binsize = 1.4 -> bins = 42 29 1
|
||||
Added 1014 bonds, new total = 1014
|
||||
6 = max # of 1-2 neighbors
|
||||
30 = max # of 1-3 neighbors
|
||||
180 = max # of 1-4 neighbors
|
||||
36 = max # of special neighbors
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify delay 0 every 1 check yes
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi $x 1 1 2.5
|
||||
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi 50 1 1 2.5
|
||||
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi $y 1 1 2.5
|
||||
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi 20 1 1 2.5
|
||||
|
||||
comm_style tiled
|
||||
fix 10 all balance 50 0.9 rcb
|
||||
|
||||
#compute 1 all property/atom proc
|
||||
#variable p atom (c_1%10)+1
|
||||
#dump 2 all custom 50 tmp.dump id v_p x y z
|
||||
|
||||
#dump 3 all image 200 image.*.jpg v_p type bond atom 0.25 # adiam 1.0 view 0 0 zoom 1.8 subbox yes 0.02
|
||||
#variable colors string # "red green blue yellow white # purple pink orange lime gray"
|
||||
#dump_modify 3 pad 5 amap 0 10 sa 1 10 ${colors}
|
||||
|
||||
thermo_style custom step temp epair press f_10[3] f_10
|
||||
thermo 100
|
||||
|
||||
run 40000
|
||||
Neighbor list info ...
|
||||
1 neighbor list requests
|
||||
update every 1 steps, delay 0 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 2.8
|
||||
ghost atom cutoff = 2.8
|
||||
binsize = 1.4 -> bins = 42 29 1
|
||||
Memory usage per processor = 6.31529 Mbytes
|
||||
Step Temp E_pair Press 10[3] 10
|
||||
0 0.57437856 0 0.26099453 1 1
|
||||
100 0.29756515 0 0.10149401 1 1
|
||||
200 0.35394813 0 0.075159099 1 1
|
||||
300 0.39245849 0 0.033002384 1 1
|
||||
400 0.34078347 0 -0.020825841 1 1
|
||||
500 0.35201095 0 -0.062637506 1 1
|
||||
600 0.34014717 0 -0.11122965 1 1
|
||||
700 0.3323524 0 -0.11598015 1 1
|
||||
800 0.35116047 0 -0.096162395 1 1
|
||||
900 0.35695352 0 -0.01385176 1 1
|
||||
1000 0.36986539 0 0.056772858 1 1
|
||||
1100 0.34584644 0 0.084941323 1 1
|
||||
1200 0.31921435 0 0.10545078 1 1
|
||||
1300 0.32952819 0 0.124902 1 1
|
||||
1400 0.34497365 0 0.12662081 1 1
|
||||
1500 0.33429243 0 0.096230972 1 1
|
||||
1600 0.33765387 0 0.025800542 1 1
|
||||
1700 0.35134464 0 -0.04422593 1 1
|
||||
1800 0.35003859 0 -0.096745576 1 1
|
||||
1900 0.33839618 0 -0.095465943 1 1
|
||||
2000 0.33732078 0 -0.094652802 1 1
|
||||
2100 0.34552238 0 -0.076729261 1 1
|
||||
2200 0.34893142 0 -0.036853228 1 1
|
||||
2300 0.35379341 0 0.021124847 1 1
|
||||
2400 0.34829744 0 0.09230184 1 1
|
||||
2500 0.33038141 0 0.1399855 1 1
|
||||
2600 0.30983019 0 0.12754742 1 1
|
||||
2700 0.32992561 0 0.10485138 1 1
|
||||
2800 0.34604747 0 0.066174138 1 1
|
||||
2900 0.3444791 0 0.036590652 1 1
|
||||
3000 0.34721342 0 -0.023793368 1 1
|
||||
3100 0.33404314 0 -0.08374223 1 1
|
||||
3200 0.33019355 0 -0.12715599 1 1
|
||||
3300 0.33515177 0 -0.12217394 1 1
|
||||
3400 0.33628481 0 -0.070877624 1 1
|
||||
3500 0.34257038 0 -0.021612062 1 1
|
||||
3600 0.32838009 0 0.030131228 1 1
|
||||
3700 0.34462142 0 0.074586378 1 1
|
||||
3800 0.30891825 0 0.10605673 1 1
|
||||
3900 0.33847951 0 0.13956139 1 1
|
||||
4000 0.32952079 0 0.12688129 1 1
|
||||
4100 0.32646772 0 0.081089042 1 1
|
||||
4200 0.35399503 0 0.013422873 1 1
|
||||
4300 0.33154914 0 -0.050919508 1 1
|
||||
4400 0.34113556 0 -0.083171 1 1
|
||||
4500 0.32651708 0 -0.1063133 1 1
|
||||
4600 0.34359609 0 -0.1076395 1 1
|
||||
4700 0.34973537 0 -0.088231606 1 1
|
||||
4800 0.35198515 0 -0.020901044 1 1
|
||||
4900 0.35187284 0 0.043645941 1 1
|
||||
5000 0.34887336 0 0.095698609 1 1
|
||||
5100 0.30308163 0 0.11649328 1 1
|
||||
5200 0.32401285 0 0.12072411 1 1
|
||||
5300 0.33025072 0 0.10933161 1 1
|
||||
5400 0.33288012 0 0.078356448 1 1
|
||||
5500 0.35142492 0 0.036958063 1 1
|
||||
5600 0.35125368 0 -0.041371343 1 1
|
||||
5700 0.34547744 0 -0.096450846 1 1
|
||||
5800 0.30939887 0 -0.12356656 1 1
|
||||
5900 0.32315628 0 -0.11338676 1 1
|
||||
6000 0.34117485 0 -0.066198961 1 1
|
||||
6100 0.35298043 0 -0.016172816 1 1
|
||||
6200 0.35130653 0 0.027660468 1 1
|
||||
6300 0.35398766 0 0.087221238 1 1
|
||||
6400 0.30963379 0 0.11990957 1 1
|
||||
6500 0.3174541 0 0.14103528 1 1
|
||||
6600 0.31989791 0 0.11575506 1 1
|
||||
6700 0.33811477 0 0.060747353 1 1
|
||||
6800 0.3424043 0 0.010357152 1 1
|
||||
6900 0.34804319 0 -0.042621786 1 1
|
||||
7000 0.35357865 0 -0.067248959 1 1
|
||||
7100 0.33556885 0 -0.10983726 1 1
|
||||
7200 0.33531101 0 -0.112179 1 1
|
||||
7300 0.35742607 0 -0.078405267 1 1
|
||||
7400 0.34577559 0 -0.01985432 1 1
|
||||
7500 0.3498641 0 0.052289439 1 1
|
||||
7600 0.33773715 0 0.092939035 1 1
|
||||
7700 0.33093497 0 0.11924405 1 1
|
||||
7800 0.31435814 0 0.12701724 1 1
|
||||
7900 0.33132217 0 0.10793075 1 1
|
||||
8000 0.33451798 0 0.077993125 1 1
|
||||
8100 0.35188371 0 0.019929977 1 1
|
||||
8200 0.33645742 0 -0.039302079 1 1
|
||||
8300 0.3415632 0 -0.098067982 1 1
|
||||
8400 0.30619282 0 -0.12952879 1 1
|
||||
8500 0.34446484 0 -0.098084709 1 1
|
||||
8600 0.33761673 0 -0.07069818 1 1
|
||||
8700 0.34495452 0 -0.022458056 1 1
|
||||
8800 0.33502983 0 0.027742411 1 1
|
||||
8900 0.35418591 0 0.092390134 1 1
|
||||
9000 0.31648387 0 0.12467398 1 1
|
||||
9100 0.33994825 0 0.14460327 1 1
|
||||
9200 0.33822571 0 0.11273284 1 1
|
||||
9300 0.33260773 0 0.060063671 1 1
|
||||
9400 0.36140305 0 0.021427642 1 1
|
||||
9500 0.34273562 0 -0.034064202 1 1
|
||||
9600 0.33867054 0 -0.089076906 1 1
|
||||
9700 0.32088235 0 -0.12027075 1 1
|
||||
9800 0.3320823 0 -0.11602794 1 1
|
||||
9900 0.33916442 0 -0.080281044 1 1
|
||||
10000 0.34852268 0 -0.01000914 1 1
|
||||
10100 0.32955942 0 0.04258493 1 1
|
||||
10200 0.34487898 0 0.086971308 1 1
|
||||
10300 0.32325593 0 0.11558149 1 1
|
||||
10400 0.30927871 0 0.12239437 1 1
|
||||
10500 0.33176799 0 0.12285937 1 1
|
||||
10600 0.35120027 0 0.084897432 1 1
|
||||
10700 0.33129697 0 0.0053089279 1 1
|
||||
10800 0.36028769 0 -0.04280715 1 1
|
||||
10900 0.35552287 0 -0.084955999 1 1
|
||||
11000 0.3406024 0 -0.096554577 1 1
|
||||
11100 0.33041202 0 -0.10703492 1 1
|
||||
11200 0.32442686 0 -0.084328121 1 1
|
||||
11300 0.35952468 0 -0.020191965 1 1
|
||||
11400 0.34610624 0 0.03440148 1 1
|
||||
11500 0.3415612 0 0.1041929 1 1
|
||||
11600 0.34040042 0 0.13215705 1 1
|
||||
11700 0.33555094 0 0.12738686 1 1
|
||||
11800 0.3458647 0 0.10963398 1 1
|
||||
11900 0.33836678 0 0.067253864 1 1
|
||||
12000 0.34853314 0 0.03201448 1 1
|
||||
12100 0.34600048 0 -0.034833402 1 1
|
||||
12200 0.33145631 0 -0.09865675 1 1
|
||||
12300 0.32848884 0 -0.1248489 1 1
|
||||
12400 0.3321344 0 -0.11266575 1 1
|
||||
12500 0.32622305 0 -0.061634993 1 1
|
||||
12600 0.36213537 0 -0.0090593315 1 1
|
||||
12700 0.34673866 0 0.036734645 1 1
|
||||
12800 0.34606618 0 0.086267678 1 1
|
||||
12900 0.34271431 0 0.12415522 1 1
|
||||
13000 0.31993287 0 0.13879926 1 1
|
||||
13100 0.3422918 0 0.11978905 1 1
|
||||
13200 0.33055236 0 0.062620483 1 1
|
||||
13300 0.34652207 0 0.0043833459 1 1
|
||||
13400 0.33574661 0 -0.04691024 1 1
|
||||
13500 0.33940837 0 -0.074241604 1 1
|
||||
13600 0.32093414 0 -0.1078027 1 1
|
||||
13700 0.34336597 0 -0.10544097 1 1
|
||||
13800 0.35806461 0 -0.072531559 1 1
|
||||
13900 0.35209713 0 -0.018851408 1 1
|
||||
14000 0.35702629 0 0.061046366 1 1
|
||||
14100 0.33234093 0 0.094086465 1 1
|
||||
14200 0.3459466 0 0.12186656 1 1
|
||||
14300 0.3327428 0 0.11396572 1 1
|
||||
14400 0.32409443 0 0.10658903 1 1
|
||||
14500 0.35022184 0 0.083558031 1 1
|
||||
14600 0.34823843 0 0.024605569 1 1
|
||||
14700 0.35298973 0 -0.040418888 1 1
|
||||
14800 0.33679845 0 -0.10067728 1 1
|
||||
14900 0.32790966 0 -0.10925568 1 1
|
||||
15000 0.34208495 0 -0.09568004 1 1
|
||||
15100 0.33647529 0 -0.055652929 1 1
|
||||
15200 0.35328398 0 -0.020236536 1 1
|
||||
15300 0.34252669 0 0.026434179 1 1
|
||||
15400 0.34409435 0 0.094410599 1 1
|
||||
15500 0.32288994 0 0.12034455 1 1
|
||||
15600 0.32109689 0 0.13645185 1 1
|
||||
15700 0.33681572 0 0.098607746 1 1
|
||||
15800 0.33635195 0 0.05570715 1 1
|
||||
15900 0.34289757 0 0.013849092 1 1
|
||||
16000 0.34225547 0 -0.035597548 1 1
|
||||
16100 0.33660991 0 -0.076931881 1 1
|
||||
16200 0.32802152 0 -0.12765884 1 1
|
||||
16300 0.3469374 0 -0.10785455 1 1
|
||||
16400 0.34053641 0 -0.070259853 1 1
|
||||
16500 0.34610591 0 -0.014315306 1 1
|
||||
16600 0.35109001 0 0.041251169 1 1
|
||||
16700 0.34336905 0 0.077996627 1 1
|
||||
16800 0.33277414 0 0.11053634 1 1
|
||||
16900 0.32183338 0 0.11680626 1 1
|
||||
17000 0.34044352 0 0.10806555 1 1
|
||||
17100 0.32967873 0 0.067759786 1 1
|
||||
17200 0.36172278 0 -0.0048631904 1 1
|
||||
17300 0.35619435 0 -0.04215545 1 1
|
||||
17400 0.34540936 0 -0.093994174 1 1
|
||||
17500 0.33193585 0 -0.098831315 1 1
|
||||
17600 0.3544756 0 -0.085660403 1 1
|
||||
17700 0.34505209 0 -0.069640515 1 1
|
||||
17800 0.36291124 0 -0.0063088133 1 1
|
||||
17900 0.34255705 0 0.046794555 1 1
|
||||
18000 0.34163238 0 0.11767705 1 1
|
||||
18100 0.3466445 0 0.1351712 1 1
|
||||
18200 0.33037668 0 0.12703659 1 1
|
||||
18300 0.33677404 0 0.10956306 1 1
|
||||
18400 0.34978954 0 0.087193072 1 1
|
||||
18500 0.33354363 0 0.051095814 1 1
|
||||
18600 0.34651729 0 0.0056245561 1 1
|
||||
18700 0.32622232 0 -0.047319269 1 1
|
||||
18800 0.32978847 0 -0.054929416 1 1
|
||||
18900 0.34192451 0 -0.037252471 1 1
|
||||
19000 0.34061294 0 -0.001167235 1 1
|
||||
19100 0.34194478 0 0.016945224 1 1
|
||||
19200 0.33321765 0 0.050665354 1 1
|
||||
19300 0.33197783 0 0.080470585 1 1
|
||||
19400 0.33284715 0 0.12423599 1 1
|
||||
19500 0.33867856 0 0.12689524 1 1
|
||||
19600 0.36092786 0 0.11417704 1 1
|
||||
19700 0.34270183 0 0.069038291 1 1
|
||||
19800 0.34880695 0 0.042483681 1 1
|
||||
19900 0.33903644 0 0.034788638 1 1
|
||||
20000 0.32590125 0 0.011383785 1 1
|
||||
20100 0.30358859 0 0.0030743554 1 1
|
||||
20200 0.31830224 0 0.017637826 1 1
|
||||
20300 0.34195438 0 0.072811099 1 1
|
||||
20400 0.31249563 0 0.10063541 1 1
|
||||
20500 0.31544938 0 0.1405794 1 1
|
||||
20600 0.30071644 0 0.12763486 1 1
|
||||
20700 0.2890265 0 0.1136651 1 1
|
||||
20800 0.28962296 0 0.094481978 1 1
|
||||
20900 0.29447212 0 0.0967165 1 1
|
||||
21000 0.31159961 0 0.067307231 1 1
|
||||
21100 0.30490648 0 0.017689358 1 1
|
||||
21200 0.30687262 0 -0.016055512 1 1
|
||||
21300 0.30083286 0 -0.0014988997 1 1
|
||||
21400 0.32070426 0 0.015960302 1 1
|
||||
21500 0.31439311 0 0.038170385 1 1
|
||||
21600 0.32617832 0 0.043263788 1 1
|
||||
21700 0.35151793 0 0.066302727 1 1
|
||||
21800 0.35912885 0 0.070099103 1 1
|
||||
21900 0.32451958 0 0.068935768 1 1
|
||||
22000 0.35219298 0 0.067161227 1 1
|
||||
22100 0.34857705 0 0.032731746 1 1
|
||||
22200 0.34750227 0 0.0056917695 1 1
|
||||
22300 0.34766017 0 -0.0027090483 1 1
|
||||
22400 0.33426062 0 -0.023196063 1 1
|
||||
22500 0.34174625 0 -0.025019717 1 1
|
||||
22600 0.3356145 0 -0.029707418 1 1
|
||||
22700 0.3362653 0 -0.035815733 1 1
|
||||
22800 0.33973405 0 -0.0024705835 1 1
|
||||
22900 0.33813085 0 0.0077527467 1 1
|
||||
23000 0.33339981 0 0.028340744 1 1
|
||||
23100 0.34079832 0 0.018521302 1 1
|
||||
23200 0.33074548 0 0.032378405 1 1
|
||||
23300 0.32965664 0 0.035989589 1 1
|
||||
23400 0.30927749 0 0.024581106 1 1
|
||||
23500 0.32890632 0 0.01092479 1 1
|
||||
23600 0.34137438 0 0.0094839745 1 1
|
||||
23700 0.34512638 0 -0.012392771 1 1
|
||||
23800 0.31781354 0 -0.012908449 1 1
|
||||
23900 0.32405513 0 -0.015018071 1 1
|
||||
24000 0.33549728 0 -0.012812915 1 1
|
||||
24100 0.31368736 0 -0.020818372 1 1
|
||||
24200 0.33533836 0 0.0056121057 1 1
|
||||
24300 0.32530627 0 0.018183931 1 1
|
||||
24400 0.31930662 0 0.027446878 1 1
|
||||
24500 0.33540302 0 0.040307455 1 1
|
||||
24600 0.34020431 0 0.027403921 1 1
|
||||
24700 0.3291814 0 0.01204865 1 1
|
||||
24800 0.31552604 0 0.019654111 1 1
|
||||
24900 0.34727253 0 0.01670543 1 1
|
||||
25000 0.35120105 0 0.0038617562 1 1
|
||||
25100 0.32706871 0 -0.021196623 1 1
|
||||
25200 0.32915282 0 -0.017146508 1 1
|
||||
25300 0.32577518 0 -0.01312495 1 1
|
||||
25400 0.33286855 0 0.0014726193 1 1
|
||||
25500 0.33002601 0 0.0080974022 1 1
|
||||
25600 0.34127655 0 0.014296091 1 1
|
||||
25700 0.34048065 0 0.022513032 1 1
|
||||
25800 0.33029079 0 0.038733531 1 1
|
||||
25900 0.33031324 0 0.026156982 1 1
|
||||
26000 0.32967371 0 0.028727383 1 1
|
||||
26100 0.33775718 0 0.015607478 1 1
|
||||
26200 0.35097144 0 0.012291703 1 1
|
||||
26300 0.34303792 0 0.00094823191 1 1
|
||||
26400 0.33632665 0 -0.0026904889 1 1
|
||||
26500 0.33580127 0 -0.0074168555 1 1
|
||||
26600 0.33063188 0 -0.020378601 1 1
|
||||
26700 0.33581846 0 -0.00084397268 1 1
|
||||
26800 0.32998532 0 0.015932208 1 1
|
||||
26900 0.33825444 0 0.010428603 1 1
|
||||
27000 0.32081518 0 0.019818223 1 1
|
||||
27100 0.31448098 0 0.020093416 1 1
|
||||
27200 0.32643684 0 0.021934917 1 1
|
||||
27300 0.33289466 0 0.023713072 1 1
|
||||
27400 0.32310744 0 0.024110945 1 1
|
||||
27500 0.33115619 0 0.0025776713 1 1
|
||||
27600 0.33295887 0 -0.010710764 1 1
|
||||
27700 0.32968876 0 -0.0064595905 1 1
|
||||
27800 0.34064581 0 -0.0086519116 1 1
|
||||
27900 0.33559187 0 -0.0055753593 1 1
|
||||
28000 0.32300727 0 -0.0004153384 1 1
|
||||
28100 0.32147461 0 -0.0058543412 1 1
|
||||
28200 0.35532383 0 0.013646951 1 1
|
||||
28300 0.31507942 0 0.026532255 1 1
|
||||
28400 0.32711006 0 0.033214981 1 1
|
||||
28500 0.34472462 0 0.028050837 1 1
|
||||
28600 0.33708059 0 0.019115676 1 1
|
||||
28700 0.34478087 0 0.023743689 1 1
|
||||
28800 0.34546686 0 0.0081772997 1 1
|
||||
28900 0.34004886 0 0.017771865 1 1
|
||||
29000 0.33604232 0 -0.010505671 1 1
|
||||
29100 0.33541374 0 -0.016273261 1 1
|
||||
29200 0.34347489 0 -0.010002306 1 1
|
||||
29300 0.34083904 0 0.0089701784 1 1
|
||||
29400 0.34846892 0 0.020765104 1 1
|
||||
29500 0.3416255 0 0.022650856 1 1
|
||||
29600 0.33725496 0 0.020693083 1 1
|
||||
29700 0.34480638 0 0.024317128 1 1
|
||||
29800 0.31459471 0 0.023097895 1 1
|
||||
29900 0.33014448 0 0.03114046 1 1
|
||||
30000 0.33741498 0 0.015624314 1 1
|
||||
30100 0.32598657 0 -0.0018860541 1 1
|
||||
30200 0.34855815 0 0.0017983372 1 1
|
||||
30300 0.33375921 0 0.0010991235 1 1
|
||||
30400 0.35008944 0 -0.0027316177 1 1
|
||||
30500 0.33279729 0 -0.0035788551 1 1
|
||||
30600 0.33868746 0 -0.0016249482 1 1
|
||||
30700 0.33597034 0 -0.0014524001 1 1
|
||||
30800 0.3227257 0 0.016353457 1 1
|
||||
30900 0.32676516 0 0.027396654 1 1
|
||||
31000 0.34083982 0 0.031606413 1 1
|
||||
31100 0.32165238 0 0.013583368 1 1
|
||||
31200 0.3428492 0 0.020486611 1 1
|
||||
31300 0.32372541 0 0.01215566 1 1
|
||||
31400 0.32734692 0 0.016229397 1 1
|
||||
31500 0.33089262 0 0.0060426618 1 1
|
||||
31600 0.34273493 0 -0.013456537 1 1
|
||||
31700 0.32723905 0 -0.019243766 1 1
|
||||
31800 0.33636488 0 0.0027814902 1 1
|
||||
31900 0.32834805 0 0.00706877 1 1
|
||||
32000 0.33995148 0 0.0018383309 1 1
|
||||
32100 0.33412282 0 0.0076455933 1 1
|
||||
32200 0.34334884 0 0.023586129 1 1
|
||||
32300 0.32778925 0 0.020564321 1 1
|
||||
32400 0.33163443 0 0.038878463 1 1
|
||||
32500 0.32290345 0 0.022247461 1 1
|
||||
32600 0.34113954 0 0.010966365 1 1
|
||||
32700 0.33390633 0 0.0037777555 1 1
|
||||
32800 0.34385341 0 0.010556575 1 1
|
||||
32900 0.32137047 0 0.00022027143 1 1
|
||||
33000 0.32079172 0 -0.017261272 1 1
|
||||
33100 0.33570882 0 -0.0051942206 1 1
|
||||
33200 0.34320894 0 -0.011515281 1 1
|
||||
33300 0.32794746 0 -0.0018153673 1 1
|
||||
33400 0.33060982 0 0.027118146 1 1
|
||||
33500 0.33641809 0 0.02143035 1 1
|
||||
33600 0.33643061 0 0.020833068 1 1
|
||||
33700 0.3485949 0 0.030918751 1 1
|
||||
33800 0.3283985 0 0.01947613 1 1
|
||||
33900 0.31959761 0 0.021128147 1 1
|
||||
34000 0.33897984 0 0.015270986 1 1
|
||||
34100 0.32392267 0 0.0020130852 1 1
|
||||
34200 0.33084514 0 -0.024316708 1 1
|
||||
34300 0.3342259 0 -0.0059047764 1 1
|
||||
34400 0.33385098 0 0.0063818721 1 1
|
||||
34500 0.33255603 0 -0.01023837 1 1
|
||||
34600 0.34766173 0 0.0056703013 1 1
|
||||
34700 0.339822 0 0.0061648559 1 1
|
||||
34800 0.33902329 0 0.030037037 1 1
|
||||
34900 0.3216153 0 0.027996689 1 1
|
||||
35000 0.32701056 0 0.024778517 1 1
|
||||
35100 0.3124942 0 0.011316548 1 1
|
||||
35200 0.34486416 0 0.011670127 1 1
|
||||
35300 0.33275353 0 0.020491246 1 1
|
||||
35400 0.33618763 0 0.014678874 1 1
|
||||
35500 0.32352282 0 -0.018568683 1 1
|
||||
35600 0.32617903 0 -0.012796912 1 1
|
||||
35700 0.32378048 0 -0.021318585 1 1
|
||||
35800 0.3371086 0 -0.0023678632 1 1
|
||||
35900 0.33818476 0 0.011197742 1 1
|
||||
36000 0.35142144 0 0.022520935 1 1
|
||||
36100 0.35147297 0 0.020277852 1 1
|
||||
36200 0.33489465 0 0.014564878 1 1
|
||||
36300 0.33841515 0 0.036439962 1 1
|
||||
36400 0.32301096 0 0.019966746 1 1
|
||||
36500 0.35612028 0 0.036509556 1 1
|
||||
36600 0.33841597 0 -0.0042180605 1 1
|
||||
36700 0.34477654 0 -0.0052770853 1 1
|
||||
36800 0.33804317 0 -0.013751733 1 1
|
||||
36900 0.35003816 0 -0.0021184393 1 1
|
||||
37000 0.32965041 0 -0.020900951 1 1
|
||||
37100 0.34653095 0 -0.013667977 1 1
|
||||
37200 0.35019871 0 -0.0071740923 1 1
|
||||
37300 0.34859745 0 0.02006041 1 1
|
||||
37400 0.35739859 0 0.020892822 1 1
|
||||
37500 0.34128859 0 0.041072111 1 1
|
||||
37600 0.33781905 0 0.023376738 1 1
|
||||
37700 0.32961874 0 0.030953741 1 1
|
||||
37800 0.343987 0 0.029579795 1 1
|
||||
37900 0.33610448 0 0.036836828 1 1
|
||||
38000 0.32757228 0 0.020902031 1 1
|
||||
38100 0.32735808 0 0.019544751 1 1
|
||||
38200 0.35646953 0 0.044607528 1 1
|
||||
38300 0.32509773 0 0.03610738 1 1
|
||||
38400 0.32111741 0 0.034474043 1 1
|
||||
38500 0.30590608 0 0.053461212 1 1
|
||||
38600 0.32322402 0 0.053453832 1 1
|
||||
38700 0.33843057 0 0.076264534 1 1
|
||||
38800 0.31350741 0 0.064733869 1 1
|
||||
38900 0.31943061 0 0.067836769 1 1
|
||||
39000 0.33775583 0 0.0788316 1 1
|
||||
39100 0.34256036 0 0.075874935 1 1
|
||||
39200 0.33128527 0 0.071610976 1 1
|
||||
39300 0.34519653 0 0.046257301 1 1
|
||||
39400 0.34351844 0 0.052422917 1 1
|
||||
39500 0.35716037 0 0.048916058 1 1
|
||||
39600 0.34000737 0 0.016149089 1 1
|
||||
39700 0.34587892 0 0.021619621 1 1
|
||||
39800 0.34878036 0 0.0092881327 1 1
|
||||
39900 0.35225411 0 -0.011341599 1 1
|
||||
40000 0.36309266 0 0.0050869295 1 1
|
||||
Loop time of 1.94553 on 1 procs for 40000 steps with 361 atoms
|
||||
|
||||
Performance: 8881898.790 tau/day, 20559.951 timesteps/s
|
||||
100.0% CPU use with 1 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.068658 | 0.068658 | 0.068658 | 0.0 | 3.53
|
||||
Bond | 0.9979 | 0.9979 | 0.9979 | 0.0 | 51.29
|
||||
Neigh | 0.50428 | 0.50428 | 0.50428 | 0.0 | 25.92
|
||||
Comm | 0.015341 | 0.015341 | 0.015341 | 0.0 | 0.79
|
||||
Output | 0.0029466 | 0.0029466 | 0.0029466 | 0.0 | 0.15
|
||||
Modify | 0.28324 | 0.28324 | 0.28324 | 0.0 | 14.56
|
||||
Other | | 0.07317 | | | 3.76
|
||||
|
||||
Nlocal: 361 ave 361 max 361 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Nghost: 0 ave 0 max 0 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Neighs: 0 ave 0 max 0 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
|
||||
Total # of neighbors = 0
|
||||
Ave neighs/atom = 0
|
||||
Ave special neighs/atom = 31.0249
|
||||
Neighbor list builds = 3079
|
||||
Dangerous builds = 0
|
||||
Total wall time: 0:00:01
|
||||
@ -1,202 +0,0 @@
|
||||
LAMMPS (15 Feb 2016)
|
||||
# 2d circle of particles inside a box with LJ walls
|
||||
|
||||
variable b index 0
|
||||
|
||||
variable x index 50
|
||||
variable y index 20
|
||||
variable d index 20
|
||||
variable v index 5
|
||||
variable w index 2
|
||||
|
||||
units lj
|
||||
dimension 2
|
||||
atom_style atomic
|
||||
boundary f f p
|
||||
|
||||
lattice hex 0.85
|
||||
Lattice spacing in x,y,z = 1.16553 2.01877 1.16553
|
||||
region box block 0 $x 0 $y -0.5 0.5
|
||||
region box block 0 50 0 $y -0.5 0.5
|
||||
region box block 0 50 0 20 -0.5 0.5
|
||||
create_box 1 box
|
||||
Created orthogonal box = (0 0 -0.582767) to (58.2767 40.3753 0.582767)
|
||||
1 by 1 by 1 MPI processor grid
|
||||
region circle sphere $(v_d/2+1) $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
|
||||
region circle sphere 11 $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
|
||||
region circle sphere 11 6.7735026918962581988 0.0 $(v_d/2)
|
||||
region circle sphere 11 6.7735026918962581988 0.0 10
|
||||
create_atoms 1 region circle
|
||||
Created 361 atoms
|
||||
mass 1 1.0
|
||||
|
||||
velocity all create 0.5 87287 loop geom
|
||||
velocity all set $v $w 0 sum yes
|
||||
velocity all set 5 $w 0 sum yes
|
||||
velocity all set 5 2 0 sum yes
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff 1 1 10.0 1.0 2.5
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify delay 0 every 1 check yes
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi $x 1 1 2.5
|
||||
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi 50 1 1 2.5
|
||||
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi $y 1 1 2.5
|
||||
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi 20 1 1 2.5
|
||||
|
||||
comm_style tiled
|
||||
fix 10 all balance 50 0.9 rcb
|
||||
|
||||
#compute 1 all property/atom proc
|
||||
#variable p atom c_1%10
|
||||
#dump 2 all custom 50 tmp.dump id v_p x y z
|
||||
|
||||
#dump 3 all image 50 image.*.jpg v_p type # adiam 1.0 view 0 0 zoom 1.8 subbox yes 0.02
|
||||
#variable colors string # "red green blue yellow white # purple pink orange lime gray"
|
||||
#dump_modify 3 pad 5 amap 0 10 sa 1 10 ${colors}
|
||||
|
||||
thermo_style custom step temp epair press f_10[3] f_10
|
||||
thermo 100
|
||||
|
||||
run 10000
|
||||
Neighbor list info ...
|
||||
1 neighbor list requests
|
||||
update every 1 steps, delay 0 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 2.8
|
||||
ghost atom cutoff = 2.8
|
||||
binsize = 1.4 -> bins = 42 29 1
|
||||
Memory usage per processor = 2.47688 Mbytes
|
||||
Step Temp E_pair Press 10[3] 10
|
||||
0 25.701528 -29.143179 -1.2407285 1 1
|
||||
100 26.269576 -29.713313 7.9052334 1 1
|
||||
200 26.368336 -29.809962 1.6412462 1 1
|
||||
300 26.479082 -29.920083 2.3678653 1 1
|
||||
400 26.522239 -29.965537 6.6787858 1 1
|
||||
500 25.725591 -29.168034 0.67065285 1 1
|
||||
600 26.247693 -29.692706 7.9887712 1 1
|
||||
700 26.237368 -29.676926 1.5987214 1 1
|
||||
800 25.889643 -29.431589 4.6160859 1 1
|
||||
900 23.635295 -27.372963 9.029962 1 1
|
||||
1000 22.571904 -25.87422 1.8936085 1 1
|
||||
1100 17.493795 -21.447274 9.502619 1 1
|
||||
1200 17.214459 -20.726964 6.3578933 1 1
|
||||
1300 16.424366 -19.75746 3.9025348 1 1
|
||||
1400 15.09282 -18.172384 1.7966088 1 1
|
||||
1500 13.669129 -16.736191 1.3320876 1 1
|
||||
1600 13.518191 -16.481254 2.2474968 1 1
|
||||
1700 13.840191 -16.808798 1.848689 1 1
|
||||
1800 12.705797 -15.654395 2.6658475 1 1
|
||||
1900 12.560112 -15.376796 1.6651246 1 1
|
||||
2000 12.11219 -14.943991 1.2347207 1 1
|
||||
2100 11.681161 -14.453803 1.1856253 1 1
|
||||
2200 11.380134 -14.15437 1.0983288 1 1
|
||||
2300 11.404137 -14.206989 1.0886428 1 1
|
||||
2400 11.267361 -14.00915 1.1353313 1 1
|
||||
2500 11.086288 -13.866685 1.5189761 1 1
|
||||
2600 11.241757 -14.031809 1.6088858 1 1
|
||||
2700 10.741715 -13.522752 1.2648051 1 1
|
||||
2800 10.594219 -13.461001 1.2068865 1 1
|
||||
2900 10.497917 -13.243311 0.90549881 1 1
|
||||
3000 9.8887944 -12.633322 1.2014467 1 1
|
||||
3100 10.046064 -12.757462 0.72911664 1 1
|
||||
3200 9.8202521 -12.544235 0.85793687 1 1
|
||||
3300 9.9932983 -12.729524 1.3692879 1 1
|
||||
3400 9.4389164 -12.132571 0.83559817 1 1
|
||||
3500 9.4456791 -12.154808 1.2415677 1 1
|
||||
3600 9.4291752 -12.13391 1.1892815 1 1
|
||||
3700 9.2656145 -11.994284 0.93597208 1 1
|
||||
3800 9.6833674 -12.407022 1.4696321 1 1
|
||||
3900 9.2075262 -11.996657 1.0201833 1 1
|
||||
4000 8.704708 -11.395839 1.5366945 1 1
|
||||
4100 8.496226 -11.160512 0.98385093 1 1
|
||||
4200 8.5566638 -11.241219 0.84428298 1 1
|
||||
4300 8.3079987 -10.963542 0.96552044 1 1
|
||||
4400 8.0878014 -10.695296 0.9598929 1 1
|
||||
4500 7.8974753 -10.510996 0.67253552 1 1
|
||||
4600 7.9008492 -10.511956 0.80200878 1 1
|
||||
4700 7.8469401 -10.46341 0.91408186 1 1
|
||||
4800 7.8237062 -10.478701 0.80709563 1 1
|
||||
4900 7.9248576 -10.569715 0.93955604 1 1
|
||||
5000 7.8285795 -10.450559 0.72760696 1 1
|
||||
5100 7.8176003 -10.433727 1.0046395 1 1
|
||||
5200 7.930586 -10.543139 1.1883254 1 1
|
||||
5300 7.4014327 -10.200353 1.2717149 1 1
|
||||
5400 7.3398704 -9.9377313 0.8277383 1 1
|
||||
5500 7.9323894 -10.544566 0.58409181 1 1
|
||||
5600 7.8256391 -10.452111 0.8371735 1 1
|
||||
5700 7.5744223 -10.225985 0.56633204 1 1
|
||||
5800 7.5149231 -10.128901 0.8877957 1 1
|
||||
5900 7.2696456 -9.868796 1.0183026 1 1
|
||||
6000 8.172964 -10.8046 0.82048799 1 1
|
||||
6100 7.569911 -10.224271 0.85335085 1 1
|
||||
6200 7.5498129 -10.158173 0.69550695 1 1
|
||||
6300 7.0906227 -9.664124 0.38267058 1 1
|
||||
6400 6.9720876 -9.556043 0.74772365 1 1
|
||||
6500 7.2708269 -9.8393843 0.87493485 1 1
|
||||
6600 7.0968522 -9.7557969 0.66499003 1 1
|
||||
6700 7.1122649 -9.7305659 1.3152794 1 1
|
||||
6800 6.9990684 -9.5808587 0.25569509 1 1
|
||||
6900 7.2436468 -9.8205382 0.94441711 1 1
|
||||
7000 7.0592104 -9.6306985 0.62683684 1 1
|
||||
7100 6.7457928 -9.3199995 0.92851433 1 1
|
||||
7200 7.0005278 -9.645515 0.79975493 1 1
|
||||
7300 7.0106928 -9.5922649 0.78131757 1 1
|
||||
7400 6.9425198 -9.5718261 0.3016744 1 1
|
||||
7500 7.4193009 -9.9953487 0.55537513 1 1
|
||||
7600 7.1870399 -9.7798145 0.94155142 1 1
|
||||
7700 6.8261504 -9.3693292 0.78601298 1 1
|
||||
7800 6.8794916 -9.4362689 0.9335562 1 1
|
||||
7900 7.0068635 -9.5490666 0.53210657 1 1
|
||||
8000 6.641609 -9.181226 0.80726821 1 1
|
||||
8100 6.9290677 -9.4788963 1.1195905 1 1
|
||||
8200 6.6497084 -9.197688 0.45616164 1 1
|
||||
8300 6.6000864 -9.207368 0.46307403 1 1
|
||||
8400 6.7434835 -9.3226196 0.78570419 1 1
|
||||
8500 7.0766248 -9.5981608 0.48778261 1 1
|
||||
8600 6.8206587 -9.3646115 0.76420951 1 1
|
||||
8700 7.2009315 -9.7629817 0.69026433 1 1
|
||||
8800 7.0581986 -9.636327 0.54467209 1 1
|
||||
8900 7.2337543 -9.8210795 0.61604427 1 1
|
||||
9000 6.7053026 -9.2552306 0.24196123 1 1
|
||||
9100 6.7919694 -9.3561383 0.34320213 1 1
|
||||
9200 6.8518231 -9.4142511 0.73735875 1 1
|
||||
9300 6.5891178 -9.1414615 0.45262773 1 1
|
||||
9400 6.4724853 -9.0217877 0.54837629 1 1
|
||||
9500 6.3569528 -8.9201793 0.19617724 1 1
|
||||
9600 6.3765498 -8.947548 0.85408461 1 1
|
||||
9700 6.5652079 -9.1101844 0.74478711 1 1
|
||||
9800 6.5099709 -9.0677449 0.69826809 1 1
|
||||
9900 6.1773299 -8.7085595 0.69981004 1 1
|
||||
10000 6.3999463 -8.9423632 0.42668066 1 1
|
||||
Loop time of 0.675636 on 1 procs for 10000 steps with 361 atoms
|
||||
|
||||
Performance: 6393974.952 tau/day, 14800.868 timesteps/s
|
||||
99.7% CPU use with 1 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.29845 | 0.29845 | 0.29845 | 0.0 | 44.17
|
||||
Neigh | 0.26869 | 0.26869 | 0.26869 | 0.0 | 39.77
|
||||
Comm | 0.006007 | 0.006007 | 0.006007 | 0.0 | 0.89
|
||||
Output | 0.00076938 | 0.00076938 | 0.00076938 | 0.0 | 0.11
|
||||
Modify | 0.077204 | 0.077204 | 0.077204 | 0.0 | 11.43
|
||||
Other | | 0.02452 | | | 3.63
|
||||
|
||||
Nlocal: 361 ave 361 max 361 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Nghost: 0 ave 0 max 0 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Neighs: 1191 ave 1191 max 1191 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
|
||||
Total # of neighbors = 1191
|
||||
Ave neighs/atom = 3.29917
|
||||
Neighbor list builds = 3609
|
||||
Dangerous builds = 0
|
||||
Total wall time: 0:00:00
|
||||
@ -1,202 +0,0 @@
|
||||
LAMMPS (15 Feb 2016)
|
||||
# 2d circle of particles inside a box with LJ walls
|
||||
|
||||
variable b index 0
|
||||
|
||||
variable x index 50
|
||||
variable y index 20
|
||||
variable d index 20
|
||||
variable v index 5
|
||||
variable w index 2
|
||||
|
||||
units lj
|
||||
dimension 2
|
||||
atom_style atomic
|
||||
boundary f f p
|
||||
|
||||
lattice hex 0.85
|
||||
Lattice spacing in x,y,z = 1.16553 2.01877 1.16553
|
||||
region box block 0 $x 0 $y -0.5 0.5
|
||||
region box block 0 50 0 $y -0.5 0.5
|
||||
region box block 0 50 0 20 -0.5 0.5
|
||||
create_box 1 box
|
||||
Created orthogonal box = (0 0 -0.582767) to (58.2767 40.3753 0.582767)
|
||||
2 by 2 by 1 MPI processor grid
|
||||
region circle sphere $(v_d/2+1) $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
|
||||
region circle sphere 11 $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
|
||||
region circle sphere 11 6.7735026918962581988 0.0 $(v_d/2)
|
||||
region circle sphere 11 6.7735026918962581988 0.0 10
|
||||
create_atoms 1 region circle
|
||||
Created 361 atoms
|
||||
mass 1 1.0
|
||||
|
||||
velocity all create 0.5 87287 loop geom
|
||||
velocity all set $v $w 0 sum yes
|
||||
velocity all set 5 $w 0 sum yes
|
||||
velocity all set 5 2 0 sum yes
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff 1 1 10.0 1.0 2.5
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify delay 0 every 1 check yes
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi $x 1 1 2.5
|
||||
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi 50 1 1 2.5
|
||||
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi $y 1 1 2.5
|
||||
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi 20 1 1 2.5
|
||||
|
||||
comm_style tiled
|
||||
fix 10 all balance 50 0.9 rcb
|
||||
|
||||
#compute 1 all property/atom proc
|
||||
#variable p atom c_1%10
|
||||
#dump 2 all custom 50 tmp.dump id v_p x y z
|
||||
|
||||
#dump 3 all image 50 image.*.jpg v_p type # adiam 1.0 view 0 0 zoom 1.8 subbox yes 0.02
|
||||
#variable colors string # "red green blue yellow white # purple pink orange lime gray"
|
||||
#dump_modify 3 pad 5 amap 0 10 sa 1 10 ${colors}
|
||||
|
||||
thermo_style custom step temp epair press f_10[3] f_10
|
||||
thermo 100
|
||||
|
||||
run 10000
|
||||
Neighbor list info ...
|
||||
1 neighbor list requests
|
||||
update every 1 steps, delay 0 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 2.8
|
||||
ghost atom cutoff = 2.8
|
||||
binsize = 1.4 -> bins = 42 29 1
|
||||
Memory usage per processor = 2.48839 Mbytes
|
||||
Step Temp E_pair Press 10[3] 10
|
||||
0 25.701528 -29.143179 -1.2407285 3.2354571 1.0526316
|
||||
100 26.269576 -29.713313 7.9052334 1.2742382 1.0304709
|
||||
200 26.368336 -29.809962 1.6412462 1.2520776 1.0083102
|
||||
300 26.479082 -29.920083 2.3678653 1.2299169 1.0193906
|
||||
400 26.522239 -29.965537 6.6787858 1.1855956 1.0083102
|
||||
500 25.725591 -29.168034 0.67065285 1.2520776 1.0083102
|
||||
600 26.247693 -29.692706 7.9887712 1.3074792 1.0083102
|
||||
700 26.237368 -29.676926 1.5987214 1.2409972 1.0083102
|
||||
800 25.889643 -29.431589 4.6160859 1.2631579 1.0083102
|
||||
900 23.635295 -27.372963 9.029962 1.1634349 1.0083102
|
||||
1000 22.571904 -25.87422 1.8936085 1.1301939 1.0193906
|
||||
1100 17.493795 -21.447274 9.502619 1.0858726 1.0193906
|
||||
1200 17.214459 -20.726965 6.3578917 1.0304709 1.0193906
|
||||
1300 16.424154 -19.757386 3.9027133 1.1191136 1.0083102
|
||||
1400 15.04233 -18.126227 1.7539398 1.0858726 1.0193906
|
||||
1500 13.749022 -16.839766 1.4654778 1.0747922 1.0083102
|
||||
1600 13.888812 -16.855703 1.8972035 1.0858726 1.0304709
|
||||
1700 13.647879 -16.652436 1.5110481 1.0526316 1.0304709
|
||||
1800 12.61308 -15.580445 2.1861667 1.0083102 1.0083102
|
||||
1900 12.700272 -15.594505 1.6395684 1.0304709 1.0083102
|
||||
2000 12.204319 -15.16754 1.6302417 1.1080332 1.0083102
|
||||
2100 11.921129 -14.774621 1.4311256 1.0858726 1.0083102
|
||||
2200 11.959274 -14.797326 1.4920985 1.0415512 1.0083102
|
||||
2300 11.633606 -14.455284 1.4447243 1.1412742 1.0193906
|
||||
2400 12.180014 -14.719121 1.4582702 1.0304709 1.0083102
|
||||
2500 11.779995 -14.293633 1.2961686 1.0304709 1.0083102
|
||||
2600 11.86013 -14.272853 1.1970414 1.0415512 1.0193906
|
||||
2700 11.360658 -13.772549 1.192957 1.0526316 1.0083102
|
||||
2800 11.045632 -13.438591 1.2007074 1.0083102 1.0193906
|
||||
2900 10.689472 -13.127138 0.94544611 1.0193906 1.0193906
|
||||
3000 10.445298 -12.809325 1.3035047 1.0304709 1.0193906
|
||||
3100 10.22325 -12.599858 1.7838342 1.0304709 1.0083102
|
||||
3200 10.226845 -12.602391 0.91456469 1.0304709 1.0193906
|
||||
3300 9.8906692 -12.204654 1.4538962 1.0415512 1.0193906
|
||||
3400 9.0246858 -11.627057 1.1929498 1.0304709 1.0193906
|
||||
3500 9.4549317 -11.747347 0.92966653 1.0193906 1.0193906
|
||||
3600 9.2467281 -11.534358 0.94959796 1.0415512 1.0083102
|
||||
3700 9.1099307 -11.381318 1.2963887 1.0193906 1.0083102
|
||||
3800 9.2236074 -11.483205 1.3510186 1.1080332 1.0193906
|
||||
3900 8.6105519 -10.877844 1.3591509 1.0304709 1.0083102
|
||||
4000 8.588698 -10.846126 0.76473884 1.0415512 1.0083102
|
||||
4100 8.5960453 -10.831229 0.93758423 1.0747922 1.0193906
|
||||
4200 8.1049344 -10.436054 0.74947412 1.0526316 1.0083102
|
||||
4300 8.2606129 -10.471049 0.64465155 1.0193906 1.0193906
|
||||
4400 8.0777962 -10.288476 1.1145052 1.0193906 1.0083102
|
||||
4500 7.9202904 -10.10427 0.49016698 1.0304709 1.0083102
|
||||
4600 8.2366755 -10.434942 0.65930769 1.0193906 1.0083102
|
||||
4700 7.9313531 -10.13685 1.097861 1.0304709 1.0083102
|
||||
4800 7.8637296 -10.085957 0.56015483 1.0304709 1.0193906
|
||||
4900 7.3410322 -9.5357686 0.89340163 1.0304709 1.0193906
|
||||
5000 7.6647481 -9.8529515 0.8283225 1.0193906 1.0193906
|
||||
5100 7.4114006 -9.5917802 0.64812231 1.0083102 1.0193906
|
||||
5200 7.6261959 -9.8178843 0.90517452 1.0193906 1.0083102
|
||||
5300 7.6501619 -9.8428477 1.028077 1.0304709 1.0083102
|
||||
5400 7.4694373 -9.6434672 0.38259983 1.0193906 1.0083102
|
||||
5500 7.3111918 -9.4803007 0.47921149 1.0193906 1.0193906
|
||||
5600 7.2132446 -9.3694039 0.71282856 1.0193906 1.0083102
|
||||
5700 6.8349744 -9.0018958 0.85688618 1.0193906 1.0083102
|
||||
5800 7.1978042 -9.3667457 0.61717818 1.0304709 1.0193906
|
||||
5900 7.1441033 -9.3263118 0.32840394 1.0193906 1.0083102
|
||||
6000 7.0943691 -9.2621241 1.3099316 1.0083102 1.0083102
|
||||
6100 6.9547586 -9.1026607 0.44492974 1.0193906 1.0083102
|
||||
6200 7.0932682 -9.2934579 0.93444691 1.0415512 1.0083102
|
||||
6300 7.0536275 -9.2562193 0.57578551 1.0193906 1.0193906
|
||||
6400 6.8839921 -9.0513091 0.65690774 1.0193906 1.0083102
|
||||
6500 6.7618431 -8.9037814 0.6011838 1.0304709 1.0193906
|
||||
6600 6.6600729 -8.7979286 0.73495903 1.0193906 1.0193906
|
||||
6700 6.6544136 -8.8089155 0.41206297 1.0304709 1.0193906
|
||||
6800 6.7935502 -8.9405122 1.022055 1.0193906 1.0083102
|
||||
6900 6.6603594 -8.8085894 0.4271189 1.0526316 1.0193906
|
||||
7000 6.4894888 -8.6794785 0.64389173 1.0526316 1.0193906
|
||||
7100 6.6252776 -8.776746 1.3915989 1.0193906 1.0193906
|
||||
7200 6.6680717 -8.8468379 0.60275261 1.0193906 1.0193906
|
||||
7300 6.697874 -8.8458161 0.50887488 1.0637119 1.0083102
|
||||
7400 6.2112277 -8.340139 0.45211042 1.0415512 1.0193906
|
||||
7500 6.4923853 -8.6255862 0.79982162 1.0083102 1.0193906
|
||||
7600 6.2922271 -8.4027197 0.33603817 1.0304709 1.0083102
|
||||
7700 6.5744688 -8.7079756 0.51620003 1.0415512 1.0083102
|
||||
7800 6.6730316 -8.8278613 1.2334484 1.0304709 1.0083102
|
||||
7900 6.3831791 -8.4878853 0.49555781 1.0415512 1.0193906
|
||||
8000 6.690559 -8.7918607 0.88102021 1.0415512 1.0083102
|
||||
8100 6.5390375 -8.6612074 0.45605815 1.0304709 1.0193906
|
||||
8200 6.6957638 -8.8406262 0.45001955 1.0193906 1.0083102
|
||||
8300 6.8684401 -9.0293678 0.64215355 1.0083102 1.0083102
|
||||
8400 6.4416293 -8.5841829 0.53513285 1.0193906 1.0193906
|
||||
8500 6.6854101 -8.8269391 0.81750487 1.0637119 1.0083102
|
||||
8600 6.588469 -8.7315753 0.33201251 1.0083102 1.0083102
|
||||
8700 6.2974312 -8.4104697 0.57054382 1.0083102 1.0083102
|
||||
8800 6.4691853 -8.5985479 0.95554418 1.0415512 1.0083102
|
||||
8900 6.7437807 -8.8949865 0.69067866 1.0415512 1.0083102
|
||||
9000 6.5681473 -8.6984555 0.88464065 1.0193906 1.0083102
|
||||
9100 6.6158471 -8.7398687 0.72347757 1.0193906 1.0083102
|
||||
9200 6.4521137 -8.6048511 0.75093363 1.0193906 1.0193906
|
||||
9300 6.4179685 -8.5582051 1.0072192 1.0083102 1.0083102
|
||||
9400 6.580258 -8.7234535 0.56842466 1.0193906 1.0193906
|
||||
9500 6.4125418 -8.56348 0.36394135 1.0304709 1.0193906
|
||||
9600 6.6723409 -8.8402798 0.56711277 1.0304709 1.0193906
|
||||
9700 6.4522736 -8.594767 0.43495668 1.0193906 1.0083102
|
||||
9800 6.2127437 -8.3329761 0.68977311 1.0304709 1.0193906
|
||||
9900 6.4360513 -8.5839262 1.1702062 1.0304709 1.0193906
|
||||
10000 6.3393653 -8.4396274 0.46277884 1.0304709 1.0193906
|
||||
Loop time of 0.389322 on 4 procs for 10000 steps with 361 atoms
|
||||
|
||||
Performance: 11096205.412 tau/day, 25685.661 timesteps/s
|
||||
98.7% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.061902 | 0.074659 | 0.098288 | 5.1 | 19.18
|
||||
Neigh | 0.061993 | 0.067136 | 0.078793 | 2.6 | 17.24
|
||||
Comm | 0.10335 | 0.13334 | 0.15511 | 5.6 | 34.25
|
||||
Output | 0.0017662 | 0.0020409 | 0.0027893 | 1.0 | 0.52
|
||||
Modify | 0.037374 | 0.038055 | 0.038669 | 0.2 | 9.77
|
||||
Other | | 0.07409 | | | 19.03
|
||||
|
||||
Nlocal: 90.25 ave 92 max 88 min
|
||||
Histogram: 1 0 0 0 0 1 0 1 0 1
|
||||
Nghost: 36 ave 38 max 34 min
|
||||
Histogram: 1 0 0 0 0 2 0 0 0 1
|
||||
Neighs: 276.75 ave 448 max 153 min
|
||||
Histogram: 2 0 0 0 0 0 1 0 0 1
|
||||
|
||||
Total # of neighbors = 1107
|
||||
Ave neighs/atom = 3.06648
|
||||
Neighbor list builds = 3472
|
||||
Dangerous builds = 0
|
||||
Total wall time: 0:00:00
|
||||
225
examples/balance/log.27Sep16.balance.bond.fast.g++.4
Normal file
225
examples/balance/log.27Sep16.balance.bond.fast.g++.4
Normal file
@ -0,0 +1,225 @@
|
||||
LAMMPS (26 Sep 2016)
|
||||
# 2d circle of particles inside a box with LJ walls
|
||||
|
||||
variable b index 0
|
||||
|
||||
variable x index 50
|
||||
variable y index 20
|
||||
variable d index 20
|
||||
variable v index 5
|
||||
variable w index 2
|
||||
|
||||
units lj
|
||||
dimension 2
|
||||
atom_style bond
|
||||
boundary f f p
|
||||
|
||||
lattice hex 0.85
|
||||
Lattice spacing in x,y,z = 1.16553 2.01877 1.16553
|
||||
region box block 0 $x 0 $y -0.5 0.5
|
||||
region box block 0 50 0 $y -0.5 0.5
|
||||
region box block 0 50 0 20 -0.5 0.5
|
||||
create_box 1 box bond/types 1 extra/bond/per/atom 6
|
||||
Created orthogonal box = (0 0 -0.582767) to (58.2767 40.3753 0.582767)
|
||||
2 by 2 by 1 MPI processor grid
|
||||
region circle sphere $(v_d/2+1) $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
|
||||
region circle sphere 11 $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
|
||||
region circle sphere 11 6.7735026918962581988 0.0 $(v_d/2)
|
||||
region circle sphere 11 6.7735026918962581988 0.0 10
|
||||
create_atoms 1 region circle
|
||||
Created 361 atoms
|
||||
mass 1 1.0
|
||||
|
||||
velocity all create 0.5 87287 loop geom
|
||||
velocity all set $v $w 0 sum yes
|
||||
velocity all set 5 $w 0 sum yes
|
||||
velocity all set 5 2 0 sum yes
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff 1 1 10.0 1.0 2.5
|
||||
|
||||
bond_style harmonic
|
||||
bond_coeff 1 10.0 1.2
|
||||
|
||||
# need to preserve 1-3, 1-4 pairwise interactions during hard collisions
|
||||
|
||||
special_bonds lj/coul 0 1 1
|
||||
0 = max # of 1-2 neighbors
|
||||
1 = max # of special neighbors
|
||||
create_bonds all all 1 1.0 1.5
|
||||
Neighbor list info ...
|
||||
2 neighbor list requests
|
||||
update every 1 steps, delay 10 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 2.8
|
||||
ghost atom cutoff = 2.8
|
||||
binsize = 1.4 -> bins = 42 29 1
|
||||
Added 1014 bonds, new total = 1014
|
||||
6 = max # of 1-2 neighbors
|
||||
6 = max # of special neighbors
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify delay 0 every 1 check yes
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi $x 1 1 2.5
|
||||
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi 50 1 1 2.5
|
||||
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi $y 1 1 2.5
|
||||
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi 20 1 1 2.5
|
||||
|
||||
comm_style tiled
|
||||
comm_modify cutoff 7.5
|
||||
fix 10 all balance 50 0.9 rcb
|
||||
|
||||
#compute 1 all property/atom proc
|
||||
#variable p atom (c_1%10)+1
|
||||
#dump 2 all custom 50 tmp.dump id v_p x y z
|
||||
|
||||
#dump 3 all image 50 image.*.jpg v_p type bond atom 0.25 # adiam 1.0 view 0 0 zoom 1.8 subbox yes 0.02
|
||||
#variable colors string # "red green blue yellow white # purple pink orange lime gray"
|
||||
#dump_modify 3 pad 5 amap 0 10 sa 1 10 ${colors}
|
||||
|
||||
thermo_style custom step temp epair press f_10[3] f_10
|
||||
thermo 100
|
||||
|
||||
run 10000
|
||||
Neighbor list info ...
|
||||
1 neighbor list requests
|
||||
update every 1 steps, delay 0 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 2.8
|
||||
ghost atom cutoff = 7.5
|
||||
binsize = 1.4 -> bins = 42 29 1
|
||||
Memory usage per processor = 4.49421 Mbytes
|
||||
Step Temp E_pair Press f_10[3] f_10
|
||||
0 25.701528 -2.2032569 3.1039469 3.2354571 1.0526316
|
||||
100 27.623422 -6.228166 2.6542136 1.2631579 1.0083102
|
||||
200 33.35302 -15.746749 3.2018248 1.2963989 1.0193906
|
||||
300 39.17734 -24.1557 4.9116986 1.2963989 1.0193906
|
||||
400 41.660701 -27.615203 8.6214679 1.3518006 1.0083102
|
||||
500 37.154928 -24.096947 3.2656178 1.3296399 1.0193906
|
||||
600 35.059889 -21.524278 2.3728491 1.3296399 1.0083102
|
||||
700 36.70511 -21.983922 3.299538 1.3296399 1.0083102
|
||||
800 39.54394 -25.667546 4.3058382 1.3961219 1.0083102
|
||||
900 37.868974 -24.379807 5.3176538 1.3518006 1.0083102
|
||||
1000 36.721328 -23.341363 5.8700266 1.3407202 1.0083102
|
||||
1100 35.646239 -23.3255 3.3762843 1.1855956 1.0083102
|
||||
1200 31.452912 -20.792985 5.4901357 1.1966759 1.0083102
|
||||
1300 32.276549 -21.245929 6.4153084 1.2077562 1.0193906
|
||||
1400 29.452751 -20.724401 2.174752 1.1855956 1.0083102
|
||||
1500 28.014757 -18.893532 1.7482766 1.1634349 1.0083102
|
||||
1600 26.222645 -16.78953 0.93944237 1.1966759 1.0304709
|
||||
1700 25.711888 -15.792639 0.20021405 1.0969529 1.0083102
|
||||
1800 24.412639 -13.217606 0.7091708 1.1966759 1.0083102
|
||||
1900 25.644324 -13.020594 1.3661224 1.1412742 1.0083102
|
||||
2000 24.556667 -13.580087 0.80121134 1.0637119 1.0083102
|
||||
2100 25.23657 -13.560862 1.2349706 1.1191136 1.0193906
|
||||
2200 26.456985 -13.804729 1.27046 1.1412742 1.0193906
|
||||
2300 26.416685 -13.212452 1.4096744 1.1412742 1.0083102
|
||||
2400 25.472914 -12.472527 1.5408641 1.1412742 1.0083102
|
||||
2500 25.216305 -12.597474 0.84328282 1.1412742 1.0083102
|
||||
2600 24.107024 -12.455199 1.5587978 1.2409972 1.0193906
|
||||
2700 26.840175 -15.533209 1.2944973 1.1745152 1.0083102
|
||||
2800 26.149759 -14.83948 4.0371126 1.0747922 1.0083102
|
||||
2900 24.651151 -14.934342 2.7634302 1.0747922 1.0193906
|
||||
3000 21.873123 -13.366381 -0.18605935 1.1301939 1.0083102
|
||||
3100 19.974658 -10.620844 -0.16366371 1.0637119 1.0193906
|
||||
3200 20.926558 -10.336663 -0.73116364 1.1080332 1.0083102
|
||||
3300 20.473772 -10.588752 -0.66017168 1.0858726 1.0304709
|
||||
3400 22.476649 -11.87982 1.0141731 1.0747922 1.0083102
|
||||
3500 24.02361 -12.532787 1.4116935 1.1191136 1.0083102
|
||||
3600 22.922792 -12.328391 -0.27783338 1.0969529 1.0083102
|
||||
3700 21.772971 -10.716922 0.95739835 1.1523546 1.0083102
|
||||
3800 21.597174 -10.839031 0.67958603 1.1191136 1.0193906
|
||||
3900 21.883448 -11.258422 -0.40592732 1.0637119 1.0193906
|
||||
4000 22.815486 -10.891868 1.6123322 1.1301939 1.0193906
|
||||
4100 23.276599 -11.400134 0.65653972 1.0415512 1.0193906
|
||||
4200 22.543441 -11.530245 0.074132899 1.1523546 1.0193906
|
||||
4300 22.863379 -10.809451 0.27552824 1.1412742 1.0193906
|
||||
4400 22.475073 -11.125735 1.7708547 1.1191136 1.0193906
|
||||
4500 23.500125 -11.680919 0.91347563 1.0858726 1.0083102
|
||||
4600 21.1812 -11.767353 0.095659263 1.1191136 1.0193906
|
||||
4700 22.950759 -12.108158 0.083009642 1.1966759 1.0083102
|
||||
4800 22.12306 -11.455893 0.47932308 1.1080332 1.0083102
|
||||
4900 23.297573 -11.823246 0.93733479 1.0969529 1.0083102
|
||||
5000 22.98743 -12.014836 0.36186604 1.1080332 1.0083102
|
||||
5100 23.081456 -11.54226 0.73473004 1.0747922 1.0193906
|
||||
5200 20.980311 -11.493036 -0.71555187 1.0637119 1.0193906
|
||||
5300 21.468406 -11.18497 0.54579843 1.0304709 1.0193906
|
||||
5400 22.75839 -10.856825 0.94407228 1.1191136 1.0083102
|
||||
5500 22.705652 -12.112469 0.4753399 1.1412742 1.0083102
|
||||
5600 22.391177 -12.530712 1.0180383 1.1412742 1.0083102
|
||||
5700 21.832834 -11.368512 0.88281166 1.0415512 1.0083102
|
||||
5800 22.850002 -11.948876 -0.46874747 1.0747922 1.0083102
|
||||
5900 21.135991 -12.358431 -0.48932559 1.0526316 1.0193906
|
||||
6000 22.071115 -11.433484 0.49653696 1.0747922 1.0304709
|
||||
6100 21.91427 -11.458553 -0.030708226 1.0637119 1.0193906
|
||||
6200 24.173206 -13.110269 -0.13661363 1.1412742 1.0083102
|
||||
6300 22.204413 -11.373556 1.6254012 1.0747922 1.0304709
|
||||
6400 23.259022 -11.634614 1.4472592 1.1412742 1.0193906
|
||||
6500 22.185287 -11.606998 0.66488201 1.0415512 1.0083102
|
||||
6600 21.329653 -10.989853 0.31700842 1.1301939 1.0083102
|
||||
6700 21.903749 -10.335477 1.3749575 1.0637119 1.0083102
|
||||
6800 21.188714 -10.545014 1.3448408 1.0415512 1.0083102
|
||||
6900 22.683005 -11.254371 0.5048545 1.1523546 1.0193906
|
||||
7000 21.224439 -9.7325551 0.71666112 1.0637119 1.0083102
|
||||
7100 21.712624 -10.594397 0.3657261 1.0858726 1.0193906
|
||||
7200 22.115857 -10.479237 0.95528164 1.0969529 1.0193906
|
||||
7300 22.075732 -11.255 -0.35340754 1.0526316 1.0193906
|
||||
7400 21.659767 -10.238454 -0.063639729 1.1523546 1.0083102
|
||||
7500 21.966354 -10.654264 0.36298903 1.0747922 1.0083102
|
||||
7600 21.541195 -11.151416 0.96453416 1.1080332 1.0193906
|
||||
7700 23.517228 -12.266781 0.49603585 1.1523546 1.0193906
|
||||
7800 21.665911 -11.832323 0.47104209 1.1080332 1.0083102
|
||||
7900 23.469372 -12.358423 -0.757413 1.0747922 1.0193906
|
||||
8000 21.699467 -11.462824 -0.73009236 1.0415512 1.0083102
|
||||
8100 21.583783 -10.21474 0.98837038 1.0969529 1.0193906
|
||||
8200 21.804998 -10.916922 -0.53268178 1.0858726 1.0083102
|
||||
8300 21.291145 -10.875356 0.81277146 1.0858726 1.0193906
|
||||
8400 21.939964 -10.726547 0.95830844 1.0415512 1.0193906
|
||||
8500 23.600157 -11.041255 -0.14583876 1.0747922 1.0083102
|
||||
8600 22.37787 -10.946852 1.0360646 1.0415512 1.0083102
|
||||
8700 23.591205 -11.524803 1.1877377 1.0526316 1.0304709
|
||||
8800 22.567007 -11.4629 0.4360461 1.0526316 1.0083102
|
||||
8900 22.11289 -11.772849 -0.019132631 1.0304709 1.0193906
|
||||
9000 22.814946 -11.705633 0.59029789 1.0747922 1.0083102
|
||||
9100 22.58487 -11.431283 0.9884223 1.1634349 1.0083102
|
||||
9200 23.283939 -11.825534 0.68358625 1.0637119 1.0083102
|
||||
9300 23.292444 -11.365494 0.78631005 1.0526316 1.0083102
|
||||
9400 21.748634 -10.16176 0.59185916 1.0969529 1.0083102
|
||||
9500 21.644797 -10.00944 1.1450108 1.0637119 1.0304709
|
||||
9600 23.01957 -10.683211 1.5735291 1.0637119 1.0193906
|
||||
9700 21.207989 -10.344668 0.34401867 1.0969529 1.0083102
|
||||
9800 22.035363 -10.849581 -0.14118639 1.0304709 1.0083102
|
||||
9900 21.839653 -10.008407 0.96570633 1.0526316 1.0193906
|
||||
10000 22.845561 -10.238723 0.74236932 1.0858726 1.0083102
|
||||
Loop time of 0.812716 on 4 procs for 10000 steps with 361 atoms
|
||||
|
||||
Performance: 5315508.362 tau/day, 12304.418 timesteps/s
|
||||
98.9% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.12434 | 0.13482 | 0.14506 | 2.5 | 16.59
|
||||
Bond | 0.053339 | 0.058165 | 0.062916 | 1.9 | 7.16
|
||||
Neigh | 0.28554 | 0.29233 | 0.29933 | 0.9 | 35.97
|
||||
Comm | 0.16602 | 0.19226 | 0.21833 | 4.3 | 23.66
|
||||
Output | 0.0017536 | 0.0019155 | 0.0022504 | 0.4 | 0.24
|
||||
Modify | 0.040126 | 0.040341 | 0.04054 | 0.1 | 4.96
|
||||
Other | | 0.09288 | | | 11.43
|
||||
|
||||
Nlocal: 90.25 ave 91 max 90 min
|
||||
Histogram: 3 0 0 0 0 0 0 0 0 1
|
||||
Nghost: 198.25 ave 206 max 191 min
|
||||
Histogram: 1 1 0 0 0 0 0 0 1 1
|
||||
Neighs: 667.75 ave 751 max 627 min
|
||||
Histogram: 2 0 1 0 0 0 0 0 0 1
|
||||
|
||||
Total # of neighbors = 2671
|
||||
Ave neighs/atom = 7.39889
|
||||
Ave special neighs/atom = 5.61773
|
||||
Neighbor list builds = 4832
|
||||
Dangerous builds = 0
|
||||
Total wall time: 0:00:00
|
||||
@ -1,4 +1,4 @@
|
||||
LAMMPS (15 Feb 2016)
|
||||
LAMMPS (26 Sep 2016)
|
||||
# 2d circle of particles inside a box with LJ walls
|
||||
|
||||
variable b index 0
|
||||
@ -91,7 +91,7 @@ Neighbor list info ...
|
||||
ghost atom cutoff = 2.8
|
||||
binsize = 1.4 -> bins = 42 29 1
|
||||
Memory usage per processor = 6.41878 Mbytes
|
||||
Step Temp E_pair Press 10[3] 10
|
||||
Step Temp E_pair Press f_10[3] f_10
|
||||
0 0.57437856 0 0.26099453 3.2354571 1.0526316
|
||||
100 0.29756515 0 0.10149401 1.0193906 1.0083102
|
||||
200 0.35394813 0 0.075159099 1.0304709 1.0083102
|
||||
@ -108,9 +108,9 @@ Step Temp E_pair Press 10[3] 10
|
||||
1300 0.32952819 0 0.124902 1.0083102 1.0083102
|
||||
1400 0.34497365 0 0.12662081 1.0193906 1.0083102
|
||||
1500 0.33429243 0 0.096230972 1.0526316 1.0193906
|
||||
1600 0.33765387 0 0.025800542 1.0304709 1.0083102
|
||||
1700 0.35134464 0 -0.04422593 1.0415512 1.0193906
|
||||
1800 0.35003859 0 -0.096745576 1.0304709 1.0193906
|
||||
1600 0.33765387 0 0.025800542 1.0304709 1.0193906
|
||||
1700 0.35134464 0 -0.04422593 1.0415512 1.0083102
|
||||
1800 0.35003859 0 -0.096745576 1.0304709 1.0083102
|
||||
1900 0.33839618 0 -0.095465943 1.0193906 1.0083102
|
||||
2000 0.33732078 0 -0.094652802 1.0083102 1.0083102
|
||||
2100 0.34552238 0 -0.076729261 1.0304709 1.0083102
|
||||
@ -179,7 +179,7 @@ Step Temp E_pair Press 10[3] 10
|
||||
8400 0.30619282 0 -0.12952879 1.0193906 1.0193906
|
||||
8500 0.34446484 0 -0.098084709 1.0083102 1.0083102
|
||||
8600 0.33761673 0 -0.07069818 1.0193906 1.0083102
|
||||
8700 0.34495452 0 -0.022458056 1.0193906 1.0083102
|
||||
8700 0.34495452 0 -0.022458056 1.0193906 1.0193906
|
||||
8800 0.33502983 0 0.027742411 1.0304709 1.0083102
|
||||
8900 0.35418591 0 0.092390134 1.0083102 1.0193906
|
||||
9000 0.31648387 0 0.12467398 1.0193906 1.0083102
|
||||
@ -192,12 +192,12 @@ Step Temp E_pair Press 10[3] 10
|
||||
9700 0.32088235 0 -0.12027075 1.0193906 1.0083102
|
||||
9800 0.3320823 0 -0.11602794 1.0415512 1.0083102
|
||||
9900 0.33916442 0 -0.080281044 1.0083102 1.0083102
|
||||
10000 0.34852268 0 -0.01000914 1.0193906 1.0193906
|
||||
10000 0.34852268 0 -0.01000914 1.0193906 1.0083102
|
||||
10100 0.32955942 0 0.04258493 1.0083102 1.0083102
|
||||
10200 0.34487898 0 0.086971308 1.0304709 1.0193906
|
||||
10200 0.34487898 0 0.086971308 1.0304709 1.0083102
|
||||
10300 0.32325593 0 0.11558149 1.0304709 1.0193906
|
||||
10400 0.30927871 0 0.12239437 1.0083102 1.0083102
|
||||
10500 0.33176799 0 0.12285937 1.0193906 1.0193906
|
||||
10500 0.33176799 0 0.12285937 1.0193906 1.0083102
|
||||
10600 0.35120027 0 0.084897432 1.0083102 1.0083102
|
||||
10700 0.33129697 0 0.0053089279 1.0193906 1.0193906
|
||||
10800 0.36028769 0 -0.04280715 1.0193906 1.0083102
|
||||
@ -214,7 +214,7 @@ Step Temp E_pair Press 10[3] 10
|
||||
11900 0.33836678 0 0.067253864 1.0193906 1.0193906
|
||||
12000 0.34853314 0 0.03201448 1.0193906 1.0083102
|
||||
12100 0.34600048 0 -0.034833402 1.0304709 1.0083102
|
||||
12200 0.33145631 0 -0.09865675 1.0193906 1.0193906
|
||||
12200 0.33145631 0 -0.09865675 1.0193906 1.0083102
|
||||
12300 0.32848884 0 -0.1248489 1.0193906 1.0193906
|
||||
12400 0.3321344 0 -0.11266575 1.0083102 1.0083102
|
||||
12500 0.32622305 0 -0.061634993 1.0304709 1.0083102
|
||||
@ -225,11 +225,11 @@ Step Temp E_pair Press 10[3] 10
|
||||
13000 0.31993287 0 0.13879926 1.0193906 1.0193906
|
||||
13100 0.3422918 0 0.11978905 1.0083102 1.0083102
|
||||
13200 0.33055236 0 0.062620483 1.0193906 1.0083102
|
||||
13300 0.34652207 0 0.0043833459 1.0304709 1.0193906
|
||||
13300 0.34652207 0 0.0043833459 1.0304709 1.0083102
|
||||
13400 0.33574661 0 -0.04691024 1.0304709 1.0083102
|
||||
13500 0.33940837 0 -0.074241604 1.0304709 1.0083102
|
||||
13600 0.32093414 0 -0.1078027 1.0193906 1.0083102
|
||||
13700 0.34336597 0 -0.10544097 1.0193906 1.0083102
|
||||
13600 0.32093414 0 -0.1078027 1.0193906 1.0193906
|
||||
13700 0.34336597 0 -0.10544097 1.0193906 1.0193906
|
||||
13800 0.35806461 0 -0.072531559 1.0193906 1.0083102
|
||||
13900 0.35209713 0 -0.018851408 1.0083102 1.0083102
|
||||
14000 0.35702629 0 0.061046366 1.0083102 1.0083102
|
||||
@ -243,13 +243,13 @@ Step Temp E_pair Press 10[3] 10
|
||||
14800 0.33679845 0 -0.10067728 1.0193906 1.0193906
|
||||
14900 0.32790966 0 -0.10925568 1.0193906 1.0083102
|
||||
15000 0.34208495 0 -0.09568004 1.0193906 1.0083102
|
||||
15100 0.33647529 0 -0.055652929 1.0083102 1.0193906
|
||||
15100 0.33647529 0 -0.055652929 1.0083102 1.0083102
|
||||
15200 0.35328398 0 -0.020236536 1.0193906 1.0193906
|
||||
15300 0.34252669 0 0.026434179 1.0083102 1.0193906
|
||||
15400 0.34409435 0 0.094410599 1.0304709 1.0083102
|
||||
15500 0.32288994 0 0.12034455 1.0415512 1.0193906
|
||||
15600 0.32109689 0 0.13645185 1.0193906 1.0193906
|
||||
15700 0.33681572 0 0.098607746 1.0415512 1.0083102
|
||||
15600 0.32109689 0 0.13645185 1.0193906 1.0083102
|
||||
15700 0.33681572 0 0.098607746 1.0415512 1.0193906
|
||||
15800 0.33635195 0 0.05570715 1.0193906 1.0193906
|
||||
15900 0.34289757 0 0.013849092 1.0304709 1.0083102
|
||||
16000 0.34225547 0 -0.035597548 1.0304709 1.0083102
|
||||
@ -261,7 +261,7 @@ Step Temp E_pair Press 10[3] 10
|
||||
16600 0.35109001 0 0.041251169 1.0304709 1.0083102
|
||||
16700 0.34336905 0 0.077996627 1.0193906 1.0083102
|
||||
16800 0.33277414 0 0.11053634 1.0083102 1.0083102
|
||||
16900 0.32183338 0 0.11680626 1.0193906 1.0083102
|
||||
16900 0.32183338 0 0.11680626 1.0193906 1.0193906
|
||||
17000 0.34044352 0 0.10806555 1.0193906 1.0083102
|
||||
17100 0.32967873 0 0.067759786 1.0304709 1.0193906
|
||||
17200 0.36172278 0 -0.0048631904 1.0304709 1.0083102
|
||||
@ -293,17 +293,17 @@ Step Temp E_pair Press 10[3] 10
|
||||
19800 0.34880695 0 0.042483681 1.0193906 1.0083102
|
||||
19900 0.33903644 0 0.034788638 1.0083102 1.0193906
|
||||
20000 0.32590125 0 0.011383785 1.0193906 1.0083102
|
||||
20100 0.30358859 0 0.0030743554 1.0526316 1.0083102
|
||||
20100 0.30358859 0 0.0030743554 1.0526316 1.0193906
|
||||
20200 0.31830224 0 0.017637826 1.0193906 1.0193906
|
||||
20300 0.34195438 0 0.072811099 1.0304709 1.0193906
|
||||
20400 0.31249563 0 0.10063541 1.0415512 1.0083102
|
||||
20500 0.31544938 0 0.1405794 1.0083102 1.0083102
|
||||
20600 0.30071644 0 0.12763486 1.0193906 1.0193906
|
||||
20700 0.2890265 0 0.1136651 1.0083102 1.0083102
|
||||
20700 0.2890265 0 0.1136651 1.0083102 1.0193906
|
||||
20800 0.28962296 0 0.094481978 1.0193906 1.0083102
|
||||
20900 0.29447212 0 0.0967165 1.0193906 1.0193906
|
||||
21000 0.31159961 0 0.067307231 1.0083102 1.0193906
|
||||
21100 0.30490648 0 0.017689358 1.0083102 1.0304709
|
||||
21000 0.31159961 0 0.067307231 1.0083102 1.0083102
|
||||
21100 0.30490648 0 0.017689358 1.0083102 1.0193906
|
||||
21200 0.30687262 0 -0.016055512 1.0193906 1.0193906
|
||||
21300 0.30083286 0 -0.0014988997 1.0193906 1.0083102
|
||||
21400 0.32070426 0 0.015960302 1.0083102 1.0083102
|
||||
@ -314,7 +314,7 @@ Step Temp E_pair Press 10[3] 10
|
||||
21900 0.32451958 0 0.068935768 1.0304709 1.0193906
|
||||
22000 0.35219298 0 0.067161227 1.0193906 1.0193906
|
||||
22100 0.34857705 0 0.032731746 1.0193906 1.0083102
|
||||
22200 0.34750227 0 0.0056917695 1.0193906 1.0083102
|
||||
22200 0.34750227 0 0.0056917695 1.0193906 1.0193906
|
||||
22300 0.34766017 0 -0.0027090483 1.0193906 1.0083102
|
||||
22400 0.33426062 0 -0.023196063 1.0304709 1.0193906
|
||||
22500 0.34174625 0 -0.025019717 1.0083102 1.0083102
|
||||
@ -328,11 +328,11 @@ Step Temp E_pair Press 10[3] 10
|
||||
23300 0.32965664 0 0.035989589 1.0193906 1.0083102
|
||||
23400 0.30927749 0 0.024581106 1.0193906 1.0083102
|
||||
23500 0.32890632 0 0.01092479 1.0304709 1.0193906
|
||||
23600 0.34137438 0 0.0094839745 1.0193906 1.0083102
|
||||
23600 0.34137438 0 0.0094839745 1.0193906 1.0193906
|
||||
23700 0.34512638 0 -0.012392771 1.0304709 1.0193906
|
||||
23800 0.31781354 0 -0.012908449 1.0193906 1.0193906
|
||||
23900 0.32405513 0 -0.015018071 1.0415512 1.0193906
|
||||
24000 0.33549728 0 -0.012812915 1.0193906 1.0083102
|
||||
23900 0.32405513 0 -0.015018071 1.0415512 1.0083102
|
||||
24000 0.33549728 0 -0.012812915 1.0193906 1.0193906
|
||||
24100 0.31368736 0 -0.020818372 1.0304709 1.0193906
|
||||
24200 0.33533836 0 0.0056121057 1.0083102 1.0193906
|
||||
24300 0.32530627 0 0.018183931 1.0415512 1.0083102
|
||||
@ -352,12 +352,12 @@ Step Temp E_pair Press 10[3] 10
|
||||
25700 0.34048065 0 0.022513032 1.0193906 1.0193906
|
||||
25800 0.33029079 0 0.038733531 1.0193906 1.0083102
|
||||
25900 0.33031324 0 0.026156982 1.0304709 1.0193906
|
||||
26000 0.32967371 0 0.028727383 1.0083102 1.0083102
|
||||
26000 0.32967371 0 0.028727383 1.0083102 1.0193906
|
||||
26100 0.33775718 0 0.015607478 1.0083102 1.0193906
|
||||
26200 0.35097144 0 0.012291703 1.0083102 1.0083102
|
||||
26300 0.34303792 0 0.00094823191 1.0083102 1.0193906
|
||||
26400 0.33632665 0 -0.0026904889 1.0193906 1.0193906
|
||||
26500 0.33580127 0 -0.0074168555 1.0193906 1.0193906
|
||||
26500 0.33580127 0 -0.0074168555 1.0193906 1.0083102
|
||||
26600 0.33063188 0 -0.020378601 1.0083102 1.0193906
|
||||
26700 0.33581846 0 -0.00084397268 1.0083102 1.0193906
|
||||
26800 0.32998532 0 0.015932208 1.0304709 1.0193906
|
||||
@ -375,12 +375,12 @@ Step Temp E_pair Press 10[3] 10
|
||||
28000 0.32300727 0 -0.0004153384 1.0304709 1.0083102
|
||||
28100 0.32147461 0 -0.0058543412 1.0083102 1.0083102
|
||||
28200 0.35532383 0 0.013646951 1.0304709 1.0083102
|
||||
28300 0.31507942 0 0.026532255 1.0415512 1.0193906
|
||||
28300 0.31507942 0 0.026532255 1.0415512 1.0083102
|
||||
28400 0.32711006 0 0.033214981 1.0193906 1.0083102
|
||||
28500 0.34472462 0 0.028050837 1.0304709 1.0193906
|
||||
28600 0.33708059 0 0.019115676 1.0083102 1.0083102
|
||||
28700 0.34478087 0 0.023743689 1.0304709 1.0083102
|
||||
28800 0.34546686 0 0.0081772997 1.0304709 1.0193906
|
||||
28700 0.34478087 0 0.023743689 1.0304709 1.0193906
|
||||
28800 0.34546686 0 0.0081772997 1.0304709 1.0083102
|
||||
28900 0.34004886 0 0.017771865 1.0415512 1.0193906
|
||||
29000 0.33604232 0 -0.010505671 1.0304709 1.0193906
|
||||
29100 0.33541374 0 -0.016273261 1.0083102 1.0083102
|
||||
@ -411,14 +411,14 @@ Step Temp E_pair Press 10[3] 10
|
||||
31600 0.34273493 0 -0.013456537 1.0083102 1.0083102
|
||||
31700 0.32723905 0 -0.019243766 1.0193906 1.0083102
|
||||
31800 0.33636488 0 0.0027814902 1.0083102 1.0083102
|
||||
31900 0.32834805 0 0.00706877 1.0083102 1.0083102
|
||||
31900 0.32834805 0 0.00706877 1.0083102 1.0193906
|
||||
32000 0.33995148 0 0.0018383309 1.0193906 1.0193906
|
||||
32100 0.33412282 0 0.0076455933 1.0083102 1.0083102
|
||||
32200 0.34334884 0 0.023586129 1.0083102 1.0083102
|
||||
32300 0.32778925 0 0.020564321 1.0193906 1.0083102
|
||||
32400 0.33163443 0 0.038878463 1.0193906 1.0083102
|
||||
32500 0.32290345 0 0.022247461 1.0193906 1.0193906
|
||||
32600 0.34113954 0 0.010966365 1.0304709 1.0083102
|
||||
32600 0.34113954 0 0.010966365 1.0304709 1.0193906
|
||||
32700 0.33390633 0 0.0037777555 1.0193906 1.0083102
|
||||
32800 0.34385341 0 0.010556575 1.0193906 1.0193906
|
||||
32900 0.32137047 0 0.00022027143 1.0526316 1.0193906
|
||||
@ -443,15 +443,15 @@ Step Temp E_pair Press 10[3] 10
|
||||
34800 0.33902329 0 0.030037037 1.0415512 1.0193906
|
||||
34900 0.3216153 0 0.027996689 1.0304709 1.0083102
|
||||
35000 0.32701056 0 0.024778517 1.0193906 1.0193906
|
||||
35100 0.3124942 0 0.011316548 1.0193906 1.0304709
|
||||
35100 0.3124942 0 0.011316548 1.0193906 1.0193906
|
||||
35200 0.34486416 0 0.011670127 1.0193906 1.0193906
|
||||
35300 0.33275353 0 0.020491246 1.0193906 1.0193906
|
||||
35400 0.33618763 0 0.014678874 1.0083102 1.0083102
|
||||
35400 0.33618763 0 0.014678874 1.0083102 1.0193906
|
||||
35500 0.32352282 0 -0.018568683 1.0193906 1.0193906
|
||||
35600 0.32617903 0 -0.012796912 1.0193906 1.0193906
|
||||
35700 0.32378048 0 -0.021318585 1.0193906 1.0083102
|
||||
35800 0.3371086 0 -0.0023678632 1.0193906 1.0193906
|
||||
35900 0.33818476 0 0.011197742 1.0193906 1.0193906
|
||||
35900 0.33818476 0 0.011197742 1.0193906 1.0083102
|
||||
36000 0.35142144 0 0.022520935 1.0083102 1.0193906
|
||||
36100 0.35147297 0 0.020277852 1.0193906 1.0083102
|
||||
36200 0.33489465 0 0.014564878 1.0415512 1.0083102
|
||||
@ -464,10 +464,10 @@ Step Temp E_pair Press 10[3] 10
|
||||
36900 0.35003816 0 -0.0021184393 1.0083102 1.0193906
|
||||
37000 0.32965041 0 -0.020900951 1.0193906 1.0083102
|
||||
37100 0.34653095 0 -0.013667977 1.0193906 1.0083102
|
||||
37200 0.35019871 0 -0.0071740923 1.0083102 1.0304709
|
||||
37200 0.35019871 0 -0.0071740923 1.0083102 1.0193906
|
||||
37300 0.34859745 0 0.02006041 1.0304709 1.0083102
|
||||
37400 0.35739859 0 0.020892822 1.0193906 1.0083102
|
||||
37500 0.34128859 0 0.041072111 1.0193906 1.0193906
|
||||
37500 0.34128859 0 0.041072111 1.0193906 1.0083102
|
||||
37600 0.33781905 0 0.023376738 1.0193906 1.0083102
|
||||
37700 0.32961874 0 0.030953741 1.0193906 1.0083102
|
||||
37800 0.343987 0 0.029579795 1.0083102 1.0083102
|
||||
@ -481,7 +481,7 @@ Step Temp E_pair Press 10[3] 10
|
||||
38600 0.32322402 0 0.053453832 1.0193906 1.0304709
|
||||
38700 0.33843057 0 0.076264534 1.0083102 1.0193906
|
||||
38800 0.31350741 0 0.064733869 1.0415512 1.0083102
|
||||
38900 0.31943061 0 0.067836769 1.0304709 1.0193906
|
||||
38900 0.31943061 0 0.067836769 1.0304709 1.0083102
|
||||
39000 0.33775583 0 0.0788316 1.0193906 1.0193906
|
||||
39100 0.34256036 0 0.075874935 1.0083102 1.0193906
|
||||
39200 0.33128527 0 0.071610976 1.0193906 1.0083102
|
||||
@ -491,23 +491,23 @@ Step Temp E_pair Press 10[3] 10
|
||||
39600 0.34000737 0 0.016149089 1.0304709 1.0083102
|
||||
39700 0.34587892 0 0.021619621 1.0526316 1.0083102
|
||||
39800 0.34878036 0 0.0092881327 1.0083102 1.0193906
|
||||
39900 0.35225411 0 -0.011341599 1.0083102 1.0083102
|
||||
39900 0.35225411 0 -0.011341599 1.0083102 1.0193906
|
||||
40000 0.36309266 0 0.0050869295 1.0304709 1.0083102
|
||||
Loop time of 1.06031 on 4 procs for 40000 steps with 361 atoms
|
||||
Loop time of 1.07961 on 4 procs for 40000 steps with 361 atoms
|
||||
|
||||
Performance: 16297104.069 tau/day, 37724.778 timesteps/s
|
||||
99.2% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
Performance: 16005824.195 tau/day, 37050.519 timesteps/s
|
||||
99.1% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.019866 | 0.021036 | 0.024189 | 1.3 | 1.98
|
||||
Bond | 0.21436 | 0.24183 | 0.27259 | 5.1 | 22.81
|
||||
Neigh | 0.16022 | 0.16068 | 0.16101 | 0.1 | 15.15
|
||||
Comm | 0.2742 | 0.31331 | 0.3498 | 5.6 | 29.55
|
||||
Output | 0.0070348 | 0.0075188 | 0.0087383 | 0.8 | 0.71
|
||||
Modify | 0.14238 | 0.14861 | 0.15484 | 1.3 | 14.02
|
||||
Other | | 0.1673 | | | 15.78
|
||||
Pair | 0.019289 | 0.021061 | 0.024797 | 1.5 | 1.95
|
||||
Bond | 0.21005 | 0.23732 | 0.26838 | 5.0 | 21.98
|
||||
Neigh | 0.15978 | 0.16143 | 0.16328 | 0.4 | 14.95
|
||||
Comm | 0.2817 | 0.32626 | 0.36457 | 5.8 | 30.22
|
||||
Output | 0.0069985 | 0.0075181 | 0.0087821 | 0.8 | 0.70
|
||||
Modify | 0.1463 | 0.15235 | 0.16128 | 1.5 | 14.11
|
||||
Other | | 0.1737 | | | 16.09
|
||||
|
||||
Nlocal: 90.25 ave 91 max 89 min
|
||||
Histogram: 1 0 0 0 0 1 0 0 0 2
|
||||
221
examples/balance/log.27Sep16.balance.clock.dynamic.g++.4
Normal file
221
examples/balance/log.27Sep16.balance.clock.dynamic.g++.4
Normal file
@ -0,0 +1,221 @@
|
||||
LAMMPS (26 Sep 2016)
|
||||
# 3d Lennard-Jones melt
|
||||
|
||||
units lj
|
||||
atom_style atomic
|
||||
processors * 1 1
|
||||
|
||||
lattice fcc 0.8442
|
||||
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
|
||||
region box block 0 10 0 10 0 10
|
||||
create_box 3 box
|
||||
Created orthogonal box = (0 0 0) to (16.796 16.796 16.796)
|
||||
4 by 1 by 1 MPI processor grid
|
||||
create_atoms 1 box
|
||||
Created 4000 atoms
|
||||
mass * 1.0
|
||||
|
||||
region long block 3 6 0 10 0 10
|
||||
set region long type 2
|
||||
1400 settings made for type
|
||||
|
||||
velocity all create 1.0 87287
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff * * 1.0 1.0 2.5
|
||||
pair_coeff * 2 1.0 1.0 5.0
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify every 2 delay 4 check yes
|
||||
fix p all property/atom d_WEIGHT
|
||||
compute p all property/atom d_WEIGHT
|
||||
fix 0 all balance 50 1.0 shift x 10 1.0 weight time 1.0 weight store WEIGHT
|
||||
variable maximb equal f_0[1]
|
||||
variable iter equal f_0[2]
|
||||
variable prev equal f_0[3]
|
||||
variable final equal f_0
|
||||
|
||||
#fix 3 all print 50 "${iter} ${prev} ${final} ${maximb}"
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
#dump id all atom 50 dump.melt
|
||||
#dump id all custom 50 dump.lammpstrj id type x y z c_p
|
||||
|
||||
#dump 2 all image 25 image.*.jpg type type # axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 2 pad 3
|
||||
|
||||
#dump 3 all movie 25 movie.mpg type type # axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 3 pad 3
|
||||
|
||||
thermo 50
|
||||
run 500
|
||||
Neighbor list info ...
|
||||
1 neighbor list requests
|
||||
update every 2 steps, delay 4 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 5.3
|
||||
ghost atom cutoff = 5.3
|
||||
binsize = 2.65 -> bins = 7 7 7
|
||||
Memory usage per processor = 3.0442 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press Volume
|
||||
0 1 -6.9453205 0 -5.4456955 -5.6812358 4738.2137
|
||||
50 0.48653399 -6.1788509 0 -5.4492324 -1.6017778 4738.2137
|
||||
100 0.53411175 -6.249885 0 -5.4489177 -1.9317606 4738.2137
|
||||
150 0.53646658 -6.2527206 0 -5.4482219 -1.9689568 4738.2137
|
||||
200 0.54551611 -6.2656326 0 -5.4475631 -2.0042104 4738.2137
|
||||
250 0.54677719 -6.2671162 0 -5.4471555 -2.0015995 4738.2137
|
||||
300 0.5477618 -6.2678071 0 -5.4463698 -1.997842 4738.2137
|
||||
350 0.55600296 -6.2801497 0 -5.4463538 -2.0394056 4738.2137
|
||||
400 0.53241503 -6.2453665 0 -5.4469436 -1.878594 4738.2137
|
||||
450 0.5439158 -6.2623 0 -5.4466302 -1.9744161 4738.2137
|
||||
500 0.55526241 -6.2793396 0 -5.4466542 -2.0595015 4738.2137
|
||||
Loop time of 2.31899 on 4 procs for 500 steps with 4000 atoms
|
||||
|
||||
Performance: 93143.824 tau/day, 215.611 timesteps/s
|
||||
99.4% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 1.1238 | 1.43 | 1.6724 | 19.4 | 61.66
|
||||
Neigh | 0.26414 | 0.3845 | 0.55604 | 20.2 | 16.58
|
||||
Comm | 0.36444 | 0.48475 | 0.61759 | 15.3 | 20.90
|
||||
Output | 0.00027871 | 0.00032145 | 0.00035334 | 0.2 | 0.01
|
||||
Modify | 0.0064867 | 0.0086303 | 0.011487 | 2.3 | 0.37
|
||||
Other | | 0.01078 | | | 0.46
|
||||
|
||||
Nlocal: 1000 ave 1565 max 584 min
|
||||
Histogram: 2 0 0 0 0 0 1 0 0 1
|
||||
Nghost: 8752 ave 9835 max 8078 min
|
||||
Histogram: 2 0 0 0 0 1 0 0 0 1
|
||||
Neighs: 149308 ave 161748 max 133300 min
|
||||
Histogram: 1 0 0 1 0 0 0 0 1 1
|
||||
|
||||
Total # of neighbors = 597231
|
||||
Ave neighs/atom = 149.308
|
||||
Neighbor list builds = 50
|
||||
Dangerous builds = 0
|
||||
run 500
|
||||
Memory usage per processor = 3.06519 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press Volume
|
||||
500 0.55526241 -6.2793396 0 -5.4466542 -2.0595015 4738.2137
|
||||
550 0.53879347 -6.2554274 0 -5.4474393 -1.9756834 4738.2137
|
||||
600 0.54275982 -6.2616799 0 -5.4477437 -1.9939993 4738.2137
|
||||
650 0.54526651 -6.265098 0 -5.4474027 -2.0303672 4738.2137
|
||||
700 0.54369381 -6.263201 0 -5.4478642 -1.9921967 4738.2137
|
||||
750 0.54452777 -6.2640839 0 -5.4474964 -1.9658675 4738.2137
|
||||
800 0.55061744 -6.2725556 0 -5.4468359 -2.0100922 4738.2137
|
||||
850 0.55371614 -6.2763992 0 -5.4460326 -2.0065329 4738.2137
|
||||
900 0.54756622 -6.2668303 0 -5.4456863 -1.9796122 4738.2137
|
||||
950 0.54791593 -6.2673161 0 -5.4456477 -1.9598278 4738.2137
|
||||
1000 0.54173198 -6.2586101 0 -5.4462153 -1.9007466 4738.2137
|
||||
Loop time of 2.32391 on 4 procs for 500 steps with 4000 atoms
|
||||
|
||||
Performance: 92946.753 tau/day, 215.155 timesteps/s
|
||||
99.4% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 1.1054 | 1.4081 | 1.6402 | 19.8 | 60.59
|
||||
Neigh | 0.28061 | 0.4047 | 0.57291 | 19.7 | 17.41
|
||||
Comm | 0.38485 | 0.4918 | 0.62503 | 15.5 | 21.16
|
||||
Output | 0.00028014 | 0.00031483 | 0.00032997 | 0.1 | 0.01
|
||||
Modify | 0.0064781 | 0.0084658 | 0.011106 | 2.2 | 0.36
|
||||
Other | | 0.01051 | | | 0.45
|
||||
|
||||
Nlocal: 1000 ave 1560 max 593 min
|
||||
Histogram: 2 0 0 0 0 0 1 0 0 1
|
||||
Nghost: 8716.25 ave 9788 max 8009 min
|
||||
Histogram: 2 0 0 0 0 1 0 0 0 1
|
||||
Neighs: 150170 ave 164293 max 129469 min
|
||||
Histogram: 1 0 0 0 1 0 0 0 0 2
|
||||
|
||||
Total # of neighbors = 600678
|
||||
Ave neighs/atom = 150.169
|
||||
Neighbor list builds = 53
|
||||
Dangerous builds = 0
|
||||
fix 0 all balance 50 1.0 shift x 5 1.0 weight neigh 0.5 weight time 0.66 weight store WEIGHT
|
||||
run 500
|
||||
Memory usage per processor = 3.06519 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press Volume
|
||||
1000 0.54173198 -6.2586101 0 -5.4462153 -1.9007466 4738.2137
|
||||
1050 0.54629742 -6.2657526 0 -5.4465113 -1.945821 4738.2137
|
||||
1100 0.55427881 -6.2781733 0 -5.446963 -2.0021027 4738.2137
|
||||
1150 0.54730654 -6.267257 0 -5.4465025 -1.9420678 4738.2137
|
||||
1200 0.5388281 -6.2547963 0 -5.4467562 -1.890178 4738.2137
|
||||
1250 0.54848768 -6.2694237 0 -5.4468979 -1.9636797 4738.2137
|
||||
1300 0.54134321 -6.2590728 0 -5.447261 -1.9170271 4738.2137
|
||||
1350 0.53564389 -6.2501521 0 -5.4468871 -1.8642306 4738.2137
|
||||
1400 0.53726924 -6.2518379 0 -5.4461355 -1.8544028 4738.2137
|
||||
1450 0.54525935 -6.2632653 0 -5.4455808 -1.9072158 4738.2137
|
||||
1500 0.54223346 -6.2591057 0 -5.4459588 -1.8866985 4738.2137
|
||||
Loop time of 2.13659 on 4 procs for 500 steps with 4000 atoms
|
||||
|
||||
Performance: 101095.806 tau/day, 234.018 timesteps/s
|
||||
99.6% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 1.3372 | 1.3773 | 1.4155 | 2.5 | 64.46
|
||||
Neigh | 0.22376 | 0.37791 | 0.57496 | 25.4 | 17.69
|
||||
Comm | 0.20357 | 0.36123 | 0.52777 | 25.5 | 16.91
|
||||
Output | 0.00029254 | 0.00034094 | 0.00039411 | 0.2 | 0.02
|
||||
Modify | 0.0056622 | 0.0082379 | 0.01147 | 2.9 | 0.39
|
||||
Other | | 0.01156 | | | 0.54
|
||||
|
||||
Nlocal: 1000 ave 1629 max 525 min
|
||||
Histogram: 2 0 0 0 0 0 0 1 0 1
|
||||
Nghost: 8647.25 ave 9725 max 7935 min
|
||||
Histogram: 2 0 0 0 0 1 0 0 0 1
|
||||
Neighs: 150494 ave 161009 max 143434 min
|
||||
Histogram: 1 1 0 0 1 0 0 0 0 1
|
||||
|
||||
Total # of neighbors = 601974
|
||||
Ave neighs/atom = 150.494
|
||||
Neighbor list builds = 51
|
||||
Dangerous builds = 0
|
||||
run 500
|
||||
Memory usage per processor = 3.06519 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press Volume
|
||||
1500 0.54223346 -6.2591057 0 -5.4459588 -1.8866985 4738.2137
|
||||
1550 0.55327017 -6.2750125 0 -5.4453148 -1.9506584 4738.2137
|
||||
1600 0.54419003 -6.2612622 0 -5.4451812 -1.8559437 4738.2137
|
||||
1650 0.54710034 -6.2661978 0 -5.4457525 -1.8882831 4738.2137
|
||||
1700 0.53665689 -6.2504958 0 -5.4457117 -1.8068004 4738.2137
|
||||
1750 0.54864706 -6.2681124 0 -5.4453476 -1.8662646 4738.2137
|
||||
1800 0.54476202 -6.2615083 0 -5.4445696 -1.8352824 4738.2137
|
||||
1850 0.54142953 -6.2555505 0 -5.4436093 -1.8005654 4738.2137
|
||||
1900 0.53992431 -6.254135 0 -5.444451 -1.7768688 4738.2137
|
||||
1950 0.54665954 -6.2640971 0 -5.4443128 -1.7947032 4738.2137
|
||||
2000 0.54557798 -6.2625416 0 -5.4443793 -1.8072514 4738.2137
|
||||
Loop time of 2.17499 on 4 procs for 500 steps with 4000 atoms
|
||||
|
||||
Performance: 99310.978 tau/day, 229.887 timesteps/s
|
||||
99.6% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 1.3333 | 1.3705 | 1.397 | 2.0 | 63.01
|
||||
Neigh | 0.24071 | 0.41014 | 0.62928 | 26.6 | 18.86
|
||||
Comm | 0.19069 | 0.37486 | 0.53972 | 26.6 | 17.23
|
||||
Output | 0.00031614 | 0.00035483 | 0.00040388 | 0.2 | 0.02
|
||||
Modify | 0.0057304 | 0.0083074 | 0.01159 | 2.8 | 0.38
|
||||
Other | | 0.01083 | | | 0.50
|
||||
|
||||
Nlocal: 1000 ave 1628 max 523 min
|
||||
Histogram: 2 0 0 0 0 0 0 1 0 1
|
||||
Nghost: 8641.5 ave 9769 max 7941 min
|
||||
Histogram: 2 0 0 0 1 0 0 0 0 1
|
||||
Neighs: 151654 ave 163181 max 145045 min
|
||||
Histogram: 2 0 0 0 1 0 0 0 0 1
|
||||
|
||||
Total # of neighbors = 606616
|
||||
Ave neighs/atom = 151.654
|
||||
Neighbor list builds = 56
|
||||
Dangerous builds = 0
|
||||
|
||||
Total wall time: 0:00:09
|
||||
188
examples/balance/log.27Sep16.balance.clock.static.g++.4
Normal file
188
examples/balance/log.27Sep16.balance.clock.static.g++.4
Normal file
@ -0,0 +1,188 @@
|
||||
LAMMPS (26 Sep 2016)
|
||||
# 3d Lennard-Jones melt
|
||||
|
||||
units lj
|
||||
atom_style atomic
|
||||
processors * 1 1
|
||||
|
||||
variable factor index 1.0
|
||||
|
||||
lattice fcc 0.8442
|
||||
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
|
||||
region box block 0 10 0 10 0 10
|
||||
create_box 3 box
|
||||
Created orthogonal box = (0 0 0) to (16.796 16.796 16.796)
|
||||
4 by 1 by 1 MPI processor grid
|
||||
create_atoms 1 box
|
||||
Created 4000 atoms
|
||||
mass * 1.0
|
||||
|
||||
region long block 3 6 0 10 0 10
|
||||
set region long type 2
|
||||
1400 settings made for type
|
||||
|
||||
velocity all create 1.0 87287
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff * * 1.0 1.0 2.5
|
||||
pair_coeff * 2 1.0 1.0 5.0
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify every 2 delay 4 check yes
|
||||
|
||||
group fast type 1
|
||||
2600 atoms in group fast
|
||||
group slow type 2
|
||||
1400 atoms in group slow
|
||||
balance 1.0 shift x 5 1.1 weight time 1.0 # out unweighted.txt
|
||||
Neighbor list info ...
|
||||
1 neighbor list requests
|
||||
update every 2 steps, delay 4 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 5.3
|
||||
ghost atom cutoff = 5.3
|
||||
binsize = 2.65 -> bins = 7 7 7
|
||||
rebalancing time: 0.000447989 seconds
|
||||
iteration count = 2
|
||||
time weight factor: 1
|
||||
initial/final max load/proc = 1200 1200
|
||||
initial/final imbalance factor = 1.2 1.2
|
||||
x cuts: 0 0.25 0.5 0.6875 1
|
||||
y cuts: 0 1
|
||||
z cuts: 0 1
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
#dump id all atom 50 dump.melt
|
||||
|
||||
#dump 2 all image 25 image.*.jpg type type # axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 2 pad 3
|
||||
|
||||
#dump 3 all movie 25 movie.mpg type type # axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 3 pad 3
|
||||
|
||||
thermo 50
|
||||
run 250
|
||||
Memory usage per processor = 2.77892 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press
|
||||
0 1 -6.9453205 0 -5.4456955 -5.6812358
|
||||
50 0.48653399 -6.1788509 0 -5.4492324 -1.6017778
|
||||
100 0.53411175 -6.249885 0 -5.4489177 -1.9317606
|
||||
150 0.53646658 -6.2527206 0 -5.4482219 -1.9689568
|
||||
200 0.54551611 -6.2656326 0 -5.4475631 -2.0042104
|
||||
250 0.54677719 -6.2671162 0 -5.4471555 -2.0015995
|
||||
Loop time of 1.42972 on 4 procs for 250 steps with 4000 atoms
|
||||
|
||||
Performance: 75539.346 tau/day, 174.860 timesteps/s
|
||||
98.9% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.34009 | 0.65732 | 1.1925 | 42.3 | 45.98
|
||||
Neigh | 0.1324 | 0.17067 | 0.19962 | 6.6 | 11.94
|
||||
Comm | 0.03502 | 0.5933 | 0.88766 | 45.1 | 41.50
|
||||
Output | 0.0001173 | 0.00012749 | 0.00013947 | 0.1 | 0.01
|
||||
Modify | 0.0024164 | 0.0032778 | 0.0040991 | 1.0 | 0.23
|
||||
Other | | 0.00502 | | | 0.35
|
||||
|
||||
Nlocal: 1000 ave 1263 max 712 min
|
||||
Histogram: 1 0 0 0 1 0 1 0 0 1
|
||||
Nghost: 8711.5 ave 9045 max 8325 min
|
||||
Histogram: 1 0 0 0 0 1 1 0 0 1
|
||||
Neighs: 149325 ave 275165 max 77227 min
|
||||
Histogram: 2 0 0 0 1 0 0 0 0 1
|
||||
|
||||
Total # of neighbors = 597299
|
||||
Ave neighs/atom = 149.325
|
||||
Neighbor list builds = 23
|
||||
Dangerous builds = 0
|
||||
balance 1.0 shift x 5 1.1 weight time 1.0 # out unweighted.txt
|
||||
rebalancing time: 0.000354052 seconds
|
||||
iteration count = 4
|
||||
time weight factor: 1
|
||||
initial/final max load/proc = 1673.83 1097.18
|
||||
initial/final imbalance factor = 1.67383 1.09718
|
||||
x cuts: 0 0.296875 0.453125 0.605469 1
|
||||
y cuts: 0 1
|
||||
z cuts: 0 1
|
||||
run 250
|
||||
Memory usage per processor = 2.7999 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press
|
||||
250 0.54677719 -6.2671162 0 -5.4471555 -2.0015995
|
||||
300 0.5477618 -6.2678071 0 -5.4463698 -1.997842
|
||||
350 0.55600296 -6.2801497 0 -5.4463538 -2.0394056
|
||||
400 0.53241503 -6.2453665 0 -5.4469436 -1.878594
|
||||
450 0.5439158 -6.2623 0 -5.4466302 -1.9744161
|
||||
500 0.55526241 -6.2793396 0 -5.4466542 -2.0595015
|
||||
Loop time of 1.10579 on 4 procs for 250 steps with 4000 atoms
|
||||
|
||||
Performance: 97667.971 tau/day, 226.083 timesteps/s
|
||||
99.2% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.47383 | 0.65917 | 0.86391 | 21.2 | 59.61
|
||||
Neigh | 0.12071 | 0.17144 | 0.23972 | 11.6 | 15.50
|
||||
Comm | 0.10061 | 0.26652 | 0.39924 | 24.8 | 24.10
|
||||
Output | 0.00012779 | 0.00014991 | 0.00018096 | 0.2 | 0.01
|
||||
Modify | 0.0021801 | 0.0032307 | 0.0047314 | 1.8 | 0.29
|
||||
Other | | 0.005272 | | | 0.48
|
||||
|
||||
Nlocal: 1000 ave 1479 max 635 min
|
||||
Histogram: 1 1 0 0 0 0 1 0 0 1
|
||||
Nghost: 8759.5 ave 9918 max 7969 min
|
||||
Histogram: 2 0 0 0 0 1 0 0 0 1
|
||||
Neighs: 149356 ave 195930 max 110209 min
|
||||
Histogram: 2 0 0 0 0 0 0 1 0 1
|
||||
|
||||
Total # of neighbors = 597424
|
||||
Ave neighs/atom = 149.356
|
||||
Neighbor list builds = 24
|
||||
Dangerous builds = 0
|
||||
balance 1.0 shift x 5 1.1 weight time 1.0 # out unweighted.txt
|
||||
rebalancing time: 0.000221968 seconds
|
||||
iteration count = 4
|
||||
time weight factor: 1
|
||||
initial/final max load/proc = 1200.06 1176.79
|
||||
initial/final imbalance factor = 1.20006 1.17679
|
||||
x cuts: 0 0.306641 0.443359 0.595947 1
|
||||
y cuts: 0 1
|
||||
z cuts: 0 1
|
||||
run 250
|
||||
Memory usage per processor = 2.7999 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press
|
||||
500 0.55526241 -6.2793396 0 -5.4466542 -2.0595015
|
||||
550 0.53879347 -6.2554274 0 -5.4474393 -1.9756834
|
||||
600 0.54275982 -6.2616799 0 -5.4477437 -1.9939993
|
||||
650 0.54526651 -6.265098 0 -5.4474027 -2.0303672
|
||||
700 0.54369381 -6.263201 0 -5.4478642 -1.9921967
|
||||
750 0.54452777 -6.2640839 0 -5.4474964 -1.9658675
|
||||
Loop time of 1.10659 on 4 procs for 250 steps with 4000 atoms
|
||||
|
||||
Performance: 97597.325 tau/day, 225.920 timesteps/s
|
||||
99.5% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.59596 | 0.67205 | 0.81576 | 10.9 | 60.73
|
||||
Neigh | 0.098 | 0.18193 | 0.2707 | 16.7 | 16.44
|
||||
Comm | 0.15524 | 0.24375 | 0.40352 | 19.4 | 22.03
|
||||
Output | 0.00013709 | 0.00017041 | 0.00020695 | 0.2 | 0.02
|
||||
Modify | 0.0016487 | 0.0032793 | 0.0050011 | 2.4 | 0.30
|
||||
Other | | 0.005414 | | | 0.49
|
||||
|
||||
Nlocal: 1000 ave 1580 max 493 min
|
||||
Histogram: 1 1 0 0 0 0 0 1 0 1
|
||||
Nghost: 8736.5 ave 9808 max 8009 min
|
||||
Histogram: 2 0 0 0 0 1 0 0 0 1
|
||||
Neighs: 149124 ave 178715 max 132100 min
|
||||
Histogram: 2 0 0 1 0 0 0 0 0 1
|
||||
|
||||
Total # of neighbors = 596497
|
||||
Ave neighs/atom = 149.124
|
||||
Neighbor list builds = 25
|
||||
Dangerous builds = 0
|
||||
Total wall time: 0:00:03
|
||||
202
examples/balance/log.27Sep16.balance.g++.4
Normal file
202
examples/balance/log.27Sep16.balance.g++.4
Normal file
@ -0,0 +1,202 @@
|
||||
LAMMPS (26 Sep 2016)
|
||||
# 2d circle of particles inside a box with LJ walls
|
||||
|
||||
variable b index 0
|
||||
|
||||
variable x index 50
|
||||
variable y index 20
|
||||
variable d index 20
|
||||
variable v index 5
|
||||
variable w index 2
|
||||
|
||||
units lj
|
||||
dimension 2
|
||||
atom_style atomic
|
||||
boundary f f p
|
||||
|
||||
lattice hex 0.85
|
||||
Lattice spacing in x,y,z = 1.16553 2.01877 1.16553
|
||||
region box block 0 $x 0 $y -0.5 0.5
|
||||
region box block 0 50 0 $y -0.5 0.5
|
||||
region box block 0 50 0 20 -0.5 0.5
|
||||
create_box 1 box
|
||||
Created orthogonal box = (0 0 -0.582767) to (58.2767 40.3753 0.582767)
|
||||
2 by 2 by 1 MPI processor grid
|
||||
region circle sphere $(v_d/2+1) $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
|
||||
region circle sphere 11 $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
|
||||
region circle sphere 11 6.7735026918962581988 0.0 $(v_d/2)
|
||||
region circle sphere 11 6.7735026918962581988 0.0 10
|
||||
create_atoms 1 region circle
|
||||
Created 361 atoms
|
||||
mass 1 1.0
|
||||
|
||||
velocity all create 0.5 87287 loop geom
|
||||
velocity all set $v $w 0 sum yes
|
||||
velocity all set 5 $w 0 sum yes
|
||||
velocity all set 5 2 0 sum yes
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff 1 1 10.0 1.0 2.5
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify delay 0 every 1 check yes
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi $x 1 1 2.5
|
||||
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi 50 1 1 2.5
|
||||
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi $y 1 1 2.5
|
||||
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi 20 1 1 2.5
|
||||
|
||||
comm_style tiled
|
||||
fix 10 all balance 50 0.9 rcb
|
||||
|
||||
#compute 1 all property/atom proc
|
||||
#variable p atom c_1%10
|
||||
#dump 2 all custom 50 tmp.dump id v_p x y z
|
||||
|
||||
#dump 3 all image 50 image.*.jpg v_p type # adiam 1.0 view 0 0 zoom 1.8 subbox yes 0.02
|
||||
#variable colors string # "red green blue yellow white # purple pink orange lime gray"
|
||||
#dump_modify 3 pad 5 amap 0 10 sa 1 10 ${colors}
|
||||
|
||||
thermo_style custom step temp epair press f_10[3] f_10
|
||||
thermo 100
|
||||
|
||||
run 10000
|
||||
Neighbor list info ...
|
||||
1 neighbor list requests
|
||||
update every 1 steps, delay 0 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 2.8
|
||||
ghost atom cutoff = 2.8
|
||||
binsize = 1.4 -> bins = 42 29 1
|
||||
Memory usage per processor = 2.48839 Mbytes
|
||||
Step Temp E_pair Press f_10[3] f_10
|
||||
0 25.701528 -29.143179 -1.2407285 3.2354571 1.0526316
|
||||
100 26.269576 -29.713313 7.9052334 1.2742382 1.0304709
|
||||
200 26.368336 -29.809962 1.6412462 1.2520776 1.0083102
|
||||
300 26.479082 -29.920083 2.3678653 1.2299169 1.0193906
|
||||
400 26.522239 -29.965537 6.6787858 1.1855956 1.0193906
|
||||
500 25.725591 -29.168034 0.67065285 1.2520776 1.0083102
|
||||
600 26.247693 -29.692706 7.9887712 1.3074792 1.0083102
|
||||
700 26.237368 -29.676926 1.5987214 1.2409972 1.0083102
|
||||
800 25.889643 -29.431589 4.6160859 1.2631579 1.0083102
|
||||
900 23.635295 -27.372963 9.029962 1.1634349 1.0083102
|
||||
1000 22.571904 -25.87422 1.8936085 1.1301939 1.0193906
|
||||
1100 17.493795 -21.447274 9.502619 1.0858726 1.0193906
|
||||
1200 17.214459 -20.726965 6.3578917 1.0304709 1.0193906
|
||||
1300 16.424084 -19.757322 3.9028131 1.1191136 1.0083102
|
||||
1400 15.026954 -18.109911 1.7623684 1.0858726 1.0193906
|
||||
1500 13.640678 -16.740794 1.5347425 1.0858726 1.0193906
|
||||
1600 13.618211 -16.610276 1.9480883 1.0747922 1.0083102
|
||||
1700 13.266465 -16.300632 1.6890777 1.0637119 1.0193906
|
||||
1800 12.178444 -15.175544 2.1018989 1.0304709 1.0083102
|
||||
1900 12.131633 -15.075269 2.0174899 1.0526316 1.0193906
|
||||
2000 12.290785 -15.185923 1.8747772 1.0415512 1.0193906
|
||||
2100 12.02255 -14.947108 1.086185 1.0747922 1.0083102
|
||||
2200 11.733238 -14.620414 0.93934447 1.0526316 1.0193906
|
||||
2300 12.180779 -15.092283 1.1969416 1.0526316 1.0083102
|
||||
2400 11.721247 -14.503377 1.3759878 1.1080332 1.0083102
|
||||
2500 11.609116 -14.371603 2.0315139 1.0747922 1.0083102
|
||||
2600 11.712503 -14.494711 1.7236598 1.0415512 1.0193906
|
||||
2700 10.932816 -13.665751 1.2772732 1.0415512 1.0083102
|
||||
2800 10.418752 -13.183889 1.2940564 1.0415512 1.0193906
|
||||
2900 10.668297 -13.404525 0.90378659 1.0304709 1.0083102
|
||||
3000 10.562215 -13.581566 1.0507999 1.0083102 1.0193906
|
||||
3100 10.283188 -13.016565 1.0685664 1.0526316 1.0193906
|
||||
3200 10.424678 -13.136756 1.4038511 1.0193906 1.0083102
|
||||
3300 10.207304 -12.901323 1.3077174 1.0415512 1.0193906
|
||||
3400 10.143301 -12.802915 1.2776266 1.0415512 1.0193906
|
||||
3500 9.8449452 -12.507639 1.5455496 1.0637119 1.0083102
|
||||
3600 9.5629038 -12.204164 0.84971204 1.0304709 1.0083102
|
||||
3700 9.1851938 -11.809431 1.0102805 1.0304709 1.0193906
|
||||
3800 9.3305969 -11.989086 0.69923461 1.0193906 1.0083102
|
||||
3900 9.2415243 -11.880498 1.2471235 1.0637119 1.0193906
|
||||
4000 8.8240051 -11.417696 0.60781901 1.0304709 1.0083102
|
||||
4100 8.9126422 -11.503716 0.96900558 1.0083102 1.0083102
|
||||
4200 8.3738185 -10.93925 0.84927158 1.0193906 1.0083102
|
||||
4300 8.2401487 -10.90291 0.97775564 1.0083102 1.0083102
|
||||
4400 8.061288 -10.722169 1.4106859 1.0193906 1.0193906
|
||||
4500 7.8900038 -10.422818 0.67651486 1.0193906 1.0193906
|
||||
4600 7.8306694 -10.363812 0.83437455 1.0193906 1.0193906
|
||||
4700 8.1116499 -10.712008 0.58885383 1.0304709 1.0193906
|
||||
4800 8.0508103 -10.576232 0.52562827 1.0193906 1.0083102
|
||||
4900 7.8161815 -10.368333 0.89724847 1.0415512 1.0083102
|
||||
5000 7.4940002 -9.9763835 1.215446 1.0304709 1.0083102
|
||||
5100 7.9981403 -10.510786 1.0948502 1.0304709 1.0193906
|
||||
5200 7.7674668 -10.259031 0.81850586 1.0304709 1.0193906
|
||||
5300 7.9627913 -10.465018 0.75004253 1.0304709 1.0083102
|
||||
5400 7.8093696 -10.371624 0.75451812 1.0193906 1.0083102
|
||||
5500 8.1189569 -10.623288 0.91908416 1.0304709 1.0083102
|
||||
5600 7.5970957 -10.070305 0.84265844 1.0415512 1.0083102
|
||||
5700 7.4322203 -9.9176252 0.32608772 1.0304709 1.0083102
|
||||
5800 7.8210607 -10.311444 0.95696619 1.0304709 1.0083102
|
||||
5900 7.6181913 -10.111225 1.1341946 1.0193906 1.0083102
|
||||
6000 7.2217555 -9.7122281 0.75858423 1.0637119 1.0083102
|
||||
6100 7.3643302 -9.851242 0.5240439 1.0193906 1.0193906
|
||||
6200 7.0281589 -9.4834454 0.59523945 1.0526316 1.0193906
|
||||
6300 7.1383115 -9.6099868 0.87558078 1.0193906 1.0193906
|
||||
6400 7.2136999 -9.6965877 0.88426542 1.0304709 1.0083102
|
||||
6500 7.1710521 -9.7082917 1.2055959 1.0415512 1.0193906
|
||||
6600 7.4150515 -9.9376614 0.48201097 1.0304709 1.0083102
|
||||
6700 6.8701427 -9.3844769 0.72785561 1.0526316 1.0193906
|
||||
6800 6.8486978 -9.3256413 0.93231327 1.0193906 1.0083102
|
||||
6900 6.583533 -9.0068813 0.51281911 1.0193906 1.0193906
|
||||
7000 6.7199396 -9.1773668 0.12636874 1.0193906 1.0083102
|
||||
7100 6.5193695 -8.9553058 1.0423295 1.0083102 1.0193906
|
||||
7200 6.4868896 -8.9090695 0.49867926 1.0083102 1.0193906
|
||||
7300 6.2975635 -8.7775483 0.49072731 1.0415512 1.0083102
|
||||
7400 6.4966155 -8.9410837 0.52952897 1.0193906 1.0083102
|
||||
7500 6.7100139 -9.166691 0.82930078 1.0193906 1.0083102
|
||||
7600 6.3569418 -8.7843554 0.93473251 1.0193906 1.0083102
|
||||
7700 6.122789 -8.5434369 0.33725874 1.0526316 1.0083102
|
||||
7800 6.0249595 -8.4453069 0.52784464 1.0193906 1.0083102
|
||||
7900 6.6673238 -9.1166487 0.93753595 1.0193906 1.0083102
|
||||
8000 6.4177253 -8.8896071 0.57421674 1.0193906 1.0193906
|
||||
8100 5.965959 -8.3655023 0.42043964 1.0304709 1.0193906
|
||||
8200 6.3325216 -8.758339 0.76723151 1.0193906 1.0193906
|
||||
8300 6.4992751 -8.943922 0.86331769 1.0526316 1.0193906
|
||||
8400 6.1834495 -8.6059885 0.43133079 1.0415512 1.0193906
|
||||
8500 6.2567239 -8.6758815 0.8551113 1.0083102 1.0193906
|
||||
8600 6.1232623 -8.5905174 0.6014726 1.0304709 1.0083102
|
||||
8700 6.6650376 -9.0949995 0.46866086 1.0637119 1.0193906
|
||||
8800 6.6103957 -9.0116868 0.84371859 1.0083102 1.0193906
|
||||
8900 5.8867946 -8.3162884 0.64216189 1.0415512 1.0193906
|
||||
9000 5.685369 -8.0652138 0.32067903 1.0304709 1.0083102
|
||||
9100 6.2783881 -8.6826466 0.36419567 1.0415512 1.0304709
|
||||
9200 6.0162211 -8.4584809 0.58707128 1.0083102 1.0083102
|
||||
9300 5.9900511 -8.3949266 0.62037401 1.0304709 1.0193906
|
||||
9400 6.2686573 -8.6713334 0.81204427 1.0415512 1.0083102
|
||||
9500 6.0317917 -8.4325112 0.63221293 1.0304709 1.0193906
|
||||
9600 5.8217003 -8.256407 0.816143 1.0304709 1.0083102
|
||||
9700 5.6011023 -7.9966077 0.4114902 1.0304709 1.0193906
|
||||
9800 5.6339982 -8.0317639 0.32315576 1.0083102 1.0083102
|
||||
9900 5.8044743 -8.1942271 0.62892477 1.0193906 1.0083102
|
||||
10000 6.1722678 -8.5642925 0.80423557 1.0304709 1.0083102
|
||||
Loop time of 0.39332 on 4 procs for 10000 steps with 361 atoms
|
||||
|
||||
Performance: 10983420.832 tau/day, 25424.585 timesteps/s
|
||||
98.9% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.067888 | 0.075593 | 0.091022 | 3.3 | 19.22
|
||||
Neigh | 0.071147 | 0.075568 | 0.085203 | 2.1 | 19.21
|
||||
Comm | 0.10841 | 0.12918 | 0.14463 | 4.0 | 32.84
|
||||
Output | 0.0017445 | 0.001877 | 0.0022032 | 0.4 | 0.48
|
||||
Modify | 0.038837 | 0.039568 | 0.040469 | 0.3 | 10.06
|
||||
Other | | 0.07153 | | | 18.19
|
||||
|
||||
Nlocal: 90.25 ave 91 max 90 min
|
||||
Histogram: 3 0 0 0 0 0 0 0 0 1
|
||||
Nghost: 22.25 ave 27 max 16 min
|
||||
Histogram: 1 0 0 0 0 0 2 0 0 1
|
||||
Neighs: 268.25 ave 400 max 133 min
|
||||
Histogram: 1 0 1 0 0 0 0 1 0 1
|
||||
|
||||
Total # of neighbors = 1073
|
||||
Ave neighs/atom = 2.9723
|
||||
Neighbor list builds = 3611
|
||||
Dangerous builds = 0
|
||||
Total wall time: 0:00:00
|
||||
103
examples/balance/log.27Sep16.balance.group.dynamic.g++.4
Normal file
103
examples/balance/log.27Sep16.balance.group.dynamic.g++.4
Normal file
@ -0,0 +1,103 @@
|
||||
LAMMPS (26 Sep 2016)
|
||||
# 3d Lennard-Jones melt
|
||||
|
||||
units lj
|
||||
atom_style atomic
|
||||
processors * 1 1
|
||||
|
||||
variable factor index 1.0
|
||||
|
||||
lattice fcc 0.8442
|
||||
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
|
||||
region box block 0 10 0 10 0 10
|
||||
create_box 3 box
|
||||
Created orthogonal box = (0 0 0) to (16.796 16.796 16.796)
|
||||
4 by 1 by 1 MPI processor grid
|
||||
create_atoms 1 box
|
||||
Created 4000 atoms
|
||||
mass * 1.0
|
||||
|
||||
region long block 3 6 0 10 0 10
|
||||
set region long type 2
|
||||
1400 settings made for type
|
||||
|
||||
velocity all create 1.0 87287
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff * * 1.0 1.0 2.5
|
||||
pair_coeff * 2 1.0 1.0 5.0
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify every 2 delay 4 check yes
|
||||
|
||||
group fast type 1
|
||||
2600 atoms in group fast
|
||||
group slow type 2
|
||||
1400 atoms in group slow
|
||||
balance 1.0 shift x 5 1.1 weight group 2 fast 1.0 slow ${factor} # out weighted.txt
|
||||
balance 1.0 shift x 5 1.1 weight group 2 fast 1.0 slow 1.0
|
||||
Neighbor list info ...
|
||||
1 neighbor list requests
|
||||
update every 2 steps, delay 4 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 5.3
|
||||
ghost atom cutoff = 5.3
|
||||
binsize = 2.65 -> bins = 7 7 7
|
||||
rebalancing time: 0.000452042 seconds
|
||||
iteration count = 2
|
||||
group weights: fast=1 slow=1
|
||||
initial/final max load/proc = 1200 1200
|
||||
initial/final imbalance factor = 1.2 1.2
|
||||
x cuts: 0 0.25 0.5 0.6875 1
|
||||
y cuts: 0 1
|
||||
z cuts: 0 1
|
||||
fix 0 all balance 10 1.0 shift x 5 1.1 weight group 2 fast 1.0 slow ${factor}
|
||||
fix 0 all balance 10 1.0 shift x 5 1.1 weight group 2 fast 1.0 slow 1.0
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
#dump id all atom 50 dump.melt
|
||||
|
||||
#dump 2 all image 25 image.*.jpg type type # axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 2 pad 3
|
||||
|
||||
#dump 3 all movie 25 movie.mpg type type # axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 3 pad 3
|
||||
|
||||
thermo 50
|
||||
run 250
|
||||
Memory usage per processor = 2.9192 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press Volume
|
||||
0 1 -6.9453205 0 -5.4456955 -5.6812358 4738.2137
|
||||
50 0.48653399 -6.1788509 0 -5.4492324 -1.6017778 4738.2137
|
||||
100 0.53411175 -6.249885 0 -5.4489177 -1.9317606 4738.2137
|
||||
150 0.53646658 -6.2527206 0 -5.4482219 -1.9689568 4738.2137
|
||||
200 0.54551611 -6.2656326 0 -5.4475631 -2.0042104 4738.2137
|
||||
250 0.54677719 -6.2671162 0 -5.4471555 -2.0015995 4738.2137
|
||||
Loop time of 1.48606 on 4 procs for 250 steps with 4000 atoms
|
||||
|
||||
Performance: 72675.623 tau/day, 168.231 timesteps/s
|
||||
99.0% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.23243 | 0.67 | 1.2235 | 47.4 | 45.09
|
||||
Neigh | 0.17043 | 0.18781 | 0.21572 | 4.1 | 12.64
|
||||
Comm | 0.036635 | 0.61802 | 1.0727 | 51.6 | 41.59
|
||||
Output | 0.00011992 | 0.00013161 | 0.00015426 | 0.1 | 0.01
|
||||
Modify | 0.005506 | 0.0055596 | 0.0056329 | 0.1 | 0.37
|
||||
Other | | 0.004531 | | | 0.30
|
||||
|
||||
Nlocal: 1000 ave 1001 max 999 min
|
||||
Histogram: 1 0 0 0 0 2 0 0 0 1
|
||||
Nghost: 8727 ave 8761 max 8674 min
|
||||
Histogram: 1 0 0 0 0 0 1 1 0 1
|
||||
Neighs: 149349 ave 260848 max 51191 min
|
||||
Histogram: 1 1 0 0 0 0 1 0 0 1
|
||||
|
||||
Total # of neighbors = 597396
|
||||
Ave neighs/atom = 149.349
|
||||
Neighbor list builds = 25
|
||||
Dangerous builds = 0
|
||||
Total wall time: 0:00:01
|
||||
139
examples/balance/log.27Sep16.balance.group.static.g++.4
Normal file
139
examples/balance/log.27Sep16.balance.group.static.g++.4
Normal file
@ -0,0 +1,139 @@
|
||||
LAMMPS (26 Sep 2016)
|
||||
# 3d Lennard-Jones melt
|
||||
|
||||
units lj
|
||||
atom_style atomic
|
||||
processors * 1 1
|
||||
|
||||
variable factor index 1.0
|
||||
|
||||
lattice fcc 0.8442
|
||||
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
|
||||
region box block 0 10 0 10 0 10
|
||||
create_box 3 box
|
||||
Created orthogonal box = (0 0 0) to (16.796 16.796 16.796)
|
||||
4 by 1 by 1 MPI processor grid
|
||||
create_atoms 1 box
|
||||
Created 4000 atoms
|
||||
mass * 1.0
|
||||
|
||||
region long block 3 6 0 10 0 10
|
||||
set region long type 2
|
||||
1400 settings made for type
|
||||
|
||||
velocity all create 1.0 87287
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff * * 1.0 1.0 2.5
|
||||
pair_coeff * 2 1.0 1.0 5.0
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify every 2 delay 4 check yes
|
||||
|
||||
balance 1.0 shift x 5 1.1 # out unweighted.txt
|
||||
Neighbor list info ...
|
||||
1 neighbor list requests
|
||||
update every 2 steps, delay 4 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 5.3
|
||||
ghost atom cutoff = 5.3
|
||||
binsize = 2.65 -> bins = 7 7 7
|
||||
rebalancing time: 0.000433922 seconds
|
||||
iteration count = 2
|
||||
initial/final max load/proc = 1200 1200
|
||||
initial/final imbalance factor = 1.2 1.2
|
||||
x cuts: 0 0.25 0.5 0.6875 1
|
||||
y cuts: 0 1
|
||||
z cuts: 0 1
|
||||
|
||||
balance 1.0 x uniform
|
||||
rebalancing time: 0.000152826 seconds
|
||||
iteration count = 0
|
||||
initial/final max load/proc = 1200 1200
|
||||
initial/final imbalance factor = 1.2 1.2
|
||||
x cuts: 0 0.25 0.5 0.75 1
|
||||
y cuts: 0 1
|
||||
z cuts: 0 1
|
||||
|
||||
variable weight atom (type==1)*1.0+(type==2)*v_factor
|
||||
balance 1.0 shift x 5 1.1 weight var weight # out weighted_var.txt
|
||||
rebalancing time: 0.000287056 seconds
|
||||
iteration count = 2
|
||||
weight variable: weight
|
||||
initial/final max load/proc = 1200 1200
|
||||
initial/final imbalance factor = 1.2 1.2
|
||||
x cuts: 0 0.25 0.5 0.6875 1
|
||||
y cuts: 0 1
|
||||
z cuts: 0 1
|
||||
|
||||
balance 1.0 x uniform
|
||||
rebalancing time: 0.00011611 seconds
|
||||
iteration count = 0
|
||||
initial/final max load/proc = 1200 1200
|
||||
initial/final imbalance factor = 1.2 1.2
|
||||
x cuts: 0 0.25 0.5 0.75 1
|
||||
y cuts: 0 1
|
||||
z cuts: 0 1
|
||||
|
||||
group fast type 1
|
||||
2600 atoms in group fast
|
||||
group slow type 2
|
||||
1400 atoms in group slow
|
||||
balance 1.0 shift x 5 1.1 weight group 2 fast 1.0 slow ${factor} # out weighted_group.txt
|
||||
balance 1.0 shift x 5 1.1 weight group 2 fast 1.0 slow 1.0
|
||||
rebalancing time: 0.000248909 seconds
|
||||
iteration count = 2
|
||||
group weights: fast=1 slow=1
|
||||
initial/final max load/proc = 1200 1200
|
||||
initial/final imbalance factor = 1.2 1.2
|
||||
x cuts: 0 0.25 0.5 0.6875 1
|
||||
y cuts: 0 1
|
||||
z cuts: 0 1
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
#dump id all atom 50 dump.melt
|
||||
|
||||
#dump 2 all image 25 image.*.jpg type type # axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 2 pad 3
|
||||
|
||||
#dump 3 all movie 25 movie.mpg type type # axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 3 pad 3
|
||||
|
||||
thermo 50
|
||||
run 250
|
||||
Memory usage per processor = 2.77892 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press
|
||||
0 1 -6.9453205 0 -5.4456955 -5.6812358
|
||||
50 0.48653399 -6.1788509 0 -5.4492324 -1.6017778
|
||||
100 0.53411175 -6.249885 0 -5.4489177 -1.9317606
|
||||
150 0.53646658 -6.2527206 0 -5.4482219 -1.9689568
|
||||
200 0.54551611 -6.2656326 0 -5.4475631 -2.0042104
|
||||
250 0.54677719 -6.2671162 0 -5.4471555 -2.0015995
|
||||
Loop time of 1.41033 on 4 procs for 250 steps with 4000 atoms
|
||||
|
||||
Performance: 76577.913 tau/day, 177.264 timesteps/s
|
||||
98.7% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.33785 | 0.6592 | 1.1713 | 41.7 | 46.74
|
||||
Neigh | 0.14133 | 0.17129 | 0.19681 | 5.6 | 12.15
|
||||
Comm | 0.039078 | 0.57085 | 0.87566 | 45.3 | 40.48
|
||||
Output | 0.00022721 | 0.00024492 | 0.00026417 | 0.1 | 0.02
|
||||
Modify | 0.0025113 | 0.0033261 | 0.0040808 | 1.0 | 0.24
|
||||
Other | | 0.005427 | | | 0.38
|
||||
|
||||
Nlocal: 1000 ave 1263 max 712 min
|
||||
Histogram: 1 0 0 0 1 0 1 0 0 1
|
||||
Nghost: 8711.5 ave 9045 max 8325 min
|
||||
Histogram: 1 0 0 0 0 1 1 0 0 1
|
||||
Neighs: 149325 ave 275165 max 77227 min
|
||||
Histogram: 2 0 0 0 1 0 0 0 0 1
|
||||
|
||||
Total # of neighbors = 597299
|
||||
Ave neighs/atom = 149.325
|
||||
Neighbor list builds = 23
|
||||
Dangerous builds = 0
|
||||
Total wall time: 0:00:01
|
||||
110
examples/balance/log.27Sep16.balance.kspace.g++.4
Normal file
110
examples/balance/log.27Sep16.balance.kspace.g++.4
Normal file
@ -0,0 +1,110 @@
|
||||
LAMMPS (26 Sep 2016)
|
||||
# 3d Lennard-Jones melt
|
||||
|
||||
units lj
|
||||
#atom_style charge
|
||||
processors * 1 1
|
||||
|
||||
lattice fcc 0.8442
|
||||
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
|
||||
region box block 0 10 0 10 0 10
|
||||
create_box 3 box
|
||||
Created orthogonal box = (0 0 0) to (16.796 16.796 16.796)
|
||||
4 by 1 by 1 MPI processor grid
|
||||
create_atoms 1 box
|
||||
Created 4000 atoms
|
||||
mass * 1.0
|
||||
|
||||
region long block 3 6 0 10 0 10
|
||||
set region long type 2
|
||||
1400 settings made for type
|
||||
#set type 1:2 charge 0.0
|
||||
|
||||
velocity all create 1.0 87287
|
||||
|
||||
pair_style lj/long/coul/long long off 2.5
|
||||
pair_coeff * * 1.0 1.0 2.5
|
||||
pair_coeff * 2 1.0 1.0 5.0
|
||||
|
||||
kspace_style pppm/disp 1.0e-4
|
||||
kspace_modify gewald/disp 0.1
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify every 2 delay 4 check yes
|
||||
|
||||
group fast type 1
|
||||
2600 atoms in group fast
|
||||
group slow type 2
|
||||
1400 atoms in group slow
|
||||
fix 0 all balance 20 1.0 shift x 5 1.0 weight group 2 fast 1.0 slow 2.0 weight time 0.66
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
#dump id all atom 50 dump.melt
|
||||
|
||||
#dump 2 all image 25 image.*.jpg type type # axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 2 pad 3
|
||||
|
||||
#dump 3 all movie 25 movie.mpg type type # axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 3 pad 3
|
||||
|
||||
thermo 50
|
||||
run 500
|
||||
PPPMDisp initialization ...
|
||||
Dispersion G vector (1/distance) = 0.1
|
||||
Dispersion grid = 2 2 2
|
||||
Dispersion stencil order = 5
|
||||
Dispersion estimated absolute RMS force accuracy = 1.01251
|
||||
Dispersion estimated absolute real space RMS force accuracy = 1.01251
|
||||
Dispersion estimated absolute kspace RMS force accuracy = 7.29446e-07
|
||||
Disperion estimated relative force accuracy = 1.01251
|
||||
using double precision FFTs
|
||||
3d grid and FFT values/proc dispersion = 294 4
|
||||
Neighbor list info ...
|
||||
1 neighbor list requests
|
||||
update every 2 steps, delay 4 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 5.3
|
||||
ghost atom cutoff = 5.3
|
||||
binsize = 2.65 -> bins = 7 7 7
|
||||
Memory usage per processor = 3.32692 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press Volume
|
||||
0 1 52.148338 0 53.647963 94.09503 4738.2137
|
||||
50 17.850656 42.620113 0 69.389403 142.80556 4738.2137
|
||||
100 9.4607189 49.700118 0 63.887649 117.51739 4738.2137
|
||||
150 13.992056 47.731988 0 68.714825 140.56926 4738.2137
|
||||
200 11.617635 52.509395 0 69.931491 142.6933 4738.2137
|
||||
250 13.536262 48.330072 0 68.629389 133.91619 4738.2137
|
||||
300 12.619724 50.326376 0 69.25123 132.46494 4738.2137
|
||||
350 14.513005 50.110693 0 71.874758 143.39284 4738.2137
|
||||
400 12.429702 49.690909 0 68.3308 130.0808 4738.2137
|
||||
450 13.928225 50.969523 0 71.856637 144.44675 4738.2137
|
||||
500 13.286368 50.355522 0 70.280091 137.2389 4738.2137
|
||||
Loop time of 4.79482 on 4 procs for 500 steps with 4000 atoms
|
||||
|
||||
Performance: 45048.596 tau/day, 104.279 timesteps/s
|
||||
99.1% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.85927 | 1.571 | 2.2092 | 51.0 | 32.76
|
||||
Kspace | 0.61247 | 1.982 | 3.2697 | 85.3 | 41.34
|
||||
Neigh | 0.2976 | 0.98099 | 1.8525 | 68.1 | 20.46
|
||||
Comm | 0.090759 | 0.23335 | 0.34356 | 22.4 | 4.87
|
||||
Output | 0.00027442 | 0.00034857 | 0.0004065 | 0.3 | 0.01
|
||||
Modify | 0.013081 | 0.016089 | 0.0201 | 2.3 | 0.34
|
||||
Other | | 0.01104 | | | 0.23
|
||||
|
||||
Nlocal: 1000 ave 1853 max 359 min
|
||||
Histogram: 2 0 0 0 0 0 0 1 0 1
|
||||
Nghost: 7773.5 ave 9196 max 6355 min
|
||||
Histogram: 2 0 0 0 0 0 0 0 0 2
|
||||
Neighs: 127368 ave 180948 max 71698 min
|
||||
Histogram: 2 0 0 0 0 0 0 0 0 2
|
||||
|
||||
Total # of neighbors = 509471
|
||||
Ave neighs/atom = 127.368
|
||||
Neighbor list builds = 124
|
||||
Dangerous builds = 97
|
||||
Total wall time: 0:00:04
|
||||
221
examples/balance/log.27Sep16.balance.neigh.dynamic.g++.4
Normal file
221
examples/balance/log.27Sep16.balance.neigh.dynamic.g++.4
Normal file
@ -0,0 +1,221 @@
|
||||
LAMMPS (26 Sep 2016)
|
||||
# 3d Lennard-Jones melt
|
||||
|
||||
units lj
|
||||
atom_style atomic
|
||||
processors * 1 1
|
||||
|
||||
lattice fcc 0.8442
|
||||
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
|
||||
region box block 0 10 0 10 0 10
|
||||
create_box 3 box
|
||||
Created orthogonal box = (0 0 0) to (16.796 16.796 16.796)
|
||||
4 by 1 by 1 MPI processor grid
|
||||
create_atoms 1 box
|
||||
Created 4000 atoms
|
||||
mass * 1.0
|
||||
|
||||
region long block 3 6 0 10 0 10
|
||||
set region long type 2
|
||||
1400 settings made for type
|
||||
|
||||
velocity all create 1.0 87287
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff * * 1.0 1.0 2.5
|
||||
pair_coeff * 2 1.0 1.0 5.0
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify every 2 delay 4 check yes
|
||||
fix p all property/atom d_WEIGHT
|
||||
fix 0 all balance 50 1.0 shift x 5 1.0 weight neigh 0.8 weight store WEIGHT
|
||||
compute p all property/atom d_WEIGHT
|
||||
variable maximb equal f_0[1]
|
||||
variable iter equal f_0[2]
|
||||
variable prev equal f_0[3]
|
||||
variable final equal f_0
|
||||
|
||||
#fix 3 all print 50 "${iter} ${prev} ${final} ${maximb}"
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
#dump id all atom 50 dump.melt
|
||||
#dump id all custom 50 dump.lammpstrj id type x y z c_p
|
||||
|
||||
#dump 2 all image 25 image.*.jpg type type # axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 2 pad 3
|
||||
|
||||
#dump 3 all movie 25 movie.mp4 c_p type # axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 3 pad 3 amap 0.0 2.0 cf 0.1 3 min blue 0.5 green max red
|
||||
|
||||
thermo 50
|
||||
run 500
|
||||
Neighbor list info ...
|
||||
1 neighbor list requests
|
||||
update every 2 steps, delay 4 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 5.3
|
||||
ghost atom cutoff = 5.3
|
||||
binsize = 2.65 -> bins = 7 7 7
|
||||
WARNING: No suitable neighbor list found. Neighbor weighted balancing skipped (../imbalance_neigh.cpp:65)
|
||||
Memory usage per processor = 3.0442 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press Volume
|
||||
0 1 -6.9453205 0 -5.4456955 -5.6812358 4738.2137
|
||||
50 0.48653399 -6.1788509 0 -5.4492324 -1.6017778 4738.2137
|
||||
100 0.53411175 -6.249885 0 -5.4489177 -1.9317606 4738.2137
|
||||
150 0.53646658 -6.2527206 0 -5.4482219 -1.9689568 4738.2137
|
||||
200 0.54551611 -6.2656326 0 -5.4475631 -2.0042104 4738.2137
|
||||
250 0.54677719 -6.2671162 0 -5.4471555 -2.0015995 4738.2137
|
||||
300 0.5477618 -6.2678071 0 -5.4463698 -1.997842 4738.2137
|
||||
350 0.55600296 -6.2801497 0 -5.4463538 -2.0394056 4738.2137
|
||||
400 0.53241503 -6.2453665 0 -5.4469436 -1.878594 4738.2137
|
||||
450 0.5439158 -6.2623 0 -5.4466302 -1.9744161 4738.2137
|
||||
500 0.55526241 -6.2793396 0 -5.4466542 -2.0595015 4738.2137
|
||||
Loop time of 2.27598 on 4 procs for 500 steps with 4000 atoms
|
||||
|
||||
Performance: 94904.173 tau/day, 219.686 timesteps/s
|
||||
99.4% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 1.1158 | 1.4132 | 1.6545 | 19.0 | 62.09
|
||||
Neigh | 0.25541 | 0.38197 | 0.55281 | 20.3 | 16.78
|
||||
Comm | 0.33626 | 0.46086 | 0.58471 | 14.7 | 20.25
|
||||
Output | 0.00030327 | 0.00033396 | 0.0003922 | 0.2 | 0.01
|
||||
Modify | 0.0061643 | 0.0082641 | 0.011169 | 2.4 | 0.36
|
||||
Other | | 0.01137 | | | 0.50
|
||||
|
||||
Nlocal: 1000 ave 1551 max 604 min
|
||||
Histogram: 2 0 0 0 0 0 1 0 0 1
|
||||
Nghost: 8754.75 ave 9849 max 8074 min
|
||||
Histogram: 2 0 0 0 0 1 0 0 0 1
|
||||
Neighs: 149308 ave 163995 max 129030 min
|
||||
Histogram: 1 0 0 1 0 0 0 0 0 2
|
||||
|
||||
Total # of neighbors = 597231
|
||||
Ave neighs/atom = 149.308
|
||||
Neighbor list builds = 50
|
||||
Dangerous builds = 0
|
||||
run 500
|
||||
Memory usage per processor = 3.06519 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press Volume
|
||||
500 0.55526241 -6.2793396 0 -5.4466542 -2.0595015 4738.2137
|
||||
550 0.53879347 -6.2554274 0 -5.4474393 -1.9756834 4738.2137
|
||||
600 0.54275982 -6.2616799 0 -5.4477437 -1.9939993 4738.2137
|
||||
650 0.54526651 -6.265098 0 -5.4474027 -2.0303672 4738.2137
|
||||
700 0.54369381 -6.263201 0 -5.4478642 -1.9921967 4738.2137
|
||||
750 0.54452777 -6.2640839 0 -5.4474964 -1.9658675 4738.2137
|
||||
800 0.55061744 -6.2725556 0 -5.4468359 -2.0100922 4738.2137
|
||||
850 0.55371614 -6.2763992 0 -5.4460326 -2.0065329 4738.2137
|
||||
900 0.54756622 -6.2668303 0 -5.4456863 -1.9796122 4738.2137
|
||||
950 0.54791593 -6.2673161 0 -5.4456477 -1.9598278 4738.2137
|
||||
1000 0.54173198 -6.2586101 0 -5.4462153 -1.9007466 4738.2137
|
||||
Loop time of 2.14853 on 4 procs for 500 steps with 4000 atoms
|
||||
|
||||
Performance: 100533.652 tau/day, 232.717 timesteps/s
|
||||
99.5% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 1.1688 | 1.3591 | 1.5126 | 13.1 | 63.26
|
||||
Neigh | 0.24981 | 0.38774 | 0.57835 | 22.5 | 18.05
|
||||
Comm | 0.36101 | 0.38157 | 0.41179 | 3.0 | 17.76
|
||||
Output | 0.00031686 | 0.00034499 | 0.00040627 | 0.2 | 0.02
|
||||
Modify | 0.0059092 | 0.0082516 | 0.011432 | 2.6 | 0.38
|
||||
Other | | 0.01149 | | | 0.53
|
||||
|
||||
Nlocal: 1000 ave 1559 max 601 min
|
||||
Histogram: 2 0 0 0 0 0 1 0 0 1
|
||||
Nghost: 8717.25 ave 9789 max 8011 min
|
||||
Histogram: 2 0 0 0 0 1 0 0 0 1
|
||||
Neighs: 150170 ave 165071 max 129263 min
|
||||
Histogram: 1 0 0 1 0 0 0 0 0 2
|
||||
|
||||
Total # of neighbors = 600678
|
||||
Ave neighs/atom = 150.169
|
||||
Neighbor list builds = 53
|
||||
Dangerous builds = 0
|
||||
run 500
|
||||
Memory usage per processor = 3.06519 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press Volume
|
||||
1000 0.54173198 -6.2586101 0 -5.4462153 -1.9007466 4738.2137
|
||||
1050 0.54629742 -6.2657526 0 -5.4465113 -1.945821 4738.2137
|
||||
1100 0.55427881 -6.2781733 0 -5.446963 -2.0021027 4738.2137
|
||||
1150 0.54730654 -6.267257 0 -5.4465025 -1.9420678 4738.2137
|
||||
1200 0.5388281 -6.2547963 0 -5.4467562 -1.890178 4738.2137
|
||||
1250 0.54848768 -6.2694237 0 -5.4468979 -1.9636797 4738.2137
|
||||
1300 0.54134321 -6.2590728 0 -5.447261 -1.9170271 4738.2137
|
||||
1350 0.53564389 -6.2501521 0 -5.4468871 -1.8642306 4738.2137
|
||||
1400 0.53726925 -6.2518379 0 -5.4461355 -1.8544028 4738.2137
|
||||
1450 0.54525935 -6.2632653 0 -5.4455808 -1.9072158 4738.2137
|
||||
1500 0.54223342 -6.2591056 0 -5.4459588 -1.886698 4738.2137
|
||||
Loop time of 2.13806 on 4 procs for 500 steps with 4000 atoms
|
||||
|
||||
Performance: 101026.160 tau/day, 233.857 timesteps/s
|
||||
99.5% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 1.1911 | 1.3674 | 1.5133 | 12.4 | 63.95
|
||||
Neigh | 0.2394 | 0.37334 | 0.55622 | 22.2 | 17.46
|
||||
Comm | 0.36084 | 0.37761 | 0.409 | 3.0 | 17.66
|
||||
Output | 0.00030899 | 0.00033534 | 0.00039768 | 0.2 | 0.02
|
||||
Modify | 0.0060141 | 0.0083458 | 0.011389 | 2.6 | 0.39
|
||||
Other | | 0.01105 | | | 0.52
|
||||
|
||||
Nlocal: 1000 ave 1545 max 604 min
|
||||
Histogram: 2 0 0 0 0 0 1 0 0 1
|
||||
Nghost: 8704 ave 9801 max 7983 min
|
||||
Histogram: 2 0 0 0 0 1 0 0 0 1
|
||||
Neighs: 150494 ave 165851 max 129789 min
|
||||
Histogram: 1 0 0 1 0 0 0 0 0 2
|
||||
|
||||
Total # of neighbors = 601974
|
||||
Ave neighs/atom = 150.494
|
||||
Neighbor list builds = 51
|
||||
Dangerous builds = 0
|
||||
run 500
|
||||
Memory usage per processor = 3.06519 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press Volume
|
||||
1500 0.54223342 -6.2591056 0 -5.4459588 -1.886698 4738.2137
|
||||
1550 0.55327017 -6.2750125 0 -5.4453147 -1.9506581 4738.2137
|
||||
1600 0.54419032 -6.2612626 0 -5.4451812 -1.8559458 4738.2137
|
||||
1650 0.54710059 -6.2661984 0 -5.4457527 -1.8882842 4738.2137
|
||||
1700 0.53665689 -6.2504959 0 -5.4457118 -1.8067985 4738.2137
|
||||
1750 0.54864916 -6.2681196 0 -5.4453516 -1.8662894 4738.2137
|
||||
1800 0.54476391 -6.2615108 0 -5.4445692 -1.8352746 4738.2137
|
||||
1850 0.54142945 -6.2555553 0 -5.4436142 -1.8005732 4738.2137
|
||||
1900 0.53992253 -6.2541407 0 -5.4444594 -1.7768992 4738.2137
|
||||
1950 0.54663678 -6.2640967 0 -5.4443465 -1.7945736 4738.2137
|
||||
2000 0.54563235 -6.2626431 0 -5.4443992 -1.807693 4738.2137
|
||||
Loop time of 2.18212 on 4 procs for 500 steps with 4000 atoms
|
||||
|
||||
Performance: 98986.300 tau/day, 229.135 timesteps/s
|
||||
99.7% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 1.1776 | 1.3712 | 1.5256 | 13.4 | 62.84
|
||||
Neigh | 0.26314 | 0.4065 | 0.59956 | 22.6 | 18.63
|
||||
Comm | 0.36859 | 0.3845 | 0.41286 | 2.7 | 17.62
|
||||
Output | 0.00031281 | 0.00033575 | 0.00039792 | 0.2 | 0.02
|
||||
Modify | 0.0058827 | 0.0082896 | 0.011639 | 2.7 | 0.38
|
||||
Other | | 0.01133 | | | 0.52
|
||||
|
||||
Nlocal: 1000 ave 1544 max 605 min
|
||||
Histogram: 2 0 0 0 0 0 1 0 0 1
|
||||
Nghost: 8676.25 ave 9831 max 7985 min
|
||||
Histogram: 2 0 0 0 1 0 0 0 0 1
|
||||
Neighs: 151653 ave 166956 max 130753 min
|
||||
Histogram: 1 0 0 1 0 0 0 0 0 2
|
||||
|
||||
Total # of neighbors = 606611
|
||||
Ave neighs/atom = 151.653
|
||||
Neighbor list builds = 56
|
||||
Dangerous builds = 0
|
||||
|
||||
Total wall time: 0:00:08
|
||||
134
examples/balance/log.27Sep16.balance.neigh.rcb.g++.4
Normal file
134
examples/balance/log.27Sep16.balance.neigh.rcb.g++.4
Normal file
@ -0,0 +1,134 @@
|
||||
LAMMPS (26 Sep 2016)
|
||||
# 3d Lennard-Jones melt
|
||||
|
||||
units lj
|
||||
atom_style atomic
|
||||
processors * 1 1
|
||||
|
||||
lattice fcc 0.8442
|
||||
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
|
||||
region box block 0 10 0 10 0 10
|
||||
create_box 3 box
|
||||
Created orthogonal box = (0 0 0) to (16.796 16.796 16.796)
|
||||
4 by 1 by 1 MPI processor grid
|
||||
create_atoms 1 box
|
||||
Created 4000 atoms
|
||||
mass * 1.0
|
||||
|
||||
region long block 3 6 0 10 0 10
|
||||
set region long type 2
|
||||
1400 settings made for type
|
||||
|
||||
velocity all create 1.0 87287
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff * * 1.0 1.0 2.5
|
||||
pair_coeff * 2 1.0 1.0 5.0
|
||||
|
||||
comm_style tiled
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify every 2 delay 4 check yes
|
||||
fix p all property/atom d_WEIGHT
|
||||
fix 0 all balance 50 1.0 rcb weight neigh 0.8 weight store WEIGHT
|
||||
compute p all property/atom d_WEIGHT
|
||||
variable maximb equal f_0[1]
|
||||
variable iter equal f_0[2]
|
||||
variable prev equal f_0[3]
|
||||
variable final equal f_0
|
||||
|
||||
#fix 3 all print 50 "${iter} ${prev} ${final} ${maximb}"
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
#dump id all atom 50 dump.melt
|
||||
#dump id all custom 50 dump.lammpstrj id type x y z c_p
|
||||
|
||||
#dump 2 all image 25 image.*.jpg type type # axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 2 pad 3
|
||||
|
||||
#dump 3 all movie 25 movie.mpg type type # axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 3 pad 3
|
||||
|
||||
thermo 50
|
||||
|
||||
run 250
|
||||
Neighbor list info ...
|
||||
1 neighbor list requests
|
||||
update every 2 steps, delay 4 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 5.3
|
||||
ghost atom cutoff = 5.3
|
||||
binsize = 2.65 -> bins = 7 7 7
|
||||
WARNING: No suitable neighbor list found. Neighbor weighted balancing skipped (../imbalance_neigh.cpp:65)
|
||||
Memory usage per processor = 2.90262 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press Volume
|
||||
0 1 -6.9453205 0 -5.4456955 -5.6812358 4738.2137
|
||||
50 0.48653399 -6.1788509 0 -5.4492324 -1.6017778 4738.2137
|
||||
100 0.53411175 -6.249885 0 -5.4489177 -1.9317606 4738.2137
|
||||
150 0.53646658 -6.2527206 0 -5.4482219 -1.9689568 4738.2137
|
||||
200 0.54551611 -6.2656326 0 -5.4475631 -2.0042104 4738.2137
|
||||
250 0.54677719 -6.2671162 0 -5.4471555 -2.0015995 4738.2137
|
||||
Loop time of 0.943947 on 4 procs for 250 steps with 4000 atoms
|
||||
|
||||
Performance: 114413.252 tau/day, 264.845 timesteps/s
|
||||
99.4% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.64601 | 0.66027 | 0.67403 | 1.2 | 69.95
|
||||
Neigh | 0.18111 | 0.18828 | 0.1953 | 1.2 | 19.95
|
||||
Comm | 0.072217 | 0.084395 | 0.096822 | 3.4 | 8.94
|
||||
Output | 0.00016904 | 0.00018668 | 0.00020409 | 0.1 | 0.02
|
||||
Modify | 0.005301 | 0.0055165 | 0.0056343 | 0.2 | 0.58
|
||||
Other | | 0.005294 | | | 0.56
|
||||
|
||||
Nlocal: 1000 ave 1004 max 996 min
|
||||
Histogram: 1 0 0 1 0 0 1 0 0 1
|
||||
Nghost: 7674 ave 7678 max 7668 min
|
||||
Histogram: 1 0 0 0 0 0 1 0 1 1
|
||||
Neighs: 149349 ave 150214 max 148735 min
|
||||
Histogram: 1 0 1 0 1 0 0 0 0 1
|
||||
|
||||
Total # of neighbors = 597396
|
||||
Ave neighs/atom = 149.349
|
||||
Neighbor list builds = 25
|
||||
Dangerous builds = 0
|
||||
run 250
|
||||
Memory usage per processor = 2.9031 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press Volume
|
||||
250 0.54677719 -6.2671162 0 -5.4471555 -2.0015995 4738.2137
|
||||
300 0.5477618 -6.2678071 0 -5.4463698 -1.997842 4738.2137
|
||||
350 0.55600296 -6.2801497 0 -5.4463538 -2.0394056 4738.2137
|
||||
400 0.53241503 -6.2453665 0 -5.4469436 -1.878594 4738.2137
|
||||
450 0.5439158 -6.2623 0 -5.4466302 -1.9744161 4738.2137
|
||||
500 0.55526241 -6.2793396 0 -5.4466542 -2.0595015 4738.2137
|
||||
Loop time of 0.886707 on 4 procs for 250 steps with 4000 atoms
|
||||
|
||||
Performance: 121798.994 tau/day, 281.942 timesteps/s
|
||||
99.7% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.6277 | 0.63292 | 0.64433 | 0.8 | 71.38
|
||||
Neigh | 0.1778 | 0.17937 | 0.18309 | 0.5 | 20.23
|
||||
Comm | 0.05461 | 0.06445 | 0.070518 | 2.3 | 7.27
|
||||
Output | 0.00015926 | 0.00017142 | 0.00018311 | 0.1 | 0.02
|
||||
Modify | 0.0050013 | 0.0050754 | 0.0051844 | 0.1 | 0.57
|
||||
Other | | 0.004719 | | | 0.53
|
||||
|
||||
Nlocal: 1000 ave 1008 max 990 min
|
||||
Histogram: 1 0 0 1 0 0 0 0 1 1
|
||||
Nghost: 7665.5 ave 7675 max 7650 min
|
||||
Histogram: 1 0 0 0 0 1 0 0 0 2
|
||||
Neighs: 149308 ave 149883 max 148467 min
|
||||
Histogram: 1 0 0 0 1 0 0 0 1 1
|
||||
|
||||
Total # of neighbors = 597231
|
||||
Ave neighs/atom = 149.308
|
||||
Neighbor list builds = 25
|
||||
Dangerous builds = 0
|
||||
|
||||
Total wall time: 0:00:01
|
||||
207
examples/balance/log.27Sep16.balance.neigh.static.g++.4
Normal file
207
examples/balance/log.27Sep16.balance.neigh.static.g++.4
Normal file
@ -0,0 +1,207 @@
|
||||
LAMMPS (26 Sep 2016)
|
||||
# 3d Lennard-Jones melt
|
||||
|
||||
units lj
|
||||
atom_style atomic
|
||||
processors * 1 1
|
||||
|
||||
variable factor index 1.0
|
||||
|
||||
lattice fcc 0.8442
|
||||
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
|
||||
region box block 0 10 0 10 0 10
|
||||
create_box 3 box
|
||||
Created orthogonal box = (0 0 0) to (16.796 16.796 16.796)
|
||||
4 by 1 by 1 MPI processor grid
|
||||
create_atoms 1 box
|
||||
Created 4000 atoms
|
||||
mass * 1.0
|
||||
|
||||
region long block 3 6 0 10 0 10
|
||||
set region long type 2
|
||||
1400 settings made for type
|
||||
|
||||
velocity all create 1.0 87287
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff * * 1.0 1.0 2.5
|
||||
pair_coeff * 2 1.0 1.0 5.0
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify every 2 delay 4 check yes
|
||||
|
||||
balance 1.0 shift x 10 1.0 weight neigh 0.8 # out weighted_var.txt
|
||||
Neighbor list info ...
|
||||
1 neighbor list requests
|
||||
update every 2 steps, delay 4 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 5.3
|
||||
ghost atom cutoff = 5.3
|
||||
binsize = 2.65 -> bins = 7 7 7
|
||||
WARNING: No suitable neighbor list found. Neighbor weighted balancing skipped (../imbalance_neigh.cpp:65)
|
||||
rebalancing time: 0.00040102 seconds
|
||||
iteration count = 3
|
||||
neigh weight factor: 0.8
|
||||
initial/final max load/proc = 1200 1000
|
||||
initial/final imbalance factor = 1.2 1
|
||||
x cuts: 0 0.25 0.5 0.71875 1
|
||||
y cuts: 0 1
|
||||
z cuts: 0 1
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
#dump id all atom 50 dump.melt
|
||||
|
||||
#dump 2 all image 25 image.*.jpg type type # axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 2 pad 3
|
||||
|
||||
#dump 3 all movie 25 movie.mpg type type # axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 3 pad 3
|
||||
|
||||
thermo 50
|
||||
run 250 post no
|
||||
Memory usage per processor = 2.77892 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press
|
||||
0 1 -6.9453205 0 -5.4456955 -5.6812358
|
||||
50 0.48653399 -6.1788509 0 -5.4492324 -1.6017778
|
||||
100 0.53411175 -6.249885 0 -5.4489177 -1.9317606
|
||||
150 0.53646658 -6.2527206 0 -5.4482219 -1.9689568
|
||||
200 0.54551611 -6.2656326 0 -5.4475631 -2.0042104
|
||||
250 0.54677719 -6.2671162 0 -5.4471555 -2.0015995
|
||||
Loop time of 1.42566 on 4 procs for 250 steps with 4000 atoms
|
||||
|
||||
99.0% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
balance 1.0 shift x 10 1.0 weight neigh 0.8
|
||||
rebalancing time: 0.000426054 seconds
|
||||
iteration count = 10
|
||||
neigh weight factor: 0.8
|
||||
initial/final max load/proc = 1687.06 1002.87
|
||||
initial/final imbalance factor = 1.68662 1.0026
|
||||
x cuts: 0 0.306885 0.452881 0.599335 1
|
||||
y cuts: 0 1
|
||||
z cuts: 0 1
|
||||
run 250 post no
|
||||
Memory usage per processor = 2.7999 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press
|
||||
250 0.54677719 -6.2671162 0 -5.4471555 -2.0015995
|
||||
300 0.5477618 -6.2678071 0 -5.4463698 -1.997842
|
||||
350 0.55600296 -6.2801497 0 -5.4463538 -2.0394056
|
||||
400 0.53241503 -6.2453665 0 -5.4469436 -1.878594
|
||||
450 0.5439158 -6.2623 0 -5.4466302 -1.9744161
|
||||
500 0.55526241 -6.2793396 0 -5.4466542 -2.0595015
|
||||
Loop time of 1.02512 on 4 procs for 250 steps with 4000 atoms
|
||||
|
||||
99.4% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
balance 1.0 shift x 10 1.0 weight neigh 0.8
|
||||
rebalancing time: 0.000252008 seconds
|
||||
iteration count = 10
|
||||
neigh weight factor: 0.8
|
||||
initial/final max load/proc = 1054.41 1008.56
|
||||
initial/final imbalance factor = 1.05567 1.00976
|
||||
x cuts: 0 0.303588 0.449887 0.597189 1
|
||||
y cuts: 0 1
|
||||
z cuts: 0 1
|
||||
run 250 post no
|
||||
Memory usage per processor = 2.7999 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press
|
||||
500 0.55526241 -6.2793396 0 -5.4466542 -2.0595015
|
||||
550 0.53879347 -6.2554274 0 -5.4474393 -1.9756834
|
||||
600 0.54275982 -6.2616799 0 -5.4477437 -1.9939993
|
||||
650 0.54526651 -6.265098 0 -5.4474027 -2.0303672
|
||||
700 0.54369381 -6.263201 0 -5.4478642 -1.9921967
|
||||
750 0.54452777 -6.2640839 0 -5.4474964 -1.9658675
|
||||
Loop time of 1.03672 on 4 procs for 250 steps with 4000 atoms
|
||||
|
||||
99.5% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
balance 1.0 shift x 10 1.0 weight neigh 0.8 weight time 0.6
|
||||
rebalancing time: 0.000267982 seconds
|
||||
iteration count = 10
|
||||
neigh weight factor: 0.8
|
||||
time weight factor: 0.6
|
||||
initial/final max load/proc = 1393.27 1116.61
|
||||
initial/final imbalance factor = 1.25201 1.0034
|
||||
x cuts: 0 0.337163 0.448601 0.555904 1
|
||||
y cuts: 0 1
|
||||
z cuts: 0 1
|
||||
run 250
|
||||
Memory usage per processor = 2.7999 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press
|
||||
750 0.54452777 -6.2640839 0 -5.4474964 -1.9658675
|
||||
800 0.55061744 -6.2725556 0 -5.4468359 -2.0100922
|
||||
850 0.55371614 -6.2763992 0 -5.4460326 -2.0065329
|
||||
900 0.54756622 -6.2668303 0 -5.4456863 -1.9796122
|
||||
950 0.54791593 -6.2673161 0 -5.4456477 -1.9598278
|
||||
1000 0.54173198 -6.2586101 0 -5.4462153 -1.9007466
|
||||
Loop time of 1.07042 on 4 procs for 250 steps with 4000 atoms
|
||||
|
||||
Performance: 100895.237 tau/day, 233.554 timesteps/s
|
||||
99.3% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.56894 | 0.64706 | 0.72522 | 8.1 | 60.45
|
||||
Neigh | 0.091286 | 0.17756 | 0.29256 | 20.9 | 16.59
|
||||
Comm | 0.042178 | 0.23721 | 0.40194 | 31.6 | 22.16
|
||||
Output | 0.00012493 | 0.0001505 | 0.00017571 | 0.1 | 0.01
|
||||
Modify | 0.0016253 | 0.0032219 | 0.0054028 | 2.9 | 0.30
|
||||
Other | | 0.005214 | | | 0.49
|
||||
|
||||
Nlocal: 1000 ave 1695 max 489 min
|
||||
Histogram: 2 0 0 0 0 0 1 0 0 1
|
||||
Nghost: 8733.5 ave 10199 max 7650 min
|
||||
Histogram: 2 0 0 0 0 0 1 0 0 1
|
||||
Neighs: 150170 ave 166473 max 132232 min
|
||||
Histogram: 1 1 0 0 0 0 0 0 0 2
|
||||
|
||||
Total # of neighbors = 600681
|
||||
Ave neighs/atom = 150.17
|
||||
Neighbor list builds = 25
|
||||
Dangerous builds = 0
|
||||
balance 1.0 shift x 10 1.0 weight neigh 0.8 weight time 0.6
|
||||
rebalancing time: 0.000238895 seconds
|
||||
iteration count = 10
|
||||
neigh weight factor: 0.8
|
||||
time weight factor: 0.6
|
||||
initial/final max load/proc = 1167.62 1095.43
|
||||
initial/final imbalance factor = 1.07395 1.00755
|
||||
x cuts: 0 0.345978 0.449963 0.551398 1
|
||||
y cuts: 0 1
|
||||
z cuts: 0 1
|
||||
run 250
|
||||
Memory usage per processor = 2.7999 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press
|
||||
1000 0.54173198 -6.2586101 0 -5.4462153 -1.9007466
|
||||
1050 0.54629742 -6.2657526 0 -5.4465113 -1.945821
|
||||
1100 0.55427881 -6.2781733 0 -5.446963 -2.0021027
|
||||
1150 0.54730654 -6.267257 0 -5.4465025 -1.9420678
|
||||
1200 0.5388281 -6.2547963 0 -5.4467562 -1.890178
|
||||
1250 0.54848768 -6.2694237 0 -5.4468979 -1.9636797
|
||||
Loop time of 1.11596 on 4 procs for 250 steps with 4000 atoms
|
||||
|
||||
Performance: 96777.859 tau/day, 224.023 timesteps/s
|
||||
99.4% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.56315 | 0.66085 | 0.76319 | 10.9 | 59.22
|
||||
Neigh | 0.085606 | 0.18033 | 0.29805 | 21.9 | 16.16
|
||||
Comm | 0.044225 | 0.2661 | 0.4596 | 35.4 | 23.84
|
||||
Output | 0.00015068 | 0.0001756 | 0.00020194 | 0.1 | 0.02
|
||||
Modify | 0.0015557 | 0.0032289 | 0.0054245 | 3.0 | 0.29
|
||||
Other | | 0.005279 | | | 0.47
|
||||
|
||||
Nlocal: 1000 ave 1694 max 462 min
|
||||
Histogram: 2 0 0 0 0 0 0 1 0 1
|
||||
Nghost: 8755.25 ave 10227 max 7675 min
|
||||
Histogram: 2 0 0 0 0 0 1 0 0 1
|
||||
Neighs: 149995 ave 173733 max 125545 min
|
||||
Histogram: 2 0 0 0 0 0 0 0 0 2
|
||||
|
||||
Total # of neighbors = 599979
|
||||
Ave neighs/atom = 149.995
|
||||
Neighbor list builds = 25
|
||||
Dangerous builds = 0
|
||||
|
||||
Total wall time: 0:00:05
|
||||
250
examples/balance/log.27Sep16.balance.var.dynamic.g++.2
Normal file
250
examples/balance/log.27Sep16.balance.var.dynamic.g++.2
Normal file
@ -0,0 +1,250 @@
|
||||
LAMMPS (26 Sep 2016)
|
||||
# 3d Lennard-Jones melt
|
||||
|
||||
units lj
|
||||
atom_style atomic
|
||||
processors * 1 1
|
||||
|
||||
lattice fcc 0.8442
|
||||
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
|
||||
region box block 0 10 0 10 0 10
|
||||
create_box 3 box
|
||||
Created orthogonal box = (0 0 0) to (16.796 16.796 16.796)
|
||||
2 by 1 by 1 MPI processor grid
|
||||
create_atoms 1 box
|
||||
Created 4000 atoms
|
||||
mass * 1.0
|
||||
|
||||
region long block 3 6 0 10 0 10
|
||||
set region long type 2
|
||||
1400 settings made for type
|
||||
|
||||
velocity all create 1.0 87287
|
||||
|
||||
pair_style lj/cut 2.5
|
||||
pair_coeff * * 1.0 1.0 2.5
|
||||
pair_coeff * 2 1.0 1.0 5.0
|
||||
|
||||
neighbor 0.3 bin
|
||||
neigh_modify every 2 delay 4 check yes
|
||||
fix p all property/atom d_WEIGHT
|
||||
compute p all property/atom d_WEIGHT
|
||||
|
||||
group fast type 1
|
||||
2600 atoms in group fast
|
||||
group slow type 2
|
||||
1400 atoms in group slow
|
||||
balance 1.0 shift x 10 1.0 weight group 2 fast 0.8 slow 2.5 weight store WEIGHT
|
||||
Neighbor list info ...
|
||||
1 neighbor list requests
|
||||
update every 2 steps, delay 4 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 5.3
|
||||
ghost atom cutoff = 5.3
|
||||
binsize = 2.65 -> bins = 7 7 7
|
||||
rebalancing time: 0.000465155 seconds
|
||||
iteration count = 10
|
||||
group weights: fast=0.8 slow=2.5
|
||||
storing weight in atom property d_WEIGHT
|
||||
initial/final max load/proc = 2960 3120
|
||||
initial/final imbalance factor = 1.06093 1.11828
|
||||
x cuts: 0 0.449707 1
|
||||
y cuts: 0 1
|
||||
z cuts: 0 1
|
||||
variable lastweight atom c_p
|
||||
|
||||
fix 0 all balance 50 1.0 shift x 10 1.0 weight var lastweight weight time 0.5 weight store WEIGHT
|
||||
variable maximb equal f_0[1]
|
||||
variable iter equal f_0[2]
|
||||
variable prev equal f_0[3]
|
||||
variable final equal f_0
|
||||
|
||||
#fix 3 all print 50 "${iter} ${prev} ${final} ${maximb}"
|
||||
|
||||
fix 1 all nve
|
||||
|
||||
#dump id all atom 50 dump.melt
|
||||
#dump id all custom 50 dump.lammpstrj id type x y z c_p
|
||||
|
||||
#dump 2 all image 25 image.*.jpg type type # axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 2 pad 3
|
||||
|
||||
#dump 3 all movie 25 movie.mpg type type # axes yes 0.8 0.02 view 60 -30
|
||||
#dump_modify 3 pad 3
|
||||
|
||||
thermo 50
|
||||
run 500
|
||||
Memory usage per processor = 3.23652 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press Volume
|
||||
0 1 -6.9453205 0 -5.4456955 -5.6812358 4738.2137
|
||||
50 0.49578514 -6.1929216 0 -5.4494298 -1.6668039 4738.2137
|
||||
100 0.53275389 -6.2475932 0 -5.4486622 -1.9063885 4738.2137
|
||||
150 0.53316457 -6.2483202 0 -5.4487733 -1.9476162 4738.2137
|
||||
200 0.536665 -6.2530113 0 -5.448215 -1.933468 4738.2137
|
||||
250 0.55006273 -6.27163 0 -5.4467422 -2.0438847 4738.2137
|
||||
300 0.55111476 -6.2727642 0 -5.4462987 -2.0384873 4738.2137
|
||||
350 0.55211503 -6.274054 0 -5.4460885 -2.0116976 4738.2137
|
||||
400 0.54638463 -6.2661715 0 -5.4467995 -1.992248 4738.2137
|
||||
450 0.55885307 -6.2852263 0 -5.4471563 -2.0669747 4738.2137
|
||||
500 0.54587069 -6.2662849 0 -5.4476836 -2.0078802 4738.2137
|
||||
Loop time of 3.69088 on 2 procs for 500 steps with 4000 atoms
|
||||
|
||||
Performance: 58522.605 tau/day, 135.469 timesteps/s
|
||||
99.7% CPU use with 2 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 2.3504 | 2.5517 | 2.7529 | 12.6 | 69.13
|
||||
Neigh | 0.64397 | 0.73493 | 0.82589 | 10.6 | 19.91
|
||||
Comm | 0.084433 | 0.37799 | 0.67156 | 47.7 | 10.24
|
||||
Output | 0.00024199 | 0.00026727 | 0.00029254 | 0.2 | 0.01
|
||||
Modify | 0.013371 | 0.014984 | 0.016598 | 1.3 | 0.41
|
||||
Other | | 0.01102 | | | 0.30
|
||||
|
||||
Nlocal: 2000 ave 2358 max 1642 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 1
|
||||
Nghost: 10463 ave 11178 max 9748 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 1
|
||||
Neighs: 298070 ave 345748 max 250391 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 1
|
||||
|
||||
Total # of neighbors = 596139
|
||||
Ave neighs/atom = 149.035
|
||||
Neighbor list builds = 51
|
||||
Dangerous builds = 0
|
||||
run 500
|
||||
Memory usage per processor = 3.24081 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press Volume
|
||||
500 0.54587069 -6.2662849 0 -5.4476836 -2.0078802 4738.2137
|
||||
550 0.54137926 -6.2592773 0 -5.4474115 -1.9770236 4738.2137
|
||||
600 0.54022886 -6.2573307 0 -5.44719 -1.9619637 4738.2137
|
||||
650 0.54709009 -6.2678862 0 -5.4474562 -1.9958342 4738.2137
|
||||
700 0.54590044 -6.2656903 0 -5.4470444 -1.9957108 4738.2137
|
||||
750 0.55098488 -6.2724831 0 -5.4462124 -2.0287523 4738.2137
|
||||
800 0.5520987 -6.2739184 0 -5.4459774 -2.0084991 4738.2137
|
||||
850 0.54963958 -6.2702473 0 -5.445994 -1.9740031 4738.2137
|
||||
900 0.54390586 -6.2615476 0 -5.4458927 -1.9400871 4738.2137
|
||||
950 0.54741732 -6.2665755 0 -5.4456548 -1.9466417 4738.2137
|
||||
1000 0.54200867 -6.2591246 0 -5.4463148 -1.8881624 4738.2137
|
||||
Loop time of 4.04546 on 2 procs for 500 steps with 4000 atoms
|
||||
|
||||
Performance: 53393.133 tau/day, 123.595 timesteps/s
|
||||
99.4% CPU use with 2 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 2.0718 | 2.5709 | 3.0701 | 31.1 | 63.55
|
||||
Neigh | 0.58891 | 0.73311 | 0.87732 | 16.8 | 18.12
|
||||
Comm | 0.068946 | 0.71436 | 1.3598 | 76.4 | 17.66
|
||||
Output | 0.00024986 | 0.00027978 | 0.00030971 | 0.2 | 0.01
|
||||
Modify | 0.012742 | 0.015146 | 0.01755 | 2.0 | 0.37
|
||||
Other | | 0.01163 | | | 0.29
|
||||
|
||||
Nlocal: 2000 ave 2384 max 1616 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 1
|
||||
Nghost: 10412.5 ave 11172 max 9653 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 1
|
||||
Neighs: 300836 ave 358757 max 242914 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 1
|
||||
|
||||
Total # of neighbors = 601671
|
||||
Ave neighs/atom = 150.418
|
||||
Neighbor list builds = 51
|
||||
Dangerous builds = 0
|
||||
|
||||
balance 1.0 shift x 10 1.0 weight group 2 fast 0.8 slow 2.5 weight store WEIGHT
|
||||
rebalancing time: 0.000392914 seconds
|
||||
iteration count = 10
|
||||
group weights: fast=0.8 slow=2.5
|
||||
storing weight in atom property d_WEIGHT
|
||||
initial/final max load/proc = 3464.4 2800.6
|
||||
initial/final imbalance factor = 1.24172 1.0038
|
||||
x cuts: 0 0.454927 1
|
||||
y cuts: 0 1
|
||||
z cuts: 0 1
|
||||
|
||||
fix 0 all balance 50 1.0 shift x 5 1.0 weight var lastweight weight neigh 0.5 weight store WEIGHT
|
||||
|
||||
run 500
|
||||
Memory usage per processor = 3.24081 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press Volume
|
||||
1000 0.54200867 -6.2591246 0 -5.4463148 -1.8881624 4738.2137
|
||||
1050 0.54633412 -6.2656384 0 -5.4463421 -1.9012895 4738.2137
|
||||
1100 0.54325667 -6.2612166 0 -5.4465353 -1.8870463 4738.2137
|
||||
1150 0.55057583 -6.2719187 0 -5.4462614 -1.9575881 4738.2137
|
||||
1200 0.53728175 -6.251744 0 -5.4460228 -1.8124097 4738.2137
|
||||
1250 0.54077561 -6.2567544 0 -5.4457938 -1.8418134 4738.2137
|
||||
1300 0.54430333 -6.260995 0 -5.4447442 -1.856351 4738.2137
|
||||
1350 0.55097839 -6.2715909 0 -5.4453299 -1.9014337 4738.2137
|
||||
1400 0.53858139 -6.2526781 0 -5.445008 -1.7965773 4738.2137
|
||||
1450 0.54218439 -6.2574683 0 -5.444395 -1.7901189 4738.2137
|
||||
1500 0.54200616 -6.2571433 0 -5.4443373 -1.8000345 4738.2137
|
||||
Loop time of 3.50707 on 2 procs for 500 steps with 4000 atoms
|
||||
|
||||
Performance: 61589.821 tau/day, 142.569 timesteps/s
|
||||
99.8% CPU use with 2 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 2.4976 | 2.5822 | 2.6669 | 5.3 | 73.63
|
||||
Neigh | 0.69706 | 0.73285 | 0.76865 | 4.2 | 20.90
|
||||
Comm | 0.11878 | 0.16671 | 0.21464 | 11.7 | 4.75
|
||||
Output | 0.00026321 | 0.00028443 | 0.00030565 | 0.1 | 0.01
|
||||
Modify | 0.013662 | 0.014432 | 0.015203 | 0.6 | 0.41
|
||||
Other | | 0.01054 | | | 0.30
|
||||
|
||||
Nlocal: 2000 ave 2113 max 1887 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 1
|
||||
Nghost: 10348.5 ave 10873 max 9824 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 1
|
||||
Neighs: 302958 ave 314826 max 291091 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 1
|
||||
|
||||
Total # of neighbors = 605917
|
||||
Ave neighs/atom = 151.479
|
||||
Neighbor list builds = 51
|
||||
Dangerous builds = 0
|
||||
run 500
|
||||
Memory usage per processor = 3.24081 Mbytes
|
||||
Step Temp E_pair E_mol TotEng Press Volume
|
||||
1500 0.54200616 -6.2571433 0 -5.4443373 -1.8000345 4738.2137
|
||||
1550 0.5371361 -6.250403 0 -5.4449003 -1.7647032 4738.2137
|
||||
1600 0.54679572 -6.2646443 0 -5.4446558 -1.8115723 4738.2137
|
||||
1650 0.53806586 -6.2519009 0 -5.4450039 -1.7409151 4738.2137
|
||||
1700 0.53479442 -6.2469034 0 -5.4449123 -1.7162447 4738.2137
|
||||
1750 0.53714075 -6.2506513 0 -5.4451416 -1.7340207 4738.2137
|
||||
1800 0.52750518 -6.2358818 0 -5.4448219 -1.6875359 4738.2137
|
||||
1850 0.54585315 -6.2629365 0 -5.4443615 -1.7758587 4738.2137
|
||||
1900 0.53011039 -6.238762 0 -5.4437952 -1.6381988 4738.2137
|
||||
1950 0.54287744 -6.2583143 0 -5.4442018 -1.7367676 4738.2137
|
||||
2000 0.52770954 -6.2349628 0 -5.4435964 -1.5593554 4738.2137
|
||||
Loop time of 3.46214 on 2 procs for 500 steps with 4000 atoms
|
||||
|
||||
Performance: 62389.230 tau/day, 144.420 timesteps/s
|
||||
99.9% CPU use with 2 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 2.5495 | 2.5809 | 2.6123 | 2.0 | 74.55
|
||||
Neigh | 0.68762 | 0.72466 | 0.7617 | 4.4 | 20.93
|
||||
Comm | 0.12518 | 0.13173 | 0.13829 | 1.8 | 3.80
|
||||
Output | 0.00024581 | 0.00026357 | 0.00028133 | 0.1 | 0.01
|
||||
Modify | 0.013486 | 0.014313 | 0.015139 | 0.7 | 0.41
|
||||
Other | | 0.01028 | | | 0.30
|
||||
|
||||
Nlocal: 2000 ave 2135 max 1865 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 1
|
||||
Nghost: 10311.5 ave 10838 max 9785 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 1
|
||||
Neighs: 303996 ave 309135 max 298857 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 1
|
||||
|
||||
Total # of neighbors = 607992
|
||||
Ave neighs/atom = 151.998
|
||||
Neighbor list builds = 51
|
||||
Dangerous builds = 0
|
||||
Total wall time: 0:00:14
|
||||
@ -11,13 +11,19 @@ velocity all create 1.44 87287 loop geom
|
||||
pair_style body 5.0
|
||||
pair_coeff * * 1.0 1.0
|
||||
|
||||
neighbor 0.3 bin
|
||||
neighbor 0.5 bin
|
||||
neigh_modify every 1 delay 0 check yes
|
||||
|
||||
fix 1 all nve/body
|
||||
#fix 1 all nvt/body temp 1.44 1.44 1.0
|
||||
fix 2 all enforce2d
|
||||
|
||||
#compute 1 all body/local type 1 2 3
|
||||
#dump 1 all local 100 dump.body index c_1[1] c_1[2] c_1[3] c_1[4]
|
||||
|
||||
thermo 500
|
||||
#dump 2 all image 1000 image.*.jpg type type &
|
||||
# zoom 1.6 adiam 1.5 body type 1.0 0
|
||||
#dump_modify 2 pad 5
|
||||
|
||||
thermo 100
|
||||
run 10000
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# Title: charmm correction map
|
||||
# DATE: 2016-09-26 CONTRIBUTOR: Robert Latour, latourr@clemson.edu CITATION: TBA
|
||||
# Title: charmm22/charmm27 dihedral correction map
|
||||
|
||||
# alanine map, type 1
|
||||
|
||||
|
||||
@ -1,12 +1,18 @@
|
||||
Run these examples as:
|
||||
|
||||
mpirun -np 4 lmp_linux -partition 4x1 -in in.neb.hop1
|
||||
mpirun -np 4 lmp_linux -partition 4x1 -in in.neb.hop2
|
||||
mpirun -np 3 lmp_linux -partition 3x1 -in in.neb.sivac
|
||||
mpirun -np 4 lmp_g++ -partition 4x1 -in in.neb.hop1
|
||||
mpirun -np 4 lmp_g++ -partition 4x1 -in in.neb.hop2
|
||||
mpirun -np 3 lmp_g++ -partition 3x1 -in in.neb.sivac
|
||||
|
||||
Create dump files to do visualization from via Python tools:
|
||||
(see lammps/tools/README and lammps/tools/python/README
|
||||
for more info on these Python scripts)
|
||||
mpirun -np 8 lmp_g++ -partition 4x2 -in in.neb.hop1
|
||||
mpirun -np 8 lmp_g++ -partition 4x2 -in in.neb.hop2
|
||||
mpirun -np 6 lmp_g++ -partition 3x2 -in in.neb.sivac
|
||||
mpirun -np 9 lmp_g++ -partition 3x3 -in in.neb.sivac
|
||||
|
||||
If you uncomment the dump command lines in the input scripts, you can
|
||||
create dump files to do visualization from via Python tools: (see
|
||||
lammps/tools/README and lammps/tools/python/README for more info on
|
||||
these Python scripts)
|
||||
|
||||
python ~/lammps/tools/python/neb_combine.py -o dump.hop1.combine
|
||||
-b dump.nonneb.1
|
||||
|
||||
@ -14,10 +14,13 @@ variable u uloop 20
|
||||
|
||||
lattice hex 0.9
|
||||
region box block 0 20 0 10 -0.25 0.25
|
||||
create_box 3 box
|
||||
create_atoms 1 box
|
||||
|
||||
mass * 1.0
|
||||
#create_box 3 box
|
||||
#create_atoms 1 box
|
||||
#mass * 1.0
|
||||
#write_data initial.hop1
|
||||
|
||||
read_data initial.hop1
|
||||
|
||||
# LJ potentials
|
||||
|
||||
|
||||
@ -15,11 +15,14 @@ variable u uloop 20
|
||||
lattice hex 0.9
|
||||
region box block 0 20 0 11 -0.25 0.25
|
||||
region box1 block 0 20 0 10 -0.25 0.25
|
||||
create_box 3 box
|
||||
create_atoms 1 region box1
|
||||
create_atoms 1 single 11.5 10.5 0
|
||||
|
||||
mass * 1.0
|
||||
#create_box 3 box
|
||||
#create_atoms 1 region box1
|
||||
#create_atoms 1 single 11.5 10.5 0
|
||||
#mass * 1.0
|
||||
#write_data initial.hop2
|
||||
|
||||
read_data initial.hop2
|
||||
|
||||
# LJ potentials
|
||||
|
||||
|
||||
@ -30,17 +30,20 @@ lattice custom $a &
|
||||
region myreg block 0 4 &
|
||||
0 4 &
|
||||
0 4
|
||||
create_box 1 myreg
|
||||
create_atoms 1 region myreg
|
||||
|
||||
mass 1 28.06
|
||||
#create_box 1 myreg
|
||||
#create_atoms 1 region myreg
|
||||
#mass 1 28.06
|
||||
#write_data initial.sivac
|
||||
|
||||
group Si type 1
|
||||
read_data initial.sivac
|
||||
|
||||
# make a vacancy
|
||||
|
||||
group Si type 1
|
||||
|
||||
group del id 300
|
||||
delete_atoms group del
|
||||
delete_atoms group del compress no
|
||||
group vacneigh id 174 175 301 304 306 331 337
|
||||
|
||||
# choose potential
|
||||
@ -54,7 +57,7 @@ variable u uloop 20
|
||||
|
||||
# only output atoms near vacancy
|
||||
|
||||
dump events vacneigh custom 1000 dump.neb.sivac.$u id type x y z
|
||||
#dump events vacneigh custom 1000 dump.neb.sivac.$u id type x y z
|
||||
|
||||
# initial minimization to relax vacancy
|
||||
|
||||
@ -72,5 +75,4 @@ thermo 100
|
||||
timestep 0.01
|
||||
min_style quickmin
|
||||
|
||||
neb 0.0 0.01 50 100 10 final final.sivac
|
||||
|
||||
neb 0.0 0.01 100 100 10 final final.sivac
|
||||
|
||||
860
examples/neb/initial.hop1
Normal file
860
examples/neb/initial.hop1
Normal file
@ -0,0 +1,860 @@
|
||||
LAMMPS data file via write_data, version 27 Sep 2016, timestep = 0
|
||||
|
||||
420 atoms
|
||||
3 atom types
|
||||
|
||||
0.0000000000000000e+00 2.2653923264628304e+01 xlo xhi
|
||||
-1.9618873042551413e-03 1.9620834929855668e+01 ylo yhi
|
||||
-2.8317404080785380e-01 2.8317404080785380e-01 zlo zhi
|
||||
|
||||
Masses
|
||||
|
||||
1 1
|
||||
2 1
|
||||
3 1
|
||||
|
||||
Atoms # atomic
|
||||
|
||||
1 1 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
2 1 5.6634808161570760e-01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
3 1 1.1326961632314152e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
4 1 1.6990442448471228e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
5 1 2.2653923264628304e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
6 1 2.8317404080785380e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
7 1 3.3980884896942456e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
8 1 3.9644365713099532e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
9 1 4.5307846529256608e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
10 1 5.0971327345413684e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
11 1 5.6634808161570760e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
12 1 6.2298288977727836e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
13 1 6.7961769793884912e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
14 1 7.3625250610041988e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
15 1 7.9288731426199064e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
16 1 8.4952212242356140e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
17 1 9.0615693058513216e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
18 1 9.6279173874670292e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
19 1 1.0194265469082737e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
20 1 1.0760613550698444e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
21 1 1.1326961632314152e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
22 1 1.1893309713929860e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
23 1 1.2459657795545567e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
24 1 1.3026005877161275e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
25 1 1.3592353958776982e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
26 1 1.4158702040392690e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
27 1 1.4725050122008398e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
28 1 1.5291398203624105e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
29 1 1.5857746285239813e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
30 1 1.6424094366855520e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
31 1 1.6990442448471228e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
32 1 1.7556790530086936e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
33 1 1.8123138611702643e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
34 1 1.8689486693318351e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
35 1 1.9255834774934058e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
36 1 1.9822182856549766e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
37 1 2.0388530938165474e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
38 1 2.0954879019781181e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
39 1 2.1521227101396889e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
40 1 2.2087575183012596e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
41 1 0.0000000000000000e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
42 1 5.6634808161570760e-01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
43 1 1.1326961632314152e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
44 1 1.6990442448471228e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
45 1 2.2653923264628304e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
46 1 2.8317404080785380e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
47 1 3.3980884896942456e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
48 1 3.9644365713099532e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
49 1 4.5307846529256608e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
50 1 5.0971327345413684e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
51 1 5.6634808161570760e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
52 1 6.2298288977727836e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
53 1 6.7961769793884912e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
54 1 7.3625250610041988e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
55 1 7.9288731426199064e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
56 1 8.4952212242356140e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
57 1 9.0615693058513216e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
58 1 9.6279173874670292e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
59 1 1.0194265469082737e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
60 1 1.0760613550698444e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
61 1 1.1326961632314152e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
62 1 1.1893309713929860e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
63 1 1.2459657795545567e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
64 1 1.3026005877161275e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
65 1 1.3592353958776982e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
66 1 1.4158702040392690e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
67 1 1.4725050122008398e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
68 1 1.5291398203624105e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
69 1 1.5857746285239813e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
70 1 1.6424094366855520e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
71 1 1.6990442448471228e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
72 1 1.7556790530086936e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
73 1 1.8123138611702643e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
74 1 1.8689486693318351e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
75 1 1.9255834774934058e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
76 1 1.9822182856549766e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
77 1 2.0388530938165474e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
78 1 2.0954879019781181e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
79 1 2.1521227101396889e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
80 1 2.2087575183012596e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
81 1 0.0000000000000000e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
82 1 5.6634808161570760e-01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
83 1 1.1326961632314152e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
84 1 1.6990442448471228e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
85 1 2.2653923264628304e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
86 1 2.8317404080785380e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
87 1 3.3980884896942456e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
88 1 3.9644365713099532e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
89 1 4.5307846529256608e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
90 1 5.0971327345413684e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
91 1 5.6634808161570760e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
92 1 6.2298288977727836e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
93 1 6.7961769793884912e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
94 1 7.3625250610041988e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
95 1 7.9288731426199064e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
96 1 8.4952212242356140e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
97 1 9.0615693058513216e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
98 1 9.6279173874670292e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
99 1 1.0194265469082737e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
100 1 1.0760613550698444e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
101 1 1.1326961632314152e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
102 1 1.1893309713929860e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
103 1 1.2459657795545567e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
104 1 1.3026005877161275e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
105 1 1.3592353958776982e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
106 1 1.4158702040392690e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
107 1 1.4725050122008398e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
108 1 1.5291398203624105e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
109 1 1.5857746285239813e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
110 1 1.6424094366855520e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
111 1 1.6990442448471228e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
112 1 1.7556790530086936e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
113 1 1.8123138611702643e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
114 1 1.8689486693318351e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
115 1 1.9255834774934058e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
116 1 1.9822182856549766e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
117 1 2.0388530938165474e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
118 1 2.0954879019781181e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
119 1 2.1521227101396889e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
120 1 2.2087575183012596e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
121 1 0.0000000000000000e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
122 1 5.6634808161570760e-01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
123 1 1.1326961632314152e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
124 1 1.6990442448471228e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
125 1 2.2653923264628304e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
126 1 2.8317404080785380e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
127 1 3.3980884896942456e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
128 1 3.9644365713099532e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
129 1 4.5307846529256608e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
130 1 5.0971327345413684e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
131 1 5.6634808161570760e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
132 1 6.2298288977727836e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
133 1 6.7961769793884912e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
134 1 7.3625250610041988e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
135 1 7.9288731426199064e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
136 1 8.4952212242356140e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
137 1 9.0615693058513216e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
138 1 9.6279173874670292e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
139 1 1.0194265469082737e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
140 1 1.0760613550698444e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
141 1 1.1326961632314152e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
142 1 1.1893309713929860e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
143 1 1.2459657795545567e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
144 1 1.3026005877161275e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
145 1 1.3592353958776982e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
146 1 1.4158702040392690e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
147 1 1.4725050122008398e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
148 1 1.5291398203624105e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
149 1 1.5857746285239813e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
150 1 1.6424094366855520e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
151 1 1.6990442448471228e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
152 1 1.7556790530086936e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
153 1 1.8123138611702643e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
154 1 1.8689486693318351e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
155 1 1.9255834774934058e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
156 1 1.9822182856549766e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
157 1 2.0388530938165474e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
158 1 2.0954879019781181e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
159 1 2.1521227101396889e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
160 1 2.2087575183012596e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
161 1 0.0000000000000000e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
162 1 5.6634808161570760e-01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
163 1 1.1326961632314152e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
164 1 1.6990442448471228e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
165 1 2.2653923264628304e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
166 1 2.8317404080785380e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
167 1 3.3980884896942456e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
168 1 3.9644365713099532e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
169 1 4.5307846529256608e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
170 1 5.0971327345413684e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
171 1 5.6634808161570760e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
172 1 6.2298288977727836e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
173 1 6.7961769793884912e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
174 1 7.3625250610041988e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
175 1 7.9288731426199064e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
176 1 8.4952212242356140e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
177 1 9.0615693058513216e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
178 1 9.6279173874670292e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
179 1 1.0194265469082737e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
180 1 1.0760613550698444e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
181 1 1.1326961632314152e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
182 1 1.1893309713929860e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
183 1 1.2459657795545567e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
184 1 1.3026005877161275e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
185 1 1.3592353958776982e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
186 1 1.4158702040392690e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
187 1 1.4725050122008398e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
188 1 1.5291398203624105e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
189 1 1.5857746285239813e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
190 1 1.6424094366855520e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
191 1 1.6990442448471228e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
192 1 1.7556790530086936e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
193 1 1.8123138611702643e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
194 1 1.8689486693318351e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
195 1 1.9255834774934058e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
196 1 1.9822182856549766e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
197 1 2.0388530938165474e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
198 1 2.0954879019781181e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
199 1 2.1521227101396889e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
200 1 2.2087575183012596e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
201 1 0.0000000000000000e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
202 1 5.6634808161570760e-01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
203 1 1.1326961632314152e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
204 1 1.6990442448471228e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
205 1 2.2653923264628304e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
206 1 2.8317404080785380e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
207 1 3.3980884896942456e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
208 1 3.9644365713099532e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
209 1 4.5307846529256608e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
210 1 5.0971327345413684e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
211 1 5.6634808161570760e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
212 1 6.2298288977727836e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
213 1 6.7961769793884912e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
214 1 7.3625250610041988e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
215 1 7.9288731426199064e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
216 1 8.4952212242356140e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
217 1 9.0615693058513216e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
218 1 9.6279173874670292e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
219 1 1.0194265469082737e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
220 1 1.0760613550698444e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
221 1 1.1326961632314152e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
222 1 1.1893309713929860e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
223 1 1.2459657795545567e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
224 1 1.3026005877161275e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
225 1 1.3592353958776982e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
226 1 1.4158702040392690e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
227 1 1.4725050122008398e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
228 1 1.5291398203624105e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
229 1 1.5857746285239813e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
230 1 1.6424094366855520e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
231 1 1.6990442448471228e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
232 1 1.7556790530086936e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
233 1 1.8123138611702643e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
234 1 1.8689486693318351e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
235 1 1.9255834774934058e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
236 1 1.9822182856549766e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
237 1 2.0388530938165474e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
238 1 2.0954879019781181e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
239 1 2.1521227101396889e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
240 1 2.2087575183012596e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
241 1 0.0000000000000000e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
242 1 5.6634808161570760e-01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
243 1 1.1326961632314152e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
244 1 1.6990442448471228e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
245 1 2.2653923264628304e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
246 1 2.8317404080785380e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
247 1 3.3980884896942456e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
248 1 3.9644365713099532e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
249 1 4.5307846529256608e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
250 1 5.0971327345413684e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
251 1 5.6634808161570760e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
252 1 6.2298288977727836e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
253 1 6.7961769793884912e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
254 1 7.3625250610041988e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
255 1 7.9288731426199064e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
256 1 8.4952212242356140e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
257 1 9.0615693058513216e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
258 1 9.6279173874670292e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
259 1 1.0194265469082737e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
260 1 1.0760613550698444e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
261 1 1.1326961632314152e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
262 1 1.1893309713929860e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
263 1 1.2459657795545567e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
264 1 1.3026005877161275e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
265 1 1.3592353958776982e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
266 1 1.4158702040392690e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
267 1 1.4725050122008398e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
268 1 1.5291398203624105e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
269 1 1.5857746285239813e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
270 1 1.6424094366855520e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
271 1 1.6990442448471228e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
272 1 1.7556790530086936e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
273 1 1.8123138611702643e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
274 1 1.8689486693318351e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
275 1 1.9255834774934058e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
276 1 1.9822182856549766e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
277 1 2.0388530938165474e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
278 1 2.0954879019781181e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
279 1 2.1521227101396889e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
280 1 2.2087575183012596e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
281 1 0.0000000000000000e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
282 1 5.6634808161570760e-01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
283 1 1.1326961632314152e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
284 1 1.6990442448471228e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
285 1 2.2653923264628304e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
286 1 2.8317404080785380e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
287 1 3.3980884896942456e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
288 1 3.9644365713099532e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
289 1 4.5307846529256608e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
290 1 5.0971327345413684e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
291 1 5.6634808161570760e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
292 1 6.2298288977727836e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
293 1 6.7961769793884912e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
294 1 7.3625250610041988e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
295 1 7.9288731426199064e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
296 1 8.4952212242356140e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
297 1 9.0615693058513216e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
298 1 9.6279173874670292e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
299 1 1.0194265469082737e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
300 1 1.0760613550698444e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
301 1 1.1326961632314152e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
302 1 1.1893309713929860e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
303 1 1.2459657795545567e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
304 1 1.3026005877161275e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
305 1 1.3592353958776982e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
306 1 1.4158702040392690e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
307 1 1.4725050122008398e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
308 1 1.5291398203624105e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
309 1 1.5857746285239813e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
310 1 1.6424094366855520e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
311 1 1.6990442448471228e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
312 1 1.7556790530086936e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
313 1 1.8123138611702643e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
314 1 1.8689486693318351e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
315 1 1.9255834774934058e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
316 1 1.9822182856549766e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
317 1 2.0388530938165474e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
318 1 2.0954879019781181e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
319 1 2.1521227101396889e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
320 1 2.2087575183012596e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
321 1 0.0000000000000000e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
322 1 5.6634808161570760e-01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
323 1 1.1326961632314152e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
324 1 1.6990442448471228e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
325 1 2.2653923264628304e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
326 1 2.8317404080785380e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
327 1 3.3980884896942456e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
328 1 3.9644365713099532e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
329 1 4.5307846529256608e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
330 1 5.0971327345413684e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
331 1 5.6634808161570760e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
332 1 6.2298288977727836e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
333 1 6.7961769793884912e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
334 1 7.3625250610041988e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
335 1 7.9288731426199064e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
336 1 8.4952212242356140e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
337 1 9.0615693058513216e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
338 1 9.6279173874670292e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
339 1 1.0194265469082737e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
340 1 1.0760613550698444e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
341 1 1.1326961632314152e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
342 1 1.1893309713929860e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
343 1 1.2459657795545567e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
344 1 1.3026005877161275e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
345 1 1.3592353958776982e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
346 1 1.4158702040392690e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
347 1 1.4725050122008398e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
348 1 1.5291398203624105e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
349 1 1.5857746285239813e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
350 1 1.6424094366855520e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
351 1 1.6990442448471228e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
352 1 1.7556790530086936e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
353 1 1.8123138611702643e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
354 1 1.8689486693318351e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
355 1 1.9255834774934058e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
356 1 1.9822182856549766e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
357 1 2.0388530938165474e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
358 1 2.0954879019781181e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
359 1 2.1521227101396889e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
360 1 2.2087575183012596e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
361 1 0.0000000000000000e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
362 1 5.6634808161570760e-01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
363 1 1.1326961632314152e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
364 1 1.6990442448471228e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
365 1 2.2653923264628304e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
366 1 2.8317404080785380e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
367 1 3.3980884896942456e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
368 1 3.9644365713099532e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
369 1 4.5307846529256608e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
370 1 5.0971327345413684e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
371 1 5.6634808161570760e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
372 1 6.2298288977727836e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
373 1 6.7961769793884912e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
374 1 7.3625250610041988e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
375 1 7.9288731426199064e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
376 1 8.4952212242356140e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
377 1 9.0615693058513216e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
378 1 9.6279173874670292e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
379 1 1.0194265469082737e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
380 1 1.0760613550698444e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
381 1 1.1326961632314152e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
382 1 1.1893309713929860e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
383 1 1.2459657795545567e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
384 1 1.3026005877161275e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
385 1 1.3592353958776982e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
386 1 1.4158702040392690e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
387 1 1.4725050122008398e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
388 1 1.5291398203624105e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
389 1 1.5857746285239813e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
390 1 1.6424094366855520e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
391 1 1.6990442448471228e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
392 1 1.7556790530086936e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
393 1 1.8123138611702643e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
394 1 1.8689486693318351e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
395 1 1.9255834774934058e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
396 1 1.9822182856549766e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
397 1 2.0388530938165474e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
398 1 2.0954879019781181e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
399 1 2.1521227101396889e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
400 1 2.2087575183012596e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
401 1 0.0000000000000000e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
402 1 1.1326961632314152e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
403 1 2.2653923264628304e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
404 1 3.3980884896942456e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
405 1 4.5307846529256608e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
406 1 5.6634808161570760e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
407 1 6.7961769793884912e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
408 1 7.9288731426199064e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
409 1 9.0615693058513216e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
410 1 1.0194265469082737e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
411 1 1.1326961632314152e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
412 1 1.2459657795545567e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
413 1 1.3592353958776982e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
414 1 1.4725050122008398e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
415 1 1.5857746285239813e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
416 1 1.6990442448471228e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
417 1 1.8123138611702643e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
418 1 1.9255834774934058e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
419 1 2.0388530938165474e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
420 1 2.1521227101396889e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
|
||||
Velocities
|
||||
|
||||
1 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
2 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
3 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
4 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
5 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
6 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
7 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
8 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
9 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
10 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
11 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
12 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
13 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
14 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
15 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
16 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
17 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
18 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
19 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
20 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
21 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
22 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
23 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
24 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
25 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
26 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
27 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
28 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
29 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
30 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
31 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
32 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
33 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
34 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
35 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
36 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
37 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
38 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
39 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
40 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
41 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
42 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
43 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
44 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
45 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
46 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
47 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
48 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
49 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
50 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
51 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
52 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
53 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
54 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
55 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
56 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
57 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
58 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
59 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
60 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
61 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
62 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
63 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
64 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
65 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
66 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
67 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
68 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
69 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
70 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
71 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
72 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
73 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
74 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
75 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
76 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
77 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
78 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
79 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
80 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
81 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
82 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
83 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
84 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
85 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
86 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
87 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
88 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
89 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
90 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
91 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
92 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
93 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
94 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
95 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
96 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
97 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
98 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
99 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
100 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
101 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
102 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
103 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
104 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
105 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
106 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
107 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
108 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
109 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
110 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
111 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
112 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
113 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
114 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
115 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
116 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
117 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
118 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
119 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
120 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
121 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
122 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
123 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
124 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
125 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
126 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
127 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
128 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
129 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
130 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
131 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
132 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
133 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
134 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
135 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
136 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
137 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
138 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
139 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
140 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
141 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
142 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
143 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
144 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
145 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
146 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
147 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
148 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
149 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
150 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
151 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
152 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
153 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
154 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
155 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
156 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
157 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
158 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
159 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
160 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
161 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
162 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
163 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
164 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
165 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
166 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
167 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
168 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
169 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
170 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
171 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
172 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
173 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
174 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
175 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
176 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
177 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
178 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
179 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
180 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
181 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
182 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
183 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
184 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
185 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
186 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
187 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
188 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
189 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
190 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
191 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
192 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
193 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
194 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
195 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
196 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
197 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
198 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
199 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
200 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
201 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
202 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
203 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
204 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
205 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
206 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
207 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
208 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
209 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
210 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
211 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
212 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
213 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
214 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
215 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
216 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
217 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
218 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
219 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
220 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
221 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
222 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
223 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
224 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
225 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
226 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
227 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
228 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
229 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
230 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
231 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
232 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
233 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
234 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
235 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
236 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
237 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
238 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
239 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
240 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
241 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
242 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
243 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
244 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
245 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
246 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
247 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
248 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
249 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
250 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
251 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
252 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
253 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
254 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
255 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
256 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
257 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
258 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
259 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
260 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
261 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
262 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
263 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
264 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
265 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
266 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
267 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
268 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
269 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
270 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
271 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
272 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
273 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
274 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
275 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
276 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
277 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
278 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
279 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
280 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
281 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
282 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
283 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
284 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
285 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
286 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
287 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
288 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
289 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
290 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
291 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
292 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
293 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
294 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
295 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
296 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
297 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
298 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
299 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
300 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
301 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
302 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
303 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
304 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
305 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
306 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
307 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
308 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
309 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
310 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
311 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
312 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
313 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
314 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
315 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
316 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
317 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
318 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
319 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
320 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
321 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
322 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
323 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
324 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
325 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
326 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
327 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
328 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
329 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
330 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
331 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
332 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
333 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
334 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
335 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
336 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
337 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
338 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
339 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
340 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
341 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
342 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
343 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
344 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
345 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
346 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
347 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
348 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
349 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
350 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
351 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
352 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
353 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
354 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
355 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
356 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
357 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
358 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
359 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
360 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
361 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
362 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
363 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
364 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
365 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
366 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
367 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
368 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
369 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
370 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
371 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
372 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
373 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
374 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
375 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
376 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
377 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
378 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
379 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
380 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
381 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
382 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
383 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
384 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
385 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
386 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
387 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
388 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
389 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
390 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
391 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
392 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
393 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
394 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
395 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
396 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
397 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
398 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
399 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
400 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
401 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
402 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
403 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
404 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
405 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
406 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
407 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
408 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
409 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
410 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
411 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
412 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
413 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
414 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
415 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
416 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
417 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
418 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
419 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
420 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
862
examples/neb/initial.hop2
Normal file
862
examples/neb/initial.hop2
Normal file
@ -0,0 +1,862 @@
|
||||
LAMMPS data file via write_data, version 27 Sep 2016, timestep = 0
|
||||
|
||||
421 atoms
|
||||
3 atom types
|
||||
|
||||
0.0000000000000000e+00 2.2653923264628304e+01 xlo xhi
|
||||
-2.1580760346806556e-03 2.0601974770713667e+01 ylo yhi
|
||||
-2.8317404080785380e-01 2.8317404080785380e-01 zlo zhi
|
||||
|
||||
Masses
|
||||
|
||||
1 1
|
||||
2 1
|
||||
3 1
|
||||
|
||||
Atoms # atomic
|
||||
|
||||
1 1 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
2 1 5.6634808161570760e-01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
3 1 1.1326961632314152e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
4 1 1.6990442448471228e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
5 1 2.2653923264628304e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
6 1 2.8317404080785380e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
7 1 3.3980884896942456e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
8 1 3.9644365713099532e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
9 1 4.5307846529256608e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
10 1 5.0971327345413684e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
11 1 5.6634808161570760e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
12 1 6.2298288977727836e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
13 1 6.7961769793884912e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
14 1 7.3625250610041988e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
15 1 7.9288731426199064e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
16 1 8.4952212242356140e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
17 1 9.0615693058513216e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
18 1 9.6279173874670292e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
19 1 1.0194265469082737e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
20 1 1.0760613550698444e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
21 1 1.1326961632314152e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
22 1 1.1893309713929860e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
23 1 1.2459657795545567e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
24 1 1.3026005877161275e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
25 1 1.3592353958776982e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
26 1 1.4158702040392690e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
27 1 1.4725050122008398e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
28 1 1.5291398203624105e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
29 1 1.5857746285239813e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
30 1 1.6424094366855520e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
31 1 1.6990442448471228e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
32 1 1.7556790530086936e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
33 1 1.8123138611702643e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
34 1 1.8689486693318351e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
35 1 1.9255834774934058e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
36 1 1.9822182856549766e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
37 1 2.0388530938165474e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
38 1 2.0954879019781181e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
39 1 2.1521227101396889e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
|
||||
40 1 2.2087575183012596e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
|
||||
41 1 0.0000000000000000e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
42 1 5.6634808161570760e-01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
43 1 1.1326961632314152e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
44 1 1.6990442448471228e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
45 1 2.2653923264628304e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
46 1 2.8317404080785380e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
47 1 3.3980884896942456e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
48 1 3.9644365713099532e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
49 1 4.5307846529256608e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
50 1 5.0971327345413684e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
51 1 5.6634808161570760e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
52 1 6.2298288977727836e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
53 1 6.7961769793884912e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
54 1 7.3625250610041988e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
55 1 7.9288731426199064e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
56 1 8.4952212242356140e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
57 1 9.0615693058513216e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
58 1 9.6279173874670292e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
59 1 1.0194265469082737e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
60 1 1.0760613550698444e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
61 1 1.1326961632314152e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
62 1 1.1893309713929860e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
63 1 1.2459657795545567e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
64 1 1.3026005877161275e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
65 1 1.3592353958776982e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
66 1 1.4158702040392690e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
67 1 1.4725050122008398e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
68 1 1.5291398203624105e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
69 1 1.5857746285239813e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
70 1 1.6424094366855520e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
71 1 1.6990442448471228e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
72 1 1.7556790530086936e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
73 1 1.8123138611702643e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
74 1 1.8689486693318351e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
75 1 1.9255834774934058e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
76 1 1.9822182856549766e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
77 1 2.0388530938165474e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
78 1 2.0954879019781181e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
79 1 2.1521227101396889e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
|
||||
80 1 2.2087575183012596e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
|
||||
81 1 0.0000000000000000e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
82 1 5.6634808161570760e-01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
83 1 1.1326961632314152e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
84 1 1.6990442448471228e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
85 1 2.2653923264628304e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
86 1 2.8317404080785380e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
87 1 3.3980884896942456e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
88 1 3.9644365713099532e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
89 1 4.5307846529256608e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
90 1 5.0971327345413684e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
91 1 5.6634808161570760e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
92 1 6.2298288977727836e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
93 1 6.7961769793884912e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
94 1 7.3625250610041988e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
95 1 7.9288731426199064e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
96 1 8.4952212242356140e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
97 1 9.0615693058513216e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
98 1 9.6279173874670292e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
99 1 1.0194265469082737e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
100 1 1.0760613550698444e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
101 1 1.1326961632314152e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
102 1 1.1893309713929860e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
103 1 1.2459657795545567e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
104 1 1.3026005877161275e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
105 1 1.3592353958776982e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
106 1 1.4158702040392690e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
107 1 1.4725050122008398e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
108 1 1.5291398203624105e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
109 1 1.5857746285239813e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
110 1 1.6424094366855520e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
111 1 1.6990442448471228e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
112 1 1.7556790530086936e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
113 1 1.8123138611702643e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
114 1 1.8689486693318351e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
115 1 1.9255834774934058e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
116 1 1.9822182856549766e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
117 1 2.0388530938165474e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
118 1 2.0954879019781181e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
119 1 2.1521227101396889e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
|
||||
120 1 2.2087575183012596e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
|
||||
121 1 0.0000000000000000e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
122 1 5.6634808161570760e-01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
123 1 1.1326961632314152e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
124 1 1.6990442448471228e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
125 1 2.2653923264628304e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
126 1 2.8317404080785380e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
127 1 3.3980884896942456e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
128 1 3.9644365713099532e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
129 1 4.5307846529256608e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
130 1 5.0971327345413684e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
131 1 5.6634808161570760e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
132 1 6.2298288977727836e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
133 1 6.7961769793884912e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
134 1 7.3625250610041988e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
135 1 7.9288731426199064e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
136 1 8.4952212242356140e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
137 1 9.0615693058513216e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
138 1 9.6279173874670292e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
139 1 1.0194265469082737e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
140 1 1.0760613550698444e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
141 1 1.1326961632314152e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
142 1 1.1893309713929860e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
143 1 1.2459657795545567e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
144 1 1.3026005877161275e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
145 1 1.3592353958776982e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
146 1 1.4158702040392690e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
147 1 1.4725050122008398e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
148 1 1.5291398203624105e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
149 1 1.5857746285239813e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
150 1 1.6424094366855520e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
151 1 1.6990442448471228e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
152 1 1.7556790530086936e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
153 1 1.8123138611702643e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
154 1 1.8689486693318351e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
155 1 1.9255834774934058e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
156 1 1.9822182856549766e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
157 1 2.0388530938165474e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
158 1 2.0954879019781181e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
159 1 2.1521227101396889e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
|
||||
160 1 2.2087575183012596e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
|
||||
161 1 0.0000000000000000e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
162 1 5.6634808161570760e-01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
163 1 1.1326961632314152e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
164 1 1.6990442448471228e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
165 1 2.2653923264628304e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
166 1 2.8317404080785380e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
167 1 3.3980884896942456e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
168 1 3.9644365713099532e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
169 1 4.5307846529256608e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
170 1 5.0971327345413684e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
171 1 5.6634808161570760e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
172 1 6.2298288977727836e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
173 1 6.7961769793884912e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
174 1 7.3625250610041988e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
175 1 7.9288731426199064e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
176 1 8.4952212242356140e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
177 1 9.0615693058513216e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
178 1 9.6279173874670292e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
179 1 1.0194265469082737e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
180 1 1.0760613550698444e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
181 1 1.1326961632314152e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
182 1 1.1893309713929860e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
183 1 1.2459657795545567e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
184 1 1.3026005877161275e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
185 1 1.3592353958776982e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
186 1 1.4158702040392690e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
187 1 1.4725050122008398e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
188 1 1.5291398203624105e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
189 1 1.5857746285239813e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
190 1 1.6424094366855520e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
191 1 1.6990442448471228e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
192 1 1.7556790530086936e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
193 1 1.8123138611702643e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
194 1 1.8689486693318351e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
195 1 1.9255834774934058e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
196 1 1.9822182856549766e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
197 1 2.0388530938165474e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
198 1 2.0954879019781181e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
199 1 2.1521227101396889e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
|
||||
200 1 2.2087575183012596e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
|
||||
201 1 0.0000000000000000e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
202 1 5.6634808161570760e-01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
203 1 1.1326961632314152e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
204 1 1.6990442448471228e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
205 1 2.2653923264628304e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
206 1 2.8317404080785380e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
207 1 3.3980884896942456e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
208 1 3.9644365713099532e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
209 1 4.5307846529256608e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
210 1 5.0971327345413684e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
211 1 5.6634808161570760e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
212 1 6.2298288977727836e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
213 1 6.7961769793884912e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
214 1 7.3625250610041988e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
215 1 7.9288731426199064e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
216 1 8.4952212242356140e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
217 1 9.0615693058513216e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
218 1 9.6279173874670292e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
219 1 1.0194265469082737e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
220 1 1.0760613550698444e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
221 1 1.1326961632314152e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
222 1 1.1893309713929860e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
223 1 1.2459657795545567e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
224 1 1.3026005877161275e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
225 1 1.3592353958776982e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
226 1 1.4158702040392690e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
227 1 1.4725050122008398e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
228 1 1.5291398203624105e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
229 1 1.5857746285239813e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
230 1 1.6424094366855520e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
231 1 1.6990442448471228e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
232 1 1.7556790530086936e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
233 1 1.8123138611702643e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
234 1 1.8689486693318351e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
235 1 1.9255834774934058e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
236 1 1.9822182856549766e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
237 1 2.0388530938165474e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
238 1 2.0954879019781181e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
239 1 2.1521227101396889e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
|
||||
240 1 2.2087575183012596e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
|
||||
241 1 0.0000000000000000e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
242 1 5.6634808161570760e-01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
243 1 1.1326961632314152e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
244 1 1.6990442448471228e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
245 1 2.2653923264628304e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
246 1 2.8317404080785380e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
247 1 3.3980884896942456e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
248 1 3.9644365713099532e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
249 1 4.5307846529256608e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
250 1 5.0971327345413684e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
251 1 5.6634808161570760e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
252 1 6.2298288977727836e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
253 1 6.7961769793884912e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
254 1 7.3625250610041988e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
255 1 7.9288731426199064e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
256 1 8.4952212242356140e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
257 1 9.0615693058513216e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
258 1 9.6279173874670292e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
259 1 1.0194265469082737e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
260 1 1.0760613550698444e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
261 1 1.1326961632314152e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
262 1 1.1893309713929860e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
263 1 1.2459657795545567e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
264 1 1.3026005877161275e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
265 1 1.3592353958776982e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
266 1 1.4158702040392690e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
267 1 1.4725050122008398e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
268 1 1.5291398203624105e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
269 1 1.5857746285239813e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
270 1 1.6424094366855520e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
271 1 1.6990442448471228e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
272 1 1.7556790530086936e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
273 1 1.8123138611702643e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
274 1 1.8689486693318351e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
275 1 1.9255834774934058e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
276 1 1.9822182856549766e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
277 1 2.0388530938165474e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
278 1 2.0954879019781181e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
279 1 2.1521227101396889e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
|
||||
280 1 2.2087575183012596e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
|
||||
281 1 0.0000000000000000e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
282 1 5.6634808161570760e-01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
283 1 1.1326961632314152e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
284 1 1.6990442448471228e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
285 1 2.2653923264628304e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
286 1 2.8317404080785380e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
287 1 3.3980884896942456e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
288 1 3.9644365713099532e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
289 1 4.5307846529256608e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
290 1 5.0971327345413684e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
291 1 5.6634808161570760e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
292 1 6.2298288977727836e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
293 1 6.7961769793884912e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
294 1 7.3625250610041988e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
295 1 7.9288731426199064e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
296 1 8.4952212242356140e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
297 1 9.0615693058513216e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
298 1 9.6279173874670292e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
299 1 1.0194265469082737e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
300 1 1.0760613550698444e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
301 1 1.1326961632314152e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
302 1 1.1893309713929860e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
303 1 1.2459657795545567e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
304 1 1.3026005877161275e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
305 1 1.3592353958776982e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
306 1 1.4158702040392690e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
307 1 1.4725050122008398e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
308 1 1.5291398203624105e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
309 1 1.5857746285239813e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
310 1 1.6424094366855520e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
311 1 1.6990442448471228e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
312 1 1.7556790530086936e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
313 1 1.8123138611702643e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
314 1 1.8689486693318351e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
315 1 1.9255834774934058e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
316 1 1.9822182856549766e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
317 1 2.0388530938165474e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
318 1 2.0954879019781181e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
319 1 2.1521227101396889e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
|
||||
320 1 2.2087575183012596e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
|
||||
321 1 0.0000000000000000e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
322 1 5.6634808161570760e-01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
323 1 1.1326961632314152e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
324 1 1.6990442448471228e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
325 1 2.2653923264628304e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
326 1 2.8317404080785380e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
327 1 3.3980884896942456e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
328 1 3.9644365713099532e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
329 1 4.5307846529256608e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
330 1 5.0971327345413684e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
331 1 5.6634808161570760e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
332 1 6.2298288977727836e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
333 1 6.7961769793884912e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
334 1 7.3625250610041988e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
335 1 7.9288731426199064e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
336 1 8.4952212242356140e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
337 1 9.0615693058513216e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
338 1 9.6279173874670292e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
339 1 1.0194265469082737e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
340 1 1.0760613550698444e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
341 1 1.1326961632314152e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
342 1 1.1893309713929860e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
343 1 1.2459657795545567e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
344 1 1.3026005877161275e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
345 1 1.3592353958776982e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
346 1 1.4158702040392690e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
347 1 1.4725050122008398e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
348 1 1.5291398203624105e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
349 1 1.5857746285239813e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
350 1 1.6424094366855520e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
351 1 1.6990442448471228e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
352 1 1.7556790530086936e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
353 1 1.8123138611702643e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
354 1 1.8689486693318351e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
355 1 1.9255834774934058e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
356 1 1.9822182856549766e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
357 1 2.0388530938165474e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
358 1 2.0954879019781181e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
359 1 2.1521227101396889e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
|
||||
360 1 2.2087575183012596e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
|
||||
361 1 0.0000000000000000e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
362 1 5.6634808161570760e-01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
363 1 1.1326961632314152e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
364 1 1.6990442448471228e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
365 1 2.2653923264628304e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
366 1 2.8317404080785380e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
367 1 3.3980884896942456e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
368 1 3.9644365713099532e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
369 1 4.5307846529256608e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
370 1 5.0971327345413684e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
371 1 5.6634808161570760e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
372 1 6.2298288977727836e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
373 1 6.7961769793884912e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
374 1 7.3625250610041988e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
375 1 7.9288731426199064e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
376 1 8.4952212242356140e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
377 1 9.0615693058513216e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
378 1 9.6279173874670292e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
379 1 1.0194265469082737e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
380 1 1.0760613550698444e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
381 1 1.1326961632314152e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
382 1 1.1893309713929860e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
383 1 1.2459657795545567e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
384 1 1.3026005877161275e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
385 1 1.3592353958776982e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
386 1 1.4158702040392690e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
387 1 1.4725050122008398e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
388 1 1.5291398203624105e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
389 1 1.5857746285239813e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
390 1 1.6424094366855520e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
391 1 1.6990442448471228e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
392 1 1.7556790530086936e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
393 1 1.8123138611702643e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
394 1 1.8689486693318351e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
395 1 1.9255834774934058e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
396 1 1.9822182856549766e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
397 1 2.0388530938165474e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
398 1 2.0954879019781181e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
399 1 2.1521227101396889e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
|
||||
400 1 2.2087575183012596e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
|
||||
401 1 0.0000000000000000e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
402 1 1.1326961632314152e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
403 1 2.2653923264628304e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
404 1 3.3980884896942456e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
405 1 4.5307846529256608e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
406 1 5.6634808161570760e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
407 1 6.7961769793884912e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
408 1 7.9288731426199064e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
409 1 9.0615693058513216e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
410 1 1.0194265469082737e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
411 1 1.1326961632314152e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
412 1 1.2459657795545567e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
413 1 1.3592353958776982e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
414 1 1.4725050122008398e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
415 1 1.5857746285239813e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
416 1 1.6990442448471228e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
417 1 1.8123138611702643e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
418 1 1.9255834774934058e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
419 1 2.0388530938165474e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
420 1 2.1521227101396889e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
|
||||
421 1 1.3026005877161275e+01 2.0599816694678985e+01 0.0000000000000000e+00 0 0 0
|
||||
|
||||
Velocities
|
||||
|
||||
1 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
2 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
3 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
4 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
5 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
6 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
7 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
8 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
9 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
10 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
11 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
12 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
13 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
14 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
15 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
16 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
17 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
18 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
19 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
20 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
21 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
22 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
23 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
24 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
25 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
26 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
27 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
28 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
29 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
30 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
31 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
32 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
33 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
34 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
35 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
36 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
37 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
38 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
39 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
40 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
41 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
42 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
43 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
44 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
45 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
46 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
47 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
48 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
49 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
50 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
51 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
52 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
53 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
54 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
55 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
56 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
57 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
58 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
59 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
60 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
61 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
62 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
63 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
64 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
65 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
66 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
67 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
68 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
69 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
70 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
71 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
72 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
73 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
74 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
75 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
76 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
77 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
78 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
79 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
80 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
81 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
82 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
83 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
84 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
85 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
86 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
87 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
88 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
89 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
90 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
91 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
92 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
93 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
94 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
95 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
96 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
97 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
98 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
99 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
100 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
101 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
102 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
103 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
104 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
105 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
106 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
107 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
108 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
109 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
110 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
111 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
112 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
113 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
114 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
115 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
116 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
117 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
118 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
119 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
120 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
121 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
122 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
123 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
124 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
125 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
126 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
127 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
128 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
129 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
130 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
131 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
132 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
133 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
134 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
135 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
136 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
137 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
138 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
139 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
140 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
141 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
142 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
143 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
144 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
145 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
146 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
147 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
148 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
149 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
150 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
151 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
152 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
153 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
154 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
155 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
156 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
157 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
158 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
159 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
160 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
161 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
162 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
163 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
164 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
165 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
166 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
167 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
168 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
169 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
170 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
171 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
172 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
173 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
174 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
175 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
176 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
177 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
178 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
179 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
180 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
181 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
182 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
183 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
184 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
185 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
186 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
187 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
188 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
189 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
190 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
191 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
192 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
193 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
194 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
195 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
196 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
197 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
198 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
199 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
200 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
201 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
202 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
203 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
204 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
205 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
206 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
207 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
208 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
209 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
210 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
211 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
212 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
213 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
214 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
215 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
216 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
217 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
218 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
219 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
220 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
221 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
222 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
223 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
224 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
225 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
226 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
227 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
228 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
229 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
230 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
231 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
232 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
233 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
234 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
235 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
236 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
237 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
238 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
239 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
240 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
241 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
242 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
243 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
244 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
245 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
246 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
247 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
248 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
249 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
250 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
251 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
252 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
253 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
254 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
255 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
256 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
257 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
258 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
259 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
260 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
261 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
262 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
263 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
264 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
265 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
266 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
267 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
268 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
269 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
270 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
271 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
272 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
273 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
274 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
275 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
276 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
277 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
278 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
279 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
280 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
281 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
282 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
283 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
284 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
285 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
286 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
287 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
288 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
289 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
290 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
291 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
292 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
293 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
294 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
295 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
296 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
297 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
298 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
299 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
300 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
301 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
302 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
303 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
304 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
305 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
306 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
307 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
308 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
309 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
310 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
311 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
312 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
313 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
314 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
315 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
316 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
317 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
318 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
319 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
320 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
321 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
322 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
323 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
324 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
325 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
326 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
327 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
328 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
329 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
330 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
331 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
332 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
333 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
334 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
335 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
336 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
337 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
338 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
339 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
340 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
341 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
342 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
343 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
344 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
345 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
346 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
347 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
348 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
349 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
350 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
351 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
352 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
353 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
354 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
355 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
356 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
357 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
358 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
359 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
360 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
361 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
362 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
363 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
364 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
365 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
366 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
367 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
368 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
369 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
370 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
371 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
372 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
373 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
374 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
375 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
376 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
377 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
378 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
379 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
380 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
381 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
382 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
383 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
384 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
385 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
386 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
387 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
388 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
389 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
390 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
391 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
392 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
393 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
394 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
395 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
396 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
397 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
398 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
399 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
400 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
401 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
402 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
403 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
404 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
405 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
406 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
407 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
408 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
409 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
410 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
411 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
412 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
413 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
414 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
415 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
416 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
417 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
418 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
419 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
420 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
421 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
||||
1042
examples/neb/initial.sivac
Normal file
1042
examples/neb/initial.sivac
Normal file
File diff suppressed because it is too large
Load Diff
@ -1,4 +1,4 @@
|
||||
LAMMPS (15 Feb 2016)
|
||||
LAMMPS (27 Sep 2016)
|
||||
Running on 4 partitions of processors
|
||||
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
|
||||
0 4327.2753 2746.3378 0.3387091 5.0075576 4514.5424 0.42933428 0.42323635 1.8941131 0 -3.0535948 0.33333333 -2.6242605 0.66666667 -2.7623811 1 -3.0474969
|
||||
10
examples/neb/log.28Sep16.neb.hop1.g++.8
Normal file
10
examples/neb/log.28Sep16.neb.hop1.g++.8
Normal file
@ -0,0 +1,10 @@
|
||||
LAMMPS (27 Sep 2016)
|
||||
Running on 4 partitions of processors
|
||||
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
|
||||
0 4327.2753 2746.3378 0.3387091 5.0075576 4514.5424 0.42933428 0.42323635 1.8941131 0 -3.0535948 0.33333333 -2.6242605 0.66666667 -2.7623811 1 -3.0474969
|
||||
100 0.10482171 0.085218406 0.014588234 0.066178435 0.19602242 0.0070900401 0.0022691875 2.3031875 0 -3.0535967 0.31839181 -3.0473647 0.639876 -3.0465067 1 -3.0487759
|
||||
111 0.096708718 0.078036984 0.013922966 0.054175505 0.20234693 0.0070871172 0.0022668002 2.3052946 0 -3.0535968 0.31853431 -3.0473633 0.64178873 -3.0465096 1 -3.0487764
|
||||
Climbing replica = 3
|
||||
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
|
||||
111 0.20234693 0.17770387 0.013922966 0.054175505 0.20234693 0.0070871172 0.0022668002 2.3052946 0 -3.0535968 0.31853431 -3.0473633 0.64178873 -3.0465096 1 -3.0487764
|
||||
178 0.09975409 0.093814031 0.010577358 0.024247224 0.09975409 0.0071042931 0.0022851195 2.312004 0 -3.0535969 0.31607934 -3.0473923 0.618931 -3.0464926 1 -3.0487777
|
||||
@ -1,4 +1,4 @@
|
||||
LAMMPS (15 Feb 2016)
|
||||
LAMMPS (27 Sep 2016)
|
||||
Running on 4 partitions of processors
|
||||
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
|
||||
0 14.104748 10.419633 0.24852044 5.0039071 8.2116049 0.0018276223 0.00064050211 0.98401186 0 -3.0514921 0.33333333 -3.0496673 0.66666667 -3.0496645 1 -3.050305
|
||||
18
examples/neb/log.28Sep16.neb.hop2.g++.8
Normal file
18
examples/neb/log.28Sep16.neb.hop2.g++.8
Normal file
@ -0,0 +1,18 @@
|
||||
LAMMPS (27 Sep 2016)
|
||||
Running on 4 partitions of processors
|
||||
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
|
||||
0 14.104748 10.419633 0.24852044 5.0039071 8.2116049 0.0018276223 0.00064050211 0.98401186 0 -3.0514921 0.33333333 -3.0496673 0.66666667 -3.0496645 1 -3.050305
|
||||
100 0.24646695 0.10792196 0.01781018 0.098854684 0.63725646 0.001516756 0.0015151635 1.165391 0 -3.0514939 0.2890334 -3.0503533 0.59718494 -3.0499771 1 -3.0514923
|
||||
200 0.061777741 0.050288749 0.012466513 0.020420207 0.88741041 0.0014465772 0.0014462528 1.1692938 0 -3.0514941 0.29975094 -3.0503052 0.62768286 -3.0500476 1 -3.0514938
|
||||
300 0.056346766 0.030000618 0.0093152917 0.013765031 1.0101529 0.0014069751 0.0014068154 1.1699608 0 -3.0514942 0.30992449 -3.0502613 0.64174291 -3.0500873 1 -3.0514941
|
||||
400 0.025589489 0.015671005 0.0061287063 0.008588518 1.1136424 0.001370987 0.0013709154 1.1704204 0 -3.0514943 0.32016645 -3.0502198 0.65324019 -3.0501233 1 -3.0514943
|
||||
500 0.014778626 0.0092108366 0.0042668521 0.0059963914 1.1636579 0.0013527466 0.0013527072 1.1706283 0 -3.0514944 0.32550275 -3.0501993 0.65875414 -3.0501416 1 -3.0514943
|
||||
600 0.08786211 0.020876327 0.0031421548 0.0051657363 1.1898894 0.0013430848 0.0013430599 1.1707681 0 -3.0514944 0.32831927 -3.0501889 0.66160681 -3.0501513 1 -3.0514944
|
||||
633 0.0098132678 0.0055392541 0.0030063464 0.0043091323 1.1924486 0.0013420127 0.0013419893 1.1707818 0 -3.0514944 0.32862625 -3.0501878 0.66191769 -3.0501524 1 -3.0514944
|
||||
Climbing replica = 3
|
||||
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
|
||||
633 1.1924486 1.1648685 0.0030063464 0.0043091323 1.1924486 0.0013420127 0.0013419893 1.1707818 0 -3.0514944 0.32862625 -3.0501878 0.66191769 -3.0501524 1 -3.0514944
|
||||
733 0.095331134 0.089136608 0.0021551441 0.0031844438 0.043042998 0.0016022317 0.0016022168 1.170789 0 -3.0514944 0.29157063 -3.0503375 0.50358402 -3.0498922 1 -3.0514944
|
||||
833 0.10539135 0.030724373 0.0013749699 0.002221013 0.10539135 0.0016019798 0.001601971 1.1732118 0 -3.0514944 0.26249002 -3.0504848 0.50415223 -3.0498924 1 -3.0514944
|
||||
933 0.01883894 0.011496399 0.0011058925 0.0018178041 0.014621806 0.0016018934 0.0016018865 1.173866 0 -3.0514944 0.25788763 -3.0505113 0.50466375 -3.0498925 1 -3.0514944
|
||||
996 0.0082457876 0.0036336551 0.00077325986 0.0013910671 0.0068823708 0.0016018293 0.0016018244 1.174511 0 -3.0514944 0.2544553 -3.0505324 0.50520462 -3.0498926 1 -3.0514944
|
||||
14
examples/neb/log.28Sep16.neb.sivac.g++.3
Normal file
14
examples/neb/log.28Sep16.neb.sivac.g++.3
Normal file
@ -0,0 +1,14 @@
|
||||
LAMMPS (27 Sep 2016)
|
||||
Running on 3 partitions of processors
|
||||
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
|
||||
0 7.5525391 1.6345605 0.16683659 7.5525391 7.5525391 1.5383951 0 1.6207355 0 -2213.3343 0.5 -2212.4096 1 -2211.7959
|
||||
10 0.27332818 0.040944923 0.039164338 0.27332818 0.17804882 0.51235911 0.497084 1.6790474 0 -2213.3364 0.49024121 -2212.824 1 -2213.3211
|
||||
20 0.1820396 0.018049916 0.024428411 0.1820396 0.08601739 0.51038174 0.5080746 1.7224961 0 -2213.337 0.49199582 -2212.8266 1 -2213.3347
|
||||
30 0.043288796 0.0068108825 0.017372479 0.043288796 0.049466709 0.51032316 0.5095943 1.7304745 0 -2213.3371 0.49553568 -2212.8268 1 -2213.3364
|
||||
40 0.0421393 0.0037035761 0.01173707 0.0421393 0.026104735 0.51022733 0.5100163 1.7366752 0 -2213.3373 0.49838067 -2212.8271 1 -2213.3371
|
||||
50 0.025897844 0.0022804241 0.0081056535 0.025897844 0.016908913 0.5101712 0.51008591 1.739143 0 -2213.3373 0.49923344 -2212.8272 1 -2213.3373
|
||||
59 0.00962839 0.0012946076 0.005657505 0.009365729 0.012040803 0.51014185 0.51010207 1.7404554 0 -2213.3374 0.49955698 -2212.8272 1 -2213.3373
|
||||
Climbing replica = 2
|
||||
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
|
||||
59 0.012040803 0.0031505502 0.005657505 0.009365729 0.012040803 0.51014185 0.51010207 1.7404554 0 -2213.3374 0.49955698 -2212.8272 1 -2213.3373
|
||||
63 0.009152118 0.0016692472 0.0049645771 0.0081967836 0.009152118 0.51013743 0.51010776 1.7409028 0 -2213.3374 0.50022239 -2212.8272 1 -2213.3373
|
||||
14
examples/neb/log.28Sep16.neb.sivac.g++.6
Normal file
14
examples/neb/log.28Sep16.neb.sivac.g++.6
Normal file
@ -0,0 +1,14 @@
|
||||
LAMMPS (27 Sep 2016)
|
||||
Running on 3 partitions of processors
|
||||
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
|
||||
0 7.5525391 1.6345605 0.16683659 7.5525391 7.5525391 1.5383951 0 1.6207355 0 -2213.3343 0.5 -2212.4096 1 -2211.7959
|
||||
10 0.27332818 0.040944923 0.039164338 0.27332818 0.17804882 0.51235911 0.497084 1.6790474 0 -2213.3364 0.49024121 -2212.824 1 -2213.3211
|
||||
20 0.1820396 0.018049916 0.024428411 0.1820396 0.08601739 0.51038174 0.5080746 1.7224961 0 -2213.337 0.49199582 -2212.8266 1 -2213.3347
|
||||
30 0.043288796 0.0068108825 0.017372479 0.043288796 0.049466709 0.51032316 0.5095943 1.7304745 0 -2213.3371 0.49553568 -2212.8268 1 -2213.3364
|
||||
40 0.042139305 0.0037035764 0.01173707 0.042139305 0.026104735 0.51022733 0.5100163 1.7366752 0 -2213.3373 0.49838067 -2212.8271 1 -2213.3371
|
||||
50 0.025899631 0.0022805513 0.0081057075 0.025899631 0.016908929 0.5101712 0.51008591 1.739143 0 -2213.3373 0.49923345 -2212.8272 1 -2213.3373
|
||||
59 0.0096285044 0.0012946258 0.0056576061 0.0093678253 0.012040919 0.51014185 0.51010207 1.7404554 0 -2213.3374 0.49955698 -2212.8272 1 -2213.3373
|
||||
Climbing replica = 2
|
||||
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
|
||||
59 0.012040919 0.0031505771 0.0056576061 0.0093678253 0.012040919 0.51014185 0.51010207 1.7404554 0 -2213.3374 0.49955698 -2212.8272 1 -2213.3373
|
||||
63 0.0091523813 0.0016692845 0.0049647607 0.0081998372 0.0091523813 0.51013743 0.51010775 1.7409028 0 -2213.3374 0.50022236 -2212.8272 1 -2213.3373
|
||||
@ -1,4 +1,4 @@
|
||||
LAMMPS (15 Feb 2016)
|
||||
LAMMPS (27 Sep 2016)
|
||||
Running on 3 partitions of processors
|
||||
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
|
||||
0 7.5525391 1.6345605 0.16683659 7.5525391 7.5525391 1.5383951 0 1.6207355 0 -2213.3343 0.5 -2212.4096 1 -2211.7959
|
||||
@ -6,9 +6,9 @@ Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 P
|
||||
20 0.1820396 0.018049916 0.024428411 0.1820396 0.08601739 0.51038174 0.5080746 1.7224961 0 -2213.337 0.49199582 -2212.8266 1 -2213.3347
|
||||
30 0.043288796 0.0068108825 0.017372479 0.043288796 0.049466709 0.51032316 0.5095943 1.7304745 0 -2213.3371 0.49553568 -2212.8268 1 -2213.3364
|
||||
40 0.042139318 0.0037035773 0.011737071 0.042139318 0.026104737 0.51022733 0.5100163 1.7366752 0 -2213.3373 0.49838067 -2212.8271 1 -2213.3371
|
||||
50 0.025904252 0.0022808801 0.008105847 0.025904252 0.016908971 0.5101712 0.51008591 1.7391431 0 -2213.3373 0.49923347 -2212.8272 1 -2213.3373
|
||||
50 0.025904121 0.0022808707 0.0081058431 0.025904121 0.016908969 0.5101712 0.51008591 1.7391431 0 -2213.3373 0.49923346 -2212.8272 1 -2213.3373
|
||||
59 0.0096287928 0.0012946716 0.005657861 0.0093731008 0.01204121 0.51014185 0.51010207 1.7404554 0 -2213.3374 0.49955696 -2212.8272 1 -2213.3373
|
||||
Climbing replica = 2
|
||||
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
|
||||
50 0.025904252 0.0044134315 0.008105847 0.025904252 0.016908971 0.5101712 0.51008591 1.7391431 0 -2213.3373 0.49923347 -2212.8272 1 -2213.3373
|
||||
60 0.011518317 0.0013089596 0.0054472815 0.011518317 0.0091629734 0.51014415 0.51010903 1.7406815 0 -2213.3374 0.50065207 -2212.8272 1 -2213.3373
|
||||
61 0.0089525108 0.0012703829 0.0052524345 0.0088142351 0.0089525108 0.51014321 0.51010962 1.7407173 0 -2213.3374 0.50065779 -2212.8272 1 -2213.3373
|
||||
59 0.01204121 0.0031506449 0.005657861 0.0093731008 0.01204121 0.51014185 0.51010207 1.7404554 0 -2213.3374 0.49955696 -2212.8272 1 -2213.3373
|
||||
63 0.0091530442 0.0016693787 0.0049652227 0.0082075097 0.0091530442 0.51013743 0.51010775 1.7409027 0 -2213.3374 0.50022228 -2212.8272 1 -2213.3373
|
||||
@ -1,5 +1,6 @@
|
||||
Run this example as:
|
||||
|
||||
mpirun -np 4 lmp_linux -partition 4x1 -in in.prd
|
||||
mpirun -np 4 lmp_g++ -partition 4x1 -in in.prd
|
||||
mpirun -np 8 lmp_g++ -partition 4x2 -in in.prd
|
||||
|
||||
You should be able to use any number of replicas >= 3.
|
||||
|
||||
@ -1,22 +0,0 @@
|
||||
LAMMPS (15 Feb 2016)
|
||||
Running on 4 partitions of processors
|
||||
Step CPU Clock Event Correlated Coincident Replica
|
||||
100 0.000 0 0 0 0 0
|
||||
100 0.539 0 0 0 0 0
|
||||
100 0.694 0 0 0 0 0
|
||||
100 0.850 0 0 0 0 0
|
||||
100 0.928 0 0 0 0 0
|
||||
200 1.555 400 1 0 4 1
|
||||
300 1.924 500 2 1 1 1
|
||||
500 3.495 772 3 0 2 2
|
||||
800 5.446 1328 4 0 2 2
|
||||
1000 7.037 1636 5 0 1 3
|
||||
1000 7.989 1636 5 0 1 3
|
||||
1200 8.838 1908 6 0 1 2
|
||||
1300 9.212 2008 7 1 1 2
|
||||
1900 12.291 4024 8 0 1 3
|
||||
1900 12.832 4024 8 0 1 3
|
||||
1900 13.157 4024 8 0 1 3
|
||||
1900 13.320 4024 8 0 1 3
|
||||
2100 14.090 4220 9 0 2 3
|
||||
Loop time of 14.0941 on 4 procs for 2000 steps with 511 atoms
|
||||
22
examples/prd/log.29Sep16.prd.g++.4
Normal file
22
examples/prd/log.29Sep16.prd.g++.4
Normal file
@ -0,0 +1,22 @@
|
||||
LAMMPS (28 Sep 2016)
|
||||
Running on 4 partitions of processors
|
||||
Step CPU Clock Event Correlated Coincident Replica
|
||||
100 0.000 0 0 0 0 0
|
||||
100 0.521 0 0 0 0 0
|
||||
100 0.670 0 0 0 0 0
|
||||
100 0.822 0 0 0 0 0
|
||||
100 0.896 0 0 0 0 0
|
||||
200 1.555 400 1 0 4 1
|
||||
300 1.918 500 2 1 1 1
|
||||
500 3.476 772 3 0 2 2
|
||||
800 5.379 1328 4 0 2 2
|
||||
1000 6.914 1636 5 0 1 3
|
||||
1000 7.859 1636 5 0 1 3
|
||||
1200 8.658 1908 6 0 1 2
|
||||
1300 9.018 2008 7 1 1 2
|
||||
1900 12.005 4024 8 0 1 3
|
||||
1900 12.539 4024 8 0 1 3
|
||||
1900 12.861 4024 8 0 1 3
|
||||
1900 13.027 4024 8 0 1 3
|
||||
2100 13.798 4220 9 0 2 3
|
||||
Loop time of 13.8021 on 4 procs for 2000 steps with 511 atoms
|
||||
22
examples/prd/log.29Sep16.prd.g++.8
Normal file
22
examples/prd/log.29Sep16.prd.g++.8
Normal file
@ -0,0 +1,22 @@
|
||||
LAMMPS (28 Sep 2016)
|
||||
Running on 4 partitions of processors
|
||||
Step CPU Clock Event Correlated Coincident Replica
|
||||
100 0.000 0 0 0 0 0
|
||||
100 0.289 0 0 0 0 0
|
||||
100 0.373 0 0 0 0 0
|
||||
100 0.458 0 0 0 0 0
|
||||
100 0.500 0 0 0 0 0
|
||||
200 0.800 400 1 0 4 1
|
||||
300 0.999 500 2 1 1 1
|
||||
500 1.834 772 3 0 2 2
|
||||
800 2.864 1328 4 0 2 2
|
||||
1000 3.706 1636 5 0 1 3
|
||||
1000 4.211 1636 5 0 1 3
|
||||
1200 4.655 1908 6 0 1 2
|
||||
1300 4.854 2008 7 1 1 2
|
||||
1900 6.503 4024 8 0 1 3
|
||||
1900 6.792 4024 8 0 1 3
|
||||
1900 6.968 4024 8 0 1 3
|
||||
1900 7.055 4024 8 0 1 3
|
||||
2100 7.463 4220 9 0 2 3
|
||||
Loop time of 7.46531 on 8 procs for 2000 steps with 511 atoms
|
||||
2328
examples/prd/screen.29Sep16.prd.g++.4.0
Normal file
2328
examples/prd/screen.29Sep16.prd.g++.4.0
Normal file
File diff suppressed because it is too large
Load Diff
2204
examples/prd/screen.29Sep16.prd.g++.4.1
Normal file
2204
examples/prd/screen.29Sep16.prd.g++.4.1
Normal file
File diff suppressed because it is too large
Load Diff
2349
examples/prd/screen.29Sep16.prd.g++.4.2
Normal file
2349
examples/prd/screen.29Sep16.prd.g++.4.2
Normal file
File diff suppressed because it is too large
Load Diff
2183
examples/prd/screen.29Sep16.prd.g++.4.3
Normal file
2183
examples/prd/screen.29Sep16.prd.g++.4.3
Normal file
File diff suppressed because it is too large
Load Diff
2328
examples/prd/screen.29Sep16.prd.g++.8.0
Normal file
2328
examples/prd/screen.29Sep16.prd.g++.8.0
Normal file
File diff suppressed because it is too large
Load Diff
2204
examples/prd/screen.29Sep16.prd.g++.8.1
Normal file
2204
examples/prd/screen.29Sep16.prd.g++.8.1
Normal file
File diff suppressed because it is too large
Load Diff
2349
examples/prd/screen.29Sep16.prd.g++.8.2
Normal file
2349
examples/prd/screen.29Sep16.prd.g++.8.2
Normal file
File diff suppressed because it is too large
Load Diff
2183
examples/prd/screen.29Sep16.prd.g++.8.3
Normal file
2183
examples/prd/screen.29Sep16.prd.g++.8.3
Normal file
File diff suppressed because it is too large
Load Diff
@ -9,9 +9,9 @@ variable zblz equal 73
|
||||
|
||||
# Specify hybrid with SNAP, ZBL
|
||||
|
||||
pair_style hybrid/overlay &
|
||||
zbl ${zblcutinner} ${zblcutouter} &
|
||||
snap
|
||||
pair_style hybrid/overlay snap &
|
||||
zbl ${zblcutinner} ${zblcutouter}
|
||||
|
||||
pair_coeff 1 1 zbl ${zblz} ${zblz}
|
||||
pair_coeff * * snap Ta06A.snapcoeff Ta Ta06A.snapparam Ta
|
||||
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
Run this example as:
|
||||
|
||||
mpirun -np 3 lmp_linux -partition 3x1 -in in.tad
|
||||
mpirun -np 3 lmp_g++ -partition 3x1 -in in.tad
|
||||
|
||||
You should be able to use any number of replicas >= 3.
|
||||
|
||||
@ -150,7 +150,7 @@ colvar::colvar(std::string const &conf)
|
||||
feature_states[f_cv_linear]->enabled = lin;
|
||||
}
|
||||
|
||||
// Colvar is homogeneous iff:
|
||||
// Colvar is homogeneous if:
|
||||
// - it is linear (hence not scripted)
|
||||
// - all cvcs have coefficient 1 or -1
|
||||
// i.e. sum or difference of cvcs
|
||||
@ -375,28 +375,16 @@ colvar::colvar(std::string const &conf)
|
||||
|
||||
{
|
||||
bool temp;
|
||||
if (get_keyval(conf, "outputSystemForce", temp, false)) {
|
||||
cvm::error("Colvar option outputSystemForce is deprecated.\n"
|
||||
"Please use outputTotalForce, or outputSystemForce within an ABF bias.");
|
||||
if (get_keyval(conf, "outputSystemForce", temp, false, colvarparse::parse_silent)) {
|
||||
cvm::error("Option outputSystemForce is deprecated: only outputTotalForce is supported instead.\n"
|
||||
"The two are NOT identical: see http://colvars.github.io/totalforce.html.\n", INPUT_ERROR);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
bool b_output_total_force;
|
||||
get_keyval(conf, "outputTotalForce", b_output_total_force, false);
|
||||
if (b_output_total_force) {
|
||||
enable(f_cv_output_total_force);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
bool b_output_applied_force;
|
||||
get_keyval(conf, "outputAppliedForce", b_output_applied_force, false);
|
||||
if (b_output_applied_force) {
|
||||
enable(f_cv_output_applied_force);
|
||||
}
|
||||
}
|
||||
get_keyval_feature(this, conf, "outputTotalForce", f_cv_output_total_force, false);
|
||||
get_keyval_feature(this, conf, "outputAppliedForce", f_cv_output_applied_force, false);
|
||||
get_keyval_feature(this, conf, "subtractAppliedForce", f_cv_subtract_applied_force, false);
|
||||
|
||||
// Start in active state by default
|
||||
enable(f_cv_active);
|
||||
@ -409,6 +397,8 @@ colvar::colvar(std::string const &conf)
|
||||
fj.type(value());
|
||||
ft.type(value());
|
||||
ft_reported.type(value());
|
||||
f_old.type(value());
|
||||
f_old.reset();
|
||||
|
||||
if (cvm::b_analysis)
|
||||
parse_analysis(conf);
|
||||
@ -519,6 +509,8 @@ int colvar::init_components(std::string const &conf)
|
||||
"number", "coordNum");
|
||||
error_code |= init_components_type<selfcoordnum>(conf, "self-coordination "
|
||||
"number", "selfCoordNum");
|
||||
error_code |= init_components_type<groupcoordnum>(conf, "group-coordination "
|
||||
"number", "groupCoord");
|
||||
error_code |= init_components_type<angle>(conf, "angle", "angle");
|
||||
error_code |= init_components_type<dipole_angle>(conf, "dipole angle", "dipoleAngle");
|
||||
error_code |= init_components_type<dihedral>(conf, "dihedral", "dihedral");
|
||||
@ -1104,6 +1096,14 @@ int colvar::calc_colvar_properties()
|
||||
|
||||
} else {
|
||||
|
||||
if (is_enabled(f_cv_subtract_applied_force)) {
|
||||
// correct the total force only if it has been measured
|
||||
// TODO add a specific test instead of relying on sq norm
|
||||
if (ft.norm2() > 0.0) {
|
||||
ft -= f_old;
|
||||
}
|
||||
}
|
||||
|
||||
x_reported = x;
|
||||
ft_reported = ft;
|
||||
}
|
||||
@ -1210,6 +1210,10 @@ cvm::real colvar::update_forces_energy()
|
||||
x_old = x;
|
||||
}
|
||||
|
||||
if (is_enabled(f_cv_subtract_applied_force)) {
|
||||
f_old = f;
|
||||
}
|
||||
|
||||
if (cvm::debug())
|
||||
cvm::log("Done updating colvar \""+this->name+"\".\n");
|
||||
return (potential_energy + kinetic_energy);
|
||||
@ -1640,15 +1644,9 @@ std::ostream & colvar::write_traj(std::ostream &os)
|
||||
}
|
||||
|
||||
if (is_enabled(f_cv_output_applied_force)) {
|
||||
if (is_enabled(f_cv_extended_Lagrangian)) {
|
||||
os << " "
|
||||
<< std::setprecision(cvm::cv_prec) << std::setw(cvm::cv_width)
|
||||
<< fr;
|
||||
} else {
|
||||
os << " "
|
||||
<< std::setprecision(cvm::cv_prec) << std::setw(cvm::cv_width)
|
||||
<< f;
|
||||
}
|
||||
os << " "
|
||||
<< std::setprecision(cvm::cv_prec) << std::setw(cvm::cv_width)
|
||||
<< applied_force();
|
||||
}
|
||||
|
||||
return os;
|
||||
|
||||
@ -175,6 +175,9 @@ public:
|
||||
/// (if defined) contribute to it
|
||||
colvarvalue f;
|
||||
|
||||
/// Applied force at the previous step (to be subtracted from total force if needed)
|
||||
colvarvalue f_old;
|
||||
|
||||
/// \brief Total force, as derived from the atomic trajectory;
|
||||
/// should equal the system force plus \link f \endlink
|
||||
colvarvalue ft;
|
||||
@ -272,10 +275,13 @@ public:
|
||||
/// \brief Calculate the quantities associated to the colvar (but not to the CVCs)
|
||||
int calc_colvar_properties();
|
||||
|
||||
/// Get the current biasing force
|
||||
inline colvarvalue bias_force() const
|
||||
/// Get the current applied force
|
||||
inline colvarvalue const applied_force() const
|
||||
{
|
||||
return fb;
|
||||
if (is_enabled(f_cv_extended_Lagrangian)) {
|
||||
return fr;
|
||||
}
|
||||
return f;
|
||||
}
|
||||
|
||||
/// Set the total biasing force to zero
|
||||
@ -482,6 +488,7 @@ public:
|
||||
class dihedral;
|
||||
class coordnum;
|
||||
class selfcoordnum;
|
||||
class groupcoordnum;
|
||||
class h_bond;
|
||||
class rmsd;
|
||||
class orientation_angle;
|
||||
|
||||
@ -67,7 +67,7 @@ int colvarbias_histogram::init(std::string const &conf)
|
||||
|
||||
if (colvar_array_size > 0) {
|
||||
weights.assign(colvar_array_size, 1.0);
|
||||
get_keyval(conf, "weights", weights, weights, colvarparse::parse_silent);
|
||||
get_keyval(conf, "weights", weights, weights);
|
||||
}
|
||||
|
||||
for (i = 0; i < colvars.size(); i++) {
|
||||
@ -79,7 +79,7 @@ int colvarbias_histogram::init(std::string const &conf)
|
||||
|
||||
{
|
||||
std::string grid_conf;
|
||||
if (key_lookup(conf, "grid", grid_conf)) {
|
||||
if (key_lookup(conf, "histogramGrid", grid_conf)) {
|
||||
grid->parse_params(grid_conf);
|
||||
}
|
||||
}
|
||||
|
||||
@ -92,7 +92,11 @@ int colvarbias_meta::init(std::string const &conf)
|
||||
get_keyval(conf, "keepHills", keep_hills, false);
|
||||
if (! get_keyval(conf, "writeFreeEnergyFile", dump_fes, true))
|
||||
get_keyval(conf, "dumpFreeEnergyFile", dump_fes, true, colvarparse::parse_silent);
|
||||
get_keyval(conf, "saveFreeEnergyFile", dump_fes_save, false);
|
||||
if (get_keyval(conf, "saveFreeEnergyFile", dump_fes_save, false, colvarparse::parse_silent)) {
|
||||
cvm::log("Option \"saveFreeEnergyFile\" is deprecated, "
|
||||
"please use \"keepFreeEnergyFiles\" instead.");
|
||||
}
|
||||
get_keyval(conf, "keepFreeEnergyFiles", dump_fes_save, dump_fes_save);
|
||||
|
||||
hills_energy = new colvar_grid_scalar(colvars);
|
||||
hills_energy_gradients = new colvar_grid_gradient(colvars);
|
||||
|
||||
@ -612,3 +612,250 @@ cvm::real colvarbias_restraint_linear::restraint_convert_k(cvm::real k,
|
||||
|
||||
|
||||
|
||||
colvarbias_restraint_histogram::colvarbias_restraint_histogram(char const *key)
|
||||
: colvarbias(key)
|
||||
{
|
||||
lower_boundary = 0.0;
|
||||
upper_boundary = 0.0;
|
||||
width = 0.0;
|
||||
gaussian_width = 0.0;
|
||||
}
|
||||
|
||||
|
||||
int colvarbias_restraint_histogram::init(std::string const &conf)
|
||||
{
|
||||
colvarbias::init(conf);
|
||||
|
||||
get_keyval(conf, "lowerBoundary", lower_boundary, lower_boundary);
|
||||
get_keyval(conf, "upperBoundary", upper_boundary, upper_boundary);
|
||||
get_keyval(conf, "width", width, width);
|
||||
|
||||
if (width <= 0.0) {
|
||||
cvm::error("Error: \"width\" must be positive.\n", INPUT_ERROR);
|
||||
}
|
||||
|
||||
get_keyval(conf, "gaussianWidth", gaussian_width, 2.0 * width, colvarparse::parse_silent);
|
||||
get_keyval(conf, "gaussianSigma", gaussian_width, 2.0 * width);
|
||||
|
||||
if (lower_boundary >= upper_boundary) {
|
||||
cvm::error("Error: the upper boundary, "+
|
||||
cvm::to_str(upper_boundary)+
|
||||
", is not higher than the lower boundary, "+
|
||||
cvm::to_str(lower_boundary)+".\n",
|
||||
INPUT_ERROR);
|
||||
}
|
||||
|
||||
cvm::real const nbins = (upper_boundary - lower_boundary) / width;
|
||||
int const nbins_round = (int)(nbins);
|
||||
|
||||
if (std::fabs(nbins - cvm::real(nbins_round)) > 1.0E-10) {
|
||||
cvm::log("Warning: grid interval ("+
|
||||
cvm::to_str(lower_boundary, cvm::cv_width, cvm::cv_prec)+" - "+
|
||||
cvm::to_str(upper_boundary, cvm::cv_width, cvm::cv_prec)+
|
||||
") is not commensurate to its bin width ("+
|
||||
cvm::to_str(width, cvm::cv_width, cvm::cv_prec)+").\n");
|
||||
}
|
||||
|
||||
p.resize(nbins_round);
|
||||
ref_p.resize(nbins_round);
|
||||
p_diff.resize(nbins_round);
|
||||
|
||||
bool const inline_ref_p =
|
||||
get_keyval(conf, "refHistogram", ref_p.data_array(), ref_p.data_array());
|
||||
std::string ref_p_file;
|
||||
get_keyval(conf, "refHistogramFile", ref_p_file, std::string(""));
|
||||
if (ref_p_file.size()) {
|
||||
if (inline_ref_p) {
|
||||
cvm::error("Error: cannot specify both refHistogram and refHistogramFile at the same time.\n",
|
||||
INPUT_ERROR);
|
||||
} else {
|
||||
std::ifstream is(ref_p_file.c_str());
|
||||
std::string data_s = "";
|
||||
std::string line;
|
||||
while (getline_nocomments(is, line)) {
|
||||
data_s.append(line+"\n");
|
||||
}
|
||||
if (data_s.size() == 0) {
|
||||
cvm::error("Error: file \""+ref_p_file+"\" empty or unreadable.\n", FILE_ERROR);
|
||||
}
|
||||
is.close();
|
||||
cvm::vector1d<cvm::real> data;
|
||||
if (data.from_simple_string(data_s) != 0) {
|
||||
cvm::error("Error: could not read histogram from file \""+ref_p_file+"\".\n");
|
||||
}
|
||||
if (data.size() == 2*ref_p.size()) {
|
||||
// file contains both x and p(x)
|
||||
size_t i;
|
||||
for (i = 0; i < ref_p.size(); i++) {
|
||||
ref_p[i] = data[2*i+1];
|
||||
}
|
||||
} else if (data.size() == ref_p.size()) {
|
||||
ref_p = data;
|
||||
} else {
|
||||
cvm::error("Error: file \""+ref_p_file+"\" contains a histogram of different length.\n",
|
||||
INPUT_ERROR);
|
||||
}
|
||||
}
|
||||
}
|
||||
cvm::real const ref_integral = ref_p.sum() * width;
|
||||
if (std::fabs(ref_integral - 1.0) > 1.0e-03) {
|
||||
cvm::log("Reference distribution not normalized, normalizing to unity.\n");
|
||||
ref_p /= ref_integral;
|
||||
}
|
||||
|
||||
get_keyval(conf, "writeHistogram", b_write_histogram, false);
|
||||
get_keyval(conf, "forceConstant", force_k, 1.0);
|
||||
|
||||
return COLVARS_OK;
|
||||
}
|
||||
|
||||
|
||||
colvarbias_restraint_histogram::~colvarbias_restraint_histogram()
|
||||
{
|
||||
p.resize(0);
|
||||
ref_p.resize(0);
|
||||
p_diff.resize(0);
|
||||
}
|
||||
|
||||
|
||||
int colvarbias_restraint_histogram::update()
|
||||
{
|
||||
if (cvm::debug())
|
||||
cvm::log("Updating the histogram restraint bias \""+this->name+"\".\n");
|
||||
|
||||
size_t vector_size = 0;
|
||||
size_t icv;
|
||||
for (icv = 0; icv < colvars.size(); icv++) {
|
||||
vector_size += colvars[icv]->value().size();
|
||||
}
|
||||
|
||||
cvm::real const norm = 1.0/(std::sqrt(2.0*PI)*gaussian_width*vector_size);
|
||||
|
||||
// calculate the histogram
|
||||
p.reset();
|
||||
for (icv = 0; icv < colvars.size(); icv++) {
|
||||
colvarvalue const &cv = colvars[icv]->value();
|
||||
if (cv.type() == colvarvalue::type_scalar) {
|
||||
cvm::real const cv_value = cv.real_value;
|
||||
size_t igrid;
|
||||
for (igrid = 0; igrid < p.size(); igrid++) {
|
||||
cvm::real const x_grid = (lower_boundary + (igrid+0.5)*width);
|
||||
p[igrid] += norm * std::exp(-1.0 * (x_grid - cv_value) * (x_grid - cv_value) /
|
||||
(2.0 * gaussian_width * gaussian_width));
|
||||
}
|
||||
} else if (cv.type() == colvarvalue::type_vector) {
|
||||
size_t idim;
|
||||
for (idim = 0; idim < cv.vector1d_value.size(); idim++) {
|
||||
cvm::real const cv_value = cv.vector1d_value[idim];
|
||||
size_t igrid;
|
||||
for (igrid = 0; igrid < p.size(); igrid++) {
|
||||
cvm::real const x_grid = (lower_boundary + (igrid+0.5)*width);
|
||||
p[igrid] += norm * std::exp(-1.0 * (x_grid - cv_value) * (x_grid - cv_value) /
|
||||
(2.0 * gaussian_width * gaussian_width));
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// TODO
|
||||
}
|
||||
}
|
||||
|
||||
cvm::real const force_k_cv = force_k * vector_size;
|
||||
|
||||
// calculate the difference between current and reference
|
||||
p_diff = p - ref_p;
|
||||
bias_energy = 0.5 * force_k_cv * p_diff * p_diff;
|
||||
|
||||
// calculate the forces
|
||||
for (icv = 0; icv < colvars.size(); icv++) {
|
||||
colvarvalue const &cv = colvars[icv]->value();
|
||||
colvarvalue &cv_force = colvar_forces[icv];
|
||||
cv_force.type(cv);
|
||||
cv_force.reset();
|
||||
|
||||
if (cv.type() == colvarvalue::type_scalar) {
|
||||
cvm::real const cv_value = cv.real_value;
|
||||
cvm::real &force = cv_force.real_value;
|
||||
size_t igrid;
|
||||
for (igrid = 0; igrid < p.size(); igrid++) {
|
||||
cvm::real const x_grid = (lower_boundary + (igrid+0.5)*width);
|
||||
force += force_k_cv * p_diff[igrid] *
|
||||
norm * std::exp(-1.0 * (x_grid - cv_value) * (x_grid - cv_value) /
|
||||
(2.0 * gaussian_width * gaussian_width)) *
|
||||
(-1.0 * (x_grid - cv_value) / (gaussian_width * gaussian_width));
|
||||
}
|
||||
} else if (cv.type() == colvarvalue::type_vector) {
|
||||
size_t idim;
|
||||
for (idim = 0; idim < cv.vector1d_value.size(); idim++) {
|
||||
cvm::real const cv_value = cv.vector1d_value[idim];
|
||||
cvm::real &force = cv_force.vector1d_value[idim];
|
||||
size_t igrid;
|
||||
for (igrid = 0; igrid < p.size(); igrid++) {
|
||||
cvm::real const x_grid = (lower_boundary + (igrid+0.5)*width);
|
||||
force += force_k_cv * p_diff[igrid] *
|
||||
norm * std::exp(-1.0 * (x_grid - cv_value) * (x_grid - cv_value) /
|
||||
(2.0 * gaussian_width * gaussian_width)) *
|
||||
(-1.0 * (x_grid - cv_value) / (gaussian_width * gaussian_width));
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// TODO
|
||||
}
|
||||
}
|
||||
|
||||
return COLVARS_OK;
|
||||
}
|
||||
|
||||
|
||||
std::ostream & colvarbias_restraint_histogram::write_restart(std::ostream &os)
|
||||
{
|
||||
if (b_write_histogram) {
|
||||
std::string file_name(cvm::output_prefix+"."+this->name+".hist.dat");
|
||||
std::ofstream os(file_name.c_str());
|
||||
os << "# " << cvm::wrap_string(colvars[0]->name, cvm::cv_width)
|
||||
<< " " << "p(" << cvm::wrap_string(colvars[0]->name, cvm::cv_width-3)
|
||||
<< ")\n";
|
||||
size_t igrid;
|
||||
for (igrid = 0; igrid < p.size(); igrid++) {
|
||||
cvm::real const x_grid = (lower_boundary + (igrid+1)*width);
|
||||
os << " "
|
||||
<< std::setprecision(cvm::cv_prec)
|
||||
<< std::setw(cvm::cv_width)
|
||||
<< x_grid
|
||||
<< " "
|
||||
<< std::setprecision(cvm::cv_prec)
|
||||
<< std::setw(cvm::cv_width)
|
||||
<< p[igrid] << "\n";
|
||||
}
|
||||
os.close();
|
||||
}
|
||||
return os;
|
||||
}
|
||||
|
||||
|
||||
std::istream & colvarbias_restraint_histogram::read_restart(std::istream &is)
|
||||
{
|
||||
return is;
|
||||
}
|
||||
|
||||
|
||||
std::ostream & colvarbias_restraint_histogram::write_traj_label(std::ostream &os)
|
||||
{
|
||||
os << " ";
|
||||
if (b_output_energy) {
|
||||
os << " E_"
|
||||
<< cvm::wrap_string(this->name, cvm::en_width-2);
|
||||
}
|
||||
return os;
|
||||
}
|
||||
|
||||
|
||||
std::ostream & colvarbias_restraint_histogram::write_traj(std::ostream &os)
|
||||
{
|
||||
os << " ";
|
||||
if (b_output_energy) {
|
||||
os << " "
|
||||
<< std::setprecision(cvm::en_prec) << std::setw(cvm::en_width)
|
||||
<< bias_energy;
|
||||
}
|
||||
return os;
|
||||
}
|
||||
|
||||
@ -168,4 +168,52 @@ protected:
|
||||
};
|
||||
|
||||
|
||||
/// Restrain the 1D histogram of a set of variables (or of a multidimensional one)
|
||||
// TODO this could be reimplemented more cleanly as a derived class of both restraint and histogram
|
||||
class colvarbias_restraint_histogram : public colvarbias {
|
||||
|
||||
public:
|
||||
|
||||
colvarbias_restraint_histogram(char const *key);
|
||||
int init(std::string const &conf);
|
||||
~colvarbias_restraint_histogram();
|
||||
|
||||
virtual int update();
|
||||
|
||||
virtual std::istream & read_restart(std::istream &is);
|
||||
virtual std::ostream & write_restart(std::ostream &os);
|
||||
virtual std::ostream & write_traj_label(std::ostream &os);
|
||||
virtual std::ostream & write_traj(std::ostream &os);
|
||||
|
||||
protected:
|
||||
|
||||
/// Probability density
|
||||
cvm::vector1d<cvm::real> p;
|
||||
|
||||
/// Reference probability density
|
||||
cvm::vector1d<cvm::real> ref_p;
|
||||
|
||||
/// Difference between probability density and reference
|
||||
cvm::vector1d<cvm::real> p_diff;
|
||||
|
||||
/// Lower boundary of the grid
|
||||
cvm::real lower_boundary;
|
||||
|
||||
/// Upper boundary of the grid
|
||||
cvm::real upper_boundary;
|
||||
|
||||
/// Resolution of the grid
|
||||
cvm::real width;
|
||||
|
||||
/// Width of the Gaussians
|
||||
cvm::real gaussian_width;
|
||||
|
||||
/// Restraint force constant
|
||||
cvm::real force_k;
|
||||
|
||||
/// Write the histogram to a file
|
||||
bool b_write_histogram;
|
||||
};
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
@ -54,6 +54,21 @@ colvar::cvc::cvc(std::string const &conf)
|
||||
}
|
||||
|
||||
|
||||
int colvar::cvc::init_total_force_params(std::string const &conf)
|
||||
{
|
||||
if (get_keyval_feature(this, conf, "oneSiteSystemForce",
|
||||
f_cvc_one_site_total_force, is_enabled(f_cvc_one_site_total_force))) {
|
||||
cvm::log("Warning: keyword \"oneSiteSystemForce\" is deprecated: "
|
||||
"please use \"oneSiteTotalForce\" instead.\n");
|
||||
}
|
||||
if (get_keyval_feature(this, conf, "oneSiteTotalForce",
|
||||
f_cvc_one_site_total_force, is_enabled(f_cvc_one_site_total_force))) {
|
||||
cvm::log("Computing total force on group 1 only");
|
||||
}
|
||||
return COLVARS_OK;
|
||||
}
|
||||
|
||||
|
||||
cvm::atom_group *colvar::cvc::parse_group(std::string const &conf,
|
||||
char const *group_key,
|
||||
bool optional)
|
||||
@ -77,8 +92,6 @@ cvm::atom_group *colvar::cvc::parse_group(std::string const &conf,
|
||||
|
||||
if (is_enabled(f_cvc_scalable)) {
|
||||
cvm::log("Will enable scalable calculation for group \""+group->key+"\".\n");
|
||||
} else {
|
||||
cvm::log("Scalable calculation is not available for group \""+group->key+"\" with the current configuration.\n");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -108,6 +108,9 @@ public:
|
||||
char const *group_key,
|
||||
bool optional = false);
|
||||
|
||||
/// \brief Parse options pertaining to total force calculation
|
||||
virtual int init_total_force_params(std::string const &conf);
|
||||
|
||||
/// \brief After construction, set data related to dependency handling
|
||||
int setup();
|
||||
|
||||
@ -306,9 +309,6 @@ protected:
|
||||
cvm::rvector dist_v;
|
||||
/// Use absolute positions, ignoring PBCs when present
|
||||
bool b_no_PBC;
|
||||
/// Compute total force on first site only to avoid unwanted
|
||||
/// coupling to other colvars (see e.g. Ciccotti et al., 2005)
|
||||
bool b_1site_force;
|
||||
public:
|
||||
distance(std::string const &conf);
|
||||
distance();
|
||||
@ -388,9 +388,6 @@ protected:
|
||||
cvm::atom_group *ref2;
|
||||
/// Use absolute positions, ignoring PBCs when present
|
||||
bool b_no_PBC;
|
||||
/// Compute total force on one site only to avoid unwanted
|
||||
/// coupling to other colvars (see e.g. Ciccotti et al., 2005)
|
||||
bool b_1site_force;
|
||||
/// Vector on which the distance vector is projected
|
||||
cvm::rvector axis;
|
||||
/// Norm of the axis
|
||||
@ -854,6 +851,62 @@ public:
|
||||
colvarvalue const &x2) const;
|
||||
};
|
||||
|
||||
|
||||
/// \brief Colvar component: coordination number between two groups
|
||||
/// (colvarvalue::type_scalar type, range [0:N1*N2])
|
||||
class colvar::groupcoordnum
|
||||
: public colvar::distance
|
||||
{
|
||||
protected:
|
||||
/// \brief "Cutoff" for isotropic calculation (default)
|
||||
cvm::real r0;
|
||||
/// \brief "Cutoff vector" for anisotropic calculation
|
||||
cvm::rvector r0_vec;
|
||||
/// \brief Wheter dist/r0 or \vec{dist}*\vec{1/r0_vec} should ne be
|
||||
/// used
|
||||
bool b_anisotropic;
|
||||
/// Integer exponent of the function numerator
|
||||
int en;
|
||||
/// Integer exponent of the function denominator
|
||||
int ed;
|
||||
public:
|
||||
/// Constructor
|
||||
groupcoordnum(std::string const &conf);
|
||||
groupcoordnum();
|
||||
virtual inline ~groupcoordnum() {}
|
||||
virtual void calc_value();
|
||||
virtual void calc_gradients();
|
||||
virtual void apply_force(colvarvalue const &force);
|
||||
template<bool b_gradients>
|
||||
/// \brief Calculate a coordination number through the function
|
||||
/// (1-x**n)/(1-x**m), x = |A1-A2|/r0 \param r0 "cutoff" for the
|
||||
/// coordination number \param exp_num \i n exponent \param exp_den
|
||||
/// \i m exponent \param A1 atom \param A2 atom
|
||||
static cvm::real switching_function(cvm::real const &r0,
|
||||
int const &exp_num, int const &exp_den,
|
||||
cvm::atom &A1, cvm::atom &A2);
|
||||
|
||||
/*
|
||||
template<bool b_gradients>
|
||||
/// \brief Calculate a coordination number through the function
|
||||
/// (1-x**n)/(1-x**m), x = |(A1-A2)*(r0_vec)^-|1 \param r0_vec
|
||||
/// vector of different cutoffs in the three directions \param
|
||||
/// exp_num \i n exponent \param exp_den \i m exponent \param A1
|
||||
/// atom \param A2 atom
|
||||
static cvm::real switching_function(cvm::rvector const &r0_vec,
|
||||
int const &exp_num, int const &exp_den,
|
||||
cvm::atom &A1, cvm::atom &A2);
|
||||
|
||||
virtual cvm::real dist2(colvarvalue const &x1,
|
||||
colvarvalue const &x2) const;
|
||||
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
|
||||
colvarvalue const &x2) const;
|
||||
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
|
||||
colvarvalue const &x2) const;
|
||||
*/
|
||||
};
|
||||
|
||||
|
||||
/// \brief Colvar component: hydrogen bond, defined as the product of
|
||||
/// a colvar::coordnum and 1/2*(1-cos((180-ang)/ang_tol))
|
||||
/// (colvarvalue::type_scalar type, range [0:1])
|
||||
|
||||
@ -18,9 +18,9 @@ colvar::angle::angle(std::string const &conf)
|
||||
group1 = parse_group(conf, "group1");
|
||||
group2 = parse_group(conf, "group2");
|
||||
group3 = parse_group(conf, "group3");
|
||||
if (get_keyval(conf, "oneSiteSystemForce", b_1site_force, false)) {
|
||||
cvm::log("Computing total force on group 1 only");
|
||||
}
|
||||
|
||||
init_total_force_params(conf);
|
||||
|
||||
x.type(colvarvalue::type_scalar);
|
||||
}
|
||||
|
||||
@ -33,7 +33,6 @@ colvar::angle::angle(cvm::atom const &a1,
|
||||
provide(f_cvc_inv_gradient);
|
||||
provide(f_cvc_Jacobian);
|
||||
provide(f_cvc_com_based);
|
||||
b_1site_force = false;
|
||||
|
||||
group1 = new cvm::atom_group(std::vector<cvm::atom>(1, a1));
|
||||
group2 = new cvm::atom_group(std::vector<cvm::atom>(1, a2));
|
||||
@ -94,7 +93,7 @@ void colvar::angle::calc_force_invgrads()
|
||||
// centered on group2, which means group2 is kept fixed
|
||||
// when propagating changes in the angle)
|
||||
|
||||
if (b_1site_force) {
|
||||
if (is_enabled(f_cvc_one_site_total_force)) {
|
||||
group1->read_total_forces();
|
||||
cvm::real norm_fact = 1.0 / dxdr1.norm2();
|
||||
ft.real_value = norm_fact * dxdr1 * group1->total_force();
|
||||
@ -140,9 +139,8 @@ colvar::dipole_angle::dipole_angle(std::string const &conf)
|
||||
group2 = parse_group(conf, "group2");
|
||||
group3 = parse_group(conf, "group3");
|
||||
|
||||
if (get_keyval(conf, "oneSiteSystemForce", b_1site_force, false)) {
|
||||
cvm::log("Computing total force on group 1 only");
|
||||
}
|
||||
init_total_force_params(conf);
|
||||
|
||||
x.type(colvarvalue::type_scalar);
|
||||
}
|
||||
|
||||
@ -152,7 +150,6 @@ colvar::dipole_angle::dipole_angle(cvm::atom const &a1,
|
||||
cvm::atom const &a3)
|
||||
{
|
||||
function_type = "dipole_angle";
|
||||
b_1site_force = false;
|
||||
|
||||
group1 = new cvm::atom_group(std::vector<cvm::atom>(1, a1));
|
||||
group2 = new cvm::atom_group(std::vector<cvm::atom>(1, a2));
|
||||
@ -250,14 +247,13 @@ colvar::dihedral::dihedral(std::string const &conf)
|
||||
provide(f_cvc_Jacobian);
|
||||
provide(f_cvc_com_based);
|
||||
|
||||
if (get_keyval(conf, "oneSiteSystemForce", b_1site_force, false)) {
|
||||
cvm::log("Computing total force on group 1 only");
|
||||
}
|
||||
group1 = parse_group(conf, "group1");
|
||||
group2 = parse_group(conf, "group2");
|
||||
group3 = parse_group(conf, "group3");
|
||||
group4 = parse_group(conf, "group4");
|
||||
|
||||
init_total_force_params(conf);
|
||||
|
||||
x.type(colvarvalue::type_scalar);
|
||||
}
|
||||
|
||||
@ -422,7 +418,7 @@ void colvar::dihedral::calc_force_invgrads()
|
||||
cvm::real const fact4 = d34 * std::sqrt(1.0 - dot4 * dot4);
|
||||
|
||||
group1->read_total_forces();
|
||||
if ( b_1site_force ) {
|
||||
if (is_enabled(f_cvc_one_site_total_force)) {
|
||||
// This is only measuring the force on group 1
|
||||
ft.real_value = PI/180.0 * fact1 * (cross1 * group1->total_force());
|
||||
} else {
|
||||
|
||||
@ -338,3 +338,151 @@ void colvar::selfcoordnum::apply_force(colvarvalue const &force)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// groupcoordnum member functions
|
||||
colvar::groupcoordnum::groupcoordnum(std::string const &conf)
|
||||
: distance(conf), b_anisotropic(false)
|
||||
{
|
||||
function_type = "groupcoordnum";
|
||||
x.type(colvarvalue::type_scalar);
|
||||
|
||||
// group1 and group2 are already initialized by distance()
|
||||
if (group1->b_dummy || group2->b_dummy)
|
||||
cvm::fatal_error("Error: neither group can be a dummy atom\n");
|
||||
|
||||
bool const b_scale = get_keyval(conf, "cutoff", r0,
|
||||
cvm::real(4.0 * cvm::unit_angstrom()));
|
||||
|
||||
if (get_keyval(conf, "cutoff3", r0_vec,
|
||||
cvm::rvector(4.0, 4.0, 4.0), parse_silent)) {
|
||||
|
||||
if (b_scale)
|
||||
cvm::fatal_error("Error: cannot specify \"scale\" and "
|
||||
"\"scale3\" at the same time.\n");
|
||||
b_anisotropic = true;
|
||||
// remove meaningless negative signs
|
||||
if (r0_vec.x < 0.0) r0_vec.x *= -1.0;
|
||||
if (r0_vec.y < 0.0) r0_vec.y *= -1.0;
|
||||
if (r0_vec.z < 0.0) r0_vec.z *= -1.0;
|
||||
}
|
||||
|
||||
get_keyval(conf, "expNumer", en, int(6) );
|
||||
get_keyval(conf, "expDenom", ed, int(12));
|
||||
|
||||
if ( (en%2) || (ed%2) ) {
|
||||
cvm::fatal_error("Error: odd exponents provided, can only use even ones.\n");
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
colvar::groupcoordnum::groupcoordnum()
|
||||
: b_anisotropic(false)
|
||||
{
|
||||
function_type = "groupcoordnum";
|
||||
x.type(colvarvalue::type_scalar);
|
||||
}
|
||||
|
||||
|
||||
template<bool calculate_gradients>
|
||||
cvm::real colvar::groupcoordnum::switching_function(cvm::real const &r0,
|
||||
int const &en,
|
||||
int const &ed,
|
||||
cvm::atom &A1,
|
||||
cvm::atom &A2)
|
||||
{
|
||||
cvm::rvector const diff = cvm::position_distance(A1.pos, A2.pos);
|
||||
cvm::real const l2 = diff.norm2()/(r0*r0);
|
||||
|
||||
// Assume en and ed are even integers, and avoid sqrt in the following
|
||||
int const en2 = en/2;
|
||||
int const ed2 = ed/2;
|
||||
|
||||
cvm::real const xn = std::pow(l2, en2);
|
||||
cvm::real const xd = std::pow(l2, ed2);
|
||||
cvm::real const func = (1.0-xn)/(1.0-xd);
|
||||
|
||||
if (calculate_gradients) {
|
||||
cvm::real const dFdl2 = (1.0/(1.0-xd))*(en2*(xn/l2) - func*ed2*(xd/l2))*(-1.0);
|
||||
cvm::rvector const dl2dx = (2.0/(r0*r0))*diff;
|
||||
A1.grad += (-1.0)*dFdl2*dl2dx;
|
||||
A2.grad += dFdl2*dl2dx;
|
||||
}
|
||||
|
||||
return func;
|
||||
}
|
||||
|
||||
|
||||
#if 0 // AMG: I don't think there's any reason to support anisotropic,
|
||||
// and I don't have those flags below in calc_value, but
|
||||
// if I need them, I'll also need to uncomment this method
|
||||
template<bool calculate_gradients>
|
||||
cvm::real colvar::groupcoordnum::switching_function(cvm::rvector const &r0_vec,
|
||||
int const &en,
|
||||
int const &ed,
|
||||
cvm::atom &A1,
|
||||
cvm::atom &A2)
|
||||
{
|
||||
cvm::rvector const diff = cvm::position_distance(A1.pos, A2.pos);
|
||||
cvm::rvector const scal_diff(diff.x/r0_vec.x, diff.y/r0_vec.y, diff.z/r0_vec.z);
|
||||
cvm::real const l2 = scal_diff.norm2();
|
||||
|
||||
// Assume en and ed are even integers, and avoid sqrt in the following
|
||||
int const en2 = en/2;
|
||||
int const ed2 = ed/2;
|
||||
|
||||
cvm::real const xn = std::pow(l2, en2);
|
||||
cvm::real const xd = std::pow(l2, ed2);
|
||||
cvm::real const func = (1.0-xn)/(1.0-xd);
|
||||
|
||||
if (calculate_gradients) {
|
||||
cvm::real const dFdl2 = (1.0/(1.0-xd))*(en2*(xn/l2) - func*ed2*(xd/l2))*(-1.0);
|
||||
cvm::rvector const dl2dx((2.0/(r0_vec.x*r0_vec.x))*diff.x,
|
||||
(2.0/(r0_vec.y*r0_vec.y))*diff.y,
|
||||
(2.0/(r0_vec.z*r0_vec.z))*diff.z);
|
||||
A1.grad += (-1.0)*dFdl2*dl2dx;
|
||||
A2.grad += dFdl2*dl2dx;
|
||||
}
|
||||
return func;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
void colvar::groupcoordnum::calc_value()
|
||||
{
|
||||
|
||||
// create fake atoms to hold the com coordinates
|
||||
cvm::atom group1_com_atom;
|
||||
cvm::atom group2_com_atom;
|
||||
group1_com_atom.pos = group1->center_of_mass();
|
||||
group2_com_atom.pos = group2->center_of_mass();
|
||||
|
||||
x.real_value = coordnum::switching_function<false>(r0, en, ed,
|
||||
group1_com_atom, group2_com_atom);
|
||||
|
||||
}
|
||||
|
||||
|
||||
void colvar::groupcoordnum::calc_gradients()
|
||||
{
|
||||
cvm::atom group1_com_atom;
|
||||
cvm::atom group2_com_atom;
|
||||
group1_com_atom.pos = group1->center_of_mass();
|
||||
group2_com_atom.pos = group2->center_of_mass();
|
||||
|
||||
coordnum::switching_function<true>(r0, en, ed, group1_com_atom, group2_com_atom);
|
||||
group1->set_weighted_gradient(group1_com_atom.grad);
|
||||
group2->set_weighted_gradient(group2_com_atom.grad);
|
||||
|
||||
}
|
||||
|
||||
|
||||
void colvar::groupcoordnum::apply_force(colvarvalue const &force)
|
||||
{
|
||||
if (!group1->noforce)
|
||||
group1->apply_colvar_force(force.real_value);
|
||||
|
||||
if (!group2->noforce)
|
||||
group2->apply_colvar_force(force.real_value);
|
||||
}
|
||||
|
||||
@ -18,14 +18,14 @@ colvar::distance::distance(std::string const &conf)
|
||||
provide(f_cvc_Jacobian);
|
||||
provide(f_cvc_com_based);
|
||||
|
||||
group1 = parse_group(conf, "group1");
|
||||
group2 = parse_group(conf, "group2");
|
||||
|
||||
if (get_keyval(conf, "forceNoPBC", b_no_PBC, false)) {
|
||||
cvm::log("Computing distance using absolute positions (not minimal-image)");
|
||||
}
|
||||
if (get_keyval(conf, "oneSiteSystemForce", b_1site_force, false)) {
|
||||
cvm::log("Computing total force on group 1 only");
|
||||
}
|
||||
group1 = parse_group(conf, "group1");
|
||||
group2 = parse_group(conf, "group2");
|
||||
|
||||
init_total_force_params(conf);
|
||||
|
||||
x.type(colvarvalue::type_scalar);
|
||||
}
|
||||
@ -38,7 +38,6 @@ colvar::distance::distance()
|
||||
provide(f_cvc_inv_gradient);
|
||||
provide(f_cvc_Jacobian);
|
||||
provide(f_cvc_com_based);
|
||||
b_1site_force = false;
|
||||
b_no_PBC = false;
|
||||
x.type(colvarvalue::type_scalar);
|
||||
}
|
||||
@ -67,7 +66,7 @@ void colvar::distance::calc_gradients()
|
||||
void colvar::distance::calc_force_invgrads()
|
||||
{
|
||||
group1->read_total_forces();
|
||||
if ( b_1site_force ) {
|
||||
if (is_enabled(f_cvc_one_site_total_force)) {
|
||||
ft.real_value = -1.0 * (group1->total_force() * dist_v.unit());
|
||||
} else {
|
||||
group2->read_total_forces();
|
||||
@ -97,6 +96,7 @@ colvar::distance_vec::distance_vec(std::string const &conf)
|
||||
: distance(conf)
|
||||
{
|
||||
function_type = "distance_vec";
|
||||
provide(f_cvc_com_based);
|
||||
x.type(colvarvalue::type_3vector);
|
||||
}
|
||||
|
||||
@ -105,6 +105,7 @@ colvar::distance_vec::distance_vec()
|
||||
: distance()
|
||||
{
|
||||
function_type = "distance_vec";
|
||||
provide(f_cvc_com_based);
|
||||
x.type(colvarvalue::type_3vector);
|
||||
}
|
||||
|
||||
@ -185,9 +186,9 @@ colvar::distance_z::distance_z(std::string const &conf)
|
||||
if (get_keyval(conf, "forceNoPBC", b_no_PBC, false)) {
|
||||
cvm::log("Computing distance using absolute positions (not minimal-image)");
|
||||
}
|
||||
if (get_keyval(conf, "oneSiteSystemForce", b_1site_force, false)) {
|
||||
cvm::log("Computing total force on group \"main\" only");
|
||||
}
|
||||
|
||||
init_total_force_params(conf);
|
||||
|
||||
}
|
||||
|
||||
colvar::distance_z::distance_z()
|
||||
@ -251,7 +252,7 @@ void colvar::distance_z::calc_force_invgrads()
|
||||
{
|
||||
main->read_total_forces();
|
||||
|
||||
if (fixed_axis && !b_1site_force) {
|
||||
if (fixed_axis && !is_enabled(f_cvc_one_site_total_force)) {
|
||||
ref1->read_total_forces();
|
||||
ft.real_value = 0.5 * ((main->total_force() - ref1->total_force()) * axis);
|
||||
} else {
|
||||
@ -351,7 +352,7 @@ void colvar::distance_xy::calc_force_invgrads()
|
||||
{
|
||||
main->read_total_forces();
|
||||
|
||||
if (fixed_axis && !b_1site_force) {
|
||||
if (fixed_axis && !is_enabled(f_cvc_one_site_total_force)) {
|
||||
ref1->read_total_forces();
|
||||
ft.real_value = 0.5 / x.real_value * ((main->total_force() - ref1->total_force()) * dist_v_ortho);
|
||||
} else {
|
||||
@ -382,6 +383,7 @@ colvar::distance_dir::distance_dir(std::string const &conf)
|
||||
: distance(conf)
|
||||
{
|
||||
function_type = "distance_dir";
|
||||
provide(f_cvc_com_based);
|
||||
x.type(colvarvalue::type_unit3vector);
|
||||
}
|
||||
|
||||
@ -390,6 +392,7 @@ colvar::distance_dir::distance_dir()
|
||||
: distance()
|
||||
{
|
||||
function_type = "distance_dir";
|
||||
provide(f_cvc_com_based);
|
||||
x.type(colvarvalue::type_unit3vector);
|
||||
}
|
||||
|
||||
@ -461,7 +464,6 @@ colvar::distance_inv::distance_inv()
|
||||
{
|
||||
function_type = "distance_inv";
|
||||
exponent = 6;
|
||||
b_1site_force = false;
|
||||
x.type(colvarvalue::type_scalar);
|
||||
}
|
||||
|
||||
|
||||
@ -293,6 +293,9 @@ void colvardeps::init_cv_requires() {
|
||||
f_description(f_cv_output_total_force, "output total force");
|
||||
f_req_self(f_cv_output_total_force, f_cv_total_force);
|
||||
|
||||
f_description(f_cv_subtract_applied_force, "subtract applied force from total force");
|
||||
f_req_self(f_cv_subtract_applied_force, f_cv_total_force);
|
||||
|
||||
f_description(f_cv_lower_boundary, "lower boundary");
|
||||
f_req_self(f_cv_lower_boundary, f_cv_scalar);
|
||||
|
||||
@ -376,6 +379,11 @@ void colvardeps::init_cvc_requires() {
|
||||
|
||||
f_description(f_cvc_com_based, "depends on group centers of mass");
|
||||
|
||||
// Compute total force on first site only to avoid unwanted
|
||||
// coupling to other colvars (see e.g. Ciccotti et al., 2005)
|
||||
f_description(f_cvc_one_site_total_force, "compute total collective force only from one group center");
|
||||
f_req_self(f_cvc_one_site_total_force, f_cvc_com_based);
|
||||
|
||||
f_description(f_cvc_scalable, "scalable calculation");
|
||||
f_req_self(f_cvc_scalable, f_cvc_scalable_com);
|
||||
|
||||
|
||||
@ -176,6 +176,8 @@ public:
|
||||
f_cv_total_force,
|
||||
/// \brief Calculate total force from atomic forces
|
||||
f_cv_total_force_calc,
|
||||
/// \brief Subtract the applied force from the total force
|
||||
f_cv_subtract_applied_force,
|
||||
/// \brief Estimate Jacobian derivative
|
||||
f_cv_Jacobian,
|
||||
/// \brief Do not report the Jacobian force as part of the total force
|
||||
@ -236,6 +238,7 @@ public:
|
||||
/// \brief If enabled, calc_gradients() will call debug_gradients() for every group needed
|
||||
f_cvc_debug_gradient,
|
||||
f_cvc_Jacobian,
|
||||
f_cvc_one_site_total_force,
|
||||
f_cvc_com_based,
|
||||
f_cvc_scalable,
|
||||
f_cvc_scalable_com,
|
||||
|
||||
@ -382,8 +382,8 @@ public:
|
||||
inline int current_bin_scalar(int const i, int const iv) const
|
||||
{
|
||||
return value_to_bin_scalar(actual_value[i] ?
|
||||
cv[i]->actual_value().vector1d_value[iv] :
|
||||
cv[i]->value().vector1d_value[iv], i);
|
||||
cv[i]->actual_value().vector1d_value[iv] :
|
||||
cv[i]->value().vector1d_value[iv], i);
|
||||
}
|
||||
|
||||
/// \brief Use the lower boundary and the width to report which bin
|
||||
@ -395,8 +395,8 @@ public:
|
||||
|
||||
/// \brief Same as the standard version, but uses another grid definition
|
||||
inline int value_to_bin_scalar(colvarvalue const &value,
|
||||
colvarvalue const &new_offset,
|
||||
cvm::real const &new_width) const
|
||||
colvarvalue const &new_offset,
|
||||
cvm::real const &new_width) const
|
||||
{
|
||||
return (int) std::floor( (value.real_value - new_offset.real_value) / new_width );
|
||||
}
|
||||
@ -410,22 +410,22 @@ public:
|
||||
|
||||
/// \brief Same as the standard version, but uses different parameters
|
||||
inline colvarvalue bin_to_value_scalar(int const &i_bin,
|
||||
colvarvalue const &new_offset,
|
||||
cvm::real const &new_width) const
|
||||
colvarvalue const &new_offset,
|
||||
cvm::real const &new_width) const
|
||||
{
|
||||
return new_offset.real_value + new_width * (0.5 + i_bin);
|
||||
}
|
||||
|
||||
/// Set the value at the point with index ix
|
||||
inline void set_value(std::vector<int> const &ix,
|
||||
T const &t,
|
||||
size_t const &imult = 0)
|
||||
T const &t,
|
||||
size_t const &imult = 0)
|
||||
{
|
||||
data[this->address(ix)+imult] = t;
|
||||
has_data = true;
|
||||
}
|
||||
|
||||
/// \brief Get the change from this to other_grid
|
||||
/// \brief Get the change from this to other_grid
|
||||
/// and store the result in this.
|
||||
/// this_grid := other_grid - this_grid
|
||||
/// Grids must have the same dimensions.
|
||||
@ -434,13 +434,13 @@ public:
|
||||
|
||||
if (other_grid.multiplicity() != this->multiplicity()) {
|
||||
cvm::error("Error: trying to subtract two grids with "
|
||||
"different multiplicity.\n");
|
||||
"different multiplicity.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
if (other_grid.data.size() != this->data.size()) {
|
||||
cvm::error("Error: trying to subtract two grids with "
|
||||
"different size.\n");
|
||||
"different size.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
@ -457,13 +457,13 @@ public:
|
||||
{
|
||||
if (other_grid.multiplicity() != this->multiplicity()) {
|
||||
cvm::error("Error: trying to copy two grids with "
|
||||
"different multiplicity.\n");
|
||||
"different multiplicity.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
if (other_grid.data.size() != this->data.size()) {
|
||||
cvm::error("Error: trying to copy two grids with "
|
||||
"different size.\n");
|
||||
"different size.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
@ -493,7 +493,7 @@ public:
|
||||
/// \brief Get the binned value indexed by ix, or the first of them
|
||||
/// if the multiplicity is larger than 1
|
||||
inline T const & value(std::vector<int> const &ix,
|
||||
size_t const &imult = 0) const
|
||||
size_t const &imult = 0) const
|
||||
{
|
||||
return data[this->address(ix) + imult];
|
||||
}
|
||||
@ -541,7 +541,7 @@ public:
|
||||
/// boundaries; a negative number is returned if the given point is
|
||||
/// off-grid
|
||||
inline cvm::real bin_distance_from_boundaries(std::vector<colvarvalue> const &values,
|
||||
bool skip_hard_boundaries = false)
|
||||
bool skip_hard_boundaries = false)
|
||||
{
|
||||
cvm::real minimum = 1.0E+16;
|
||||
for (size_t i = 0; i < nd; i++) {
|
||||
@ -574,7 +574,7 @@ public:
|
||||
{
|
||||
if (other_grid.multiplicity() != this->multiplicity()) {
|
||||
cvm::error("Error: trying to merge two grids with values of "
|
||||
"different multiplicity.\n");
|
||||
"different multiplicity.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
@ -593,8 +593,8 @@ public:
|
||||
for (size_t i = 0; i < nd; i++) {
|
||||
oix[i] =
|
||||
value_to_bin_scalar(bin_to_value_scalar(ix[i], gb[i], gw[i]),
|
||||
ogb[i],
|
||||
ogw[i]);
|
||||
ogb[i],
|
||||
ogw[i]);
|
||||
}
|
||||
|
||||
if (! other_grid.index_ok(oix)) {
|
||||
@ -614,11 +614,11 @@ public:
|
||||
/// \brief Add data from another grid of the same type, AND
|
||||
/// identical definition (boundaries, widths)
|
||||
void add_grid(colvar_grid<T> const &other_grid,
|
||||
cvm::real scale_factor = 1.0)
|
||||
cvm::real scale_factor = 1.0)
|
||||
{
|
||||
if (other_grid.multiplicity() != this->multiplicity()) {
|
||||
cvm::error("Error: trying to sum togetehr two grids with values of "
|
||||
"different multiplicity.\n");
|
||||
"different multiplicity.\n");
|
||||
return;
|
||||
}
|
||||
if (scale_factor != 1.0)
|
||||
@ -636,7 +636,7 @@ public:
|
||||
/// \brief Return the value suitable for output purposes (so that it
|
||||
/// may be rescaled or manipulated without changing it permanently)
|
||||
virtual inline T value_output(std::vector<int> const &ix,
|
||||
size_t const &imult = 0)
|
||||
size_t const &imult = 0)
|
||||
{
|
||||
return value(ix, imult);
|
||||
}
|
||||
@ -645,9 +645,9 @@ public:
|
||||
/// into the internal representation (the two may be different,
|
||||
/// e.g. when using colvar_grid_count)
|
||||
virtual inline void value_input(std::vector<int> const &ix,
|
||||
T const &t,
|
||||
size_t const &imult = 0,
|
||||
bool add = false)
|
||||
T const &t,
|
||||
size_t const &imult = 0,
|
||||
bool add = false)
|
||||
{
|
||||
if ( add )
|
||||
data[address(ix) + imult] += t;
|
||||
@ -737,7 +737,8 @@ public:
|
||||
}
|
||||
|
||||
/// Read a grid definition from a config string
|
||||
int parse_params(std::string const &conf)
|
||||
int parse_params(std::string const &conf,
|
||||
colvarparse::Parse_Mode const parse_mode = colvarparse::parse_normal)
|
||||
{
|
||||
if (cvm::debug()) cvm::log("Reading grid configuration from string.\n");
|
||||
|
||||
@ -746,30 +747,33 @@ public:
|
||||
|
||||
{
|
||||
size_t nd_in = 0;
|
||||
// this is only used in state files
|
||||
colvarparse::get_keyval(conf, "n_colvars", nd_in, nd, colvarparse::parse_silent);
|
||||
if (nd_in != nd) {
|
||||
cvm::error("Error: trying to read data for a grid "
|
||||
"that contains a different number of colvars ("+
|
||||
cvm::to_str(nd_in)+") than the grid defined "
|
||||
"in the configuration file("+cvm::to_str(nd)+
|
||||
").\n");
|
||||
"that contains a different number of colvars ("+
|
||||
cvm::to_str(nd_in)+") than the grid defined "
|
||||
"in the configuration file("+cvm::to_str(nd)+
|
||||
").\n");
|
||||
return COLVARS_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
// underscore keywords are used in state file
|
||||
colvarparse::get_keyval(conf, "lower_boundaries",
|
||||
lower_boundaries, lower_boundaries, colvarparse::parse_silent);
|
||||
lower_boundaries, lower_boundaries, colvarparse::parse_silent);
|
||||
colvarparse::get_keyval(conf, "upper_boundaries",
|
||||
upper_boundaries, upper_boundaries, colvarparse::parse_silent);
|
||||
upper_boundaries, upper_boundaries, colvarparse::parse_silent);
|
||||
|
||||
// support also camel case
|
||||
// camel case keywords are used in config file
|
||||
colvarparse::get_keyval(conf, "lowerBoundaries",
|
||||
lower_boundaries, lower_boundaries, colvarparse::parse_silent);
|
||||
lower_boundaries, lower_boundaries, parse_mode);
|
||||
colvarparse::get_keyval(conf, "upperBoundaries",
|
||||
upper_boundaries, upper_boundaries, colvarparse::parse_silent);
|
||||
upper_boundaries, upper_boundaries, parse_mode);
|
||||
|
||||
colvarparse::get_keyval(conf, "widths", widths, widths, colvarparse::parse_silent);
|
||||
colvarparse::get_keyval(conf, "widths", widths, widths, parse_mode);
|
||||
|
||||
// only used in state file
|
||||
colvarparse::get_keyval(conf, "sizes", nx, nx, colvarparse::parse_silent);
|
||||
|
||||
if (nd < lower_boundaries.size()) nd = lower_boundaries.size();
|
||||
@ -808,13 +812,13 @@ public:
|
||||
{
|
||||
for (size_t i = 0; i < nd; i++) {
|
||||
if ( (std::sqrt(cv[i]->dist2(cv[i]->lower_boundary,
|
||||
lower_boundaries[i])) > 1.0E-10) ||
|
||||
lower_boundaries[i])) > 1.0E-10) ||
|
||||
(std::sqrt(cv[i]->dist2(cv[i]->upper_boundary,
|
||||
upper_boundaries[i])) > 1.0E-10) ||
|
||||
upper_boundaries[i])) > 1.0E-10) ||
|
||||
(std::sqrt(cv[i]->dist2(cv[i]->width,
|
||||
widths[i])) > 1.0E-10) ) {
|
||||
widths[i])) > 1.0E-10) ) {
|
||||
cvm::error("Error: restart information for a grid is "
|
||||
"inconsistent with that of its colvars.\n");
|
||||
"inconsistent with that of its colvars.\n");
|
||||
return;
|
||||
}
|
||||
}
|
||||
@ -830,19 +834,19 @@ public:
|
||||
// matter: boundaries should be EXACTLY the same (otherwise,
|
||||
// map_grid() should be used)
|
||||
if ( (std::fabs(other_grid.lower_boundaries[i] -
|
||||
lower_boundaries[i]) > 1.0E-10) ||
|
||||
lower_boundaries[i]) > 1.0E-10) ||
|
||||
(std::fabs(other_grid.upper_boundaries[i] -
|
||||
upper_boundaries[i]) > 1.0E-10) ||
|
||||
upper_boundaries[i]) > 1.0E-10) ||
|
||||
(std::fabs(other_grid.widths[i] -
|
||||
widths[i]) > 1.0E-10) ||
|
||||
widths[i]) > 1.0E-10) ||
|
||||
(data.size() != other_grid.data.size()) ) {
|
||||
cvm::error("Error: inconsistency between "
|
||||
"two grids that are supposed to be equal, "
|
||||
"aside from the data stored.\n");
|
||||
return;
|
||||
cvm::error("Error: inconsistency between "
|
||||
"two grids that are supposed to be equal, "
|
||||
"aside from the data stored.\n");
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// \brief Read grid entry in restart file
|
||||
@ -853,7 +857,7 @@ public:
|
||||
if ((is >> key) && (key == std::string("grid_parameters"))) {
|
||||
is.seekg(start_pos, std::ios::beg);
|
||||
is >> colvarparse::read_block("grid_parameters", conf);
|
||||
parse_params(conf);
|
||||
parse_params(conf, colvarparse::parse_silent);
|
||||
} else {
|
||||
cvm::log("Grid parameters are missing in the restart file, using those from the configuration.\n");
|
||||
is.seekg(start_pos, std::ios::beg);
|
||||
@ -871,11 +875,11 @@ public:
|
||||
}
|
||||
|
||||
|
||||
/// \brief Write the grid data without labels, as they are
|
||||
/// represented in memory
|
||||
/// \param buf_size Number of values per line
|
||||
/// \brief Write the grid data without labels, as they are
|
||||
/// represented in memory
|
||||
/// \param buf_size Number of values per line
|
||||
std::ostream & write_raw(std::ostream &os,
|
||||
size_t const buf_size = 3)
|
||||
size_t const buf_size = 3)
|
||||
{
|
||||
std::streamsize const w = os.width();
|
||||
std::streamsize const p = os.precision();
|
||||
@ -935,10 +939,10 @@ public:
|
||||
os << std::setw(2) << "# " << nd << "\n";
|
||||
for (size_t i = 0; i < nd; i++) {
|
||||
os << "# "
|
||||
<< std::setw(10) << lower_boundaries[i]
|
||||
<< std::setw(10) << widths[i]
|
||||
<< std::setw(10) << nx[i] << " "
|
||||
<< periodic[i] << "\n";
|
||||
<< std::setw(10) << lower_boundaries[i]
|
||||
<< std::setw(10) << widths[i]
|
||||
<< std::setw(10) << nx[i] << " "
|
||||
<< periodic[i] << "\n";
|
||||
}
|
||||
|
||||
|
||||
@ -951,14 +955,14 @@ public:
|
||||
|
||||
for (size_t i = 0; i < nd; i++) {
|
||||
os << " "
|
||||
<< std::setw(w) << std::setprecision(p)
|
||||
<< bin_to_value_scalar(ix[i], i);
|
||||
<< std::setw(w) << std::setprecision(p)
|
||||
<< bin_to_value_scalar(ix[i], i);
|
||||
}
|
||||
os << " ";
|
||||
for (size_t imult = 0; imult < mult; imult++) {
|
||||
os << " "
|
||||
<< std::setw(w) << std::setprecision(p)
|
||||
<< value_output(ix, imult);
|
||||
<< std::setw(w) << std::setprecision(p)
|
||||
<< value_output(ix, imult);
|
||||
}
|
||||
os << "\n";
|
||||
}
|
||||
@ -986,7 +990,7 @@ public:
|
||||
|
||||
if ( !(is >> hash) || (hash != "#") ) {
|
||||
cvm::error("Error reading grid at position "+
|
||||
cvm::to_str(is.tellg())+" in stream(read \"" + hash + "\")\n");
|
||||
cvm::to_str(is.tellg())+" in stream(read \"" + hash + "\")\n");
|
||||
return is;
|
||||
}
|
||||
|
||||
@ -1008,7 +1012,7 @@ public:
|
||||
for (size_t i = 0; i < nd; i++ ) {
|
||||
if ( !(is >> hash) || (hash != "#") ) {
|
||||
cvm::error("Error reading grid at position "+
|
||||
cvm::to_str(is.tellg())+" in stream(read \"" + hash + "\")\n");
|
||||
cvm::to_str(is.tellg())+" in stream(read \"" + hash + "\")\n");
|
||||
return is;
|
||||
}
|
||||
|
||||
@ -1016,10 +1020,10 @@ public:
|
||||
|
||||
|
||||
if ( (std::fabs(lower - lower_boundaries[i].real_value) > 1.0e-10) ||
|
||||
(std::fabs(width - widths[i] ) > 1.0e-10) ||
|
||||
(nx_read[i] != nx[i]) ) {
|
||||
(std::fabs(width - widths[i] ) > 1.0e-10) ||
|
||||
(nx_read[i] != nx[i]) ) {
|
||||
cvm::log("Warning: reading from different grid definition (colvar "
|
||||
+ cvm::to_str(i+1) + "); remapping data on new grid.\n");
|
||||
+ cvm::to_str(i+1) + "); remapping data on new grid.\n");
|
||||
remap = true;
|
||||
}
|
||||
}
|
||||
@ -1063,7 +1067,6 @@ public:
|
||||
|
||||
/// \brief Write the grid data without labels, as they are
|
||||
/// represented in memory
|
||||
/// \param buf_size Number of values per line
|
||||
std::ostream & write_opendx(std::ostream &os)
|
||||
{
|
||||
// write the header
|
||||
@ -1122,11 +1125,11 @@ public:
|
||||
|
||||
/// Constructor
|
||||
colvar_grid_count(std::vector<int> const &nx_i,
|
||||
size_t const &def_count = 0);
|
||||
size_t const &def_count = 0);
|
||||
|
||||
/// Constructor from a vector of colvars
|
||||
colvar_grid_count(std::vector<colvar *> &colvars,
|
||||
size_t const &def_count = 0);
|
||||
size_t const &def_count = 0);
|
||||
|
||||
/// Increment the counter at given position
|
||||
inline void incr_count(std::vector<int> const &ix)
|
||||
@ -1136,7 +1139,7 @@ public:
|
||||
|
||||
/// \brief Get the binned count indexed by ix from the newly read data
|
||||
inline size_t const & new_count(std::vector<int> const &ix,
|
||||
size_t const &imult = 0)
|
||||
size_t const &imult = 0)
|
||||
{
|
||||
return new_data[address(ix) + imult];
|
||||
}
|
||||
@ -1145,9 +1148,9 @@ public:
|
||||
/// into the internal representation (it may have been rescaled or
|
||||
/// manipulated)
|
||||
virtual inline void value_input(std::vector<int> const &ix,
|
||||
size_t const &t,
|
||||
size_t const &imult = 0,
|
||||
bool add = false)
|
||||
size_t const &t,
|
||||
size_t const &imult = 0,
|
||||
bool add = false)
|
||||
{
|
||||
if (add) {
|
||||
data[address(ix)] += t;
|
||||
@ -1164,7 +1167,7 @@ public:
|
||||
/// \brief Return the log-gradient from finite differences
|
||||
/// on the *same* grid for dimension n
|
||||
inline const cvm::real log_gradient_finite_diff( const std::vector<int> &ix0,
|
||||
int n = 0)
|
||||
int n = 0)
|
||||
{
|
||||
cvm::real A0, A1;
|
||||
std::vector<int> ix;
|
||||
@ -1377,7 +1380,7 @@ public:
|
||||
/// \brief Return the value of the function at ix divided by its
|
||||
/// number of samples (if the count grid is defined)
|
||||
virtual inline cvm::real value_output(std::vector<int> const &ix,
|
||||
size_t const &imult = 0)
|
||||
size_t const &imult = 0)
|
||||
{
|
||||
if (samples)
|
||||
return (samples->value(ix) > 0) ?
|
||||
@ -1391,9 +1394,9 @@ public:
|
||||
/// into the internal representation (it may have been rescaled or
|
||||
/// manipulated)
|
||||
virtual inline void value_input(std::vector<int> const &ix,
|
||||
cvm::real const &new_value,
|
||||
size_t const &imult = 0,
|
||||
bool add = false)
|
||||
cvm::real const &new_value,
|
||||
size_t const &imult = 0,
|
||||
bool add = false)
|
||||
{
|
||||
if (add) {
|
||||
if (samples)
|
||||
|
||||
@ -293,6 +293,9 @@ int colvarmodule::parse_biases(std::string const &conf)
|
||||
/// initialize histograms
|
||||
parse_biases_type<colvarbias_histogram>(conf, "histogram", n_histo_biases);
|
||||
|
||||
/// initialize histogram restraints
|
||||
parse_biases_type<colvarbias_restraint_histogram>(conf, "histogramRestraint", n_rest_biases);
|
||||
|
||||
/// initialize linear restraints
|
||||
parse_biases_type<colvarbias_restraint_linear>(conf, "linear", n_rest_biases);
|
||||
|
||||
|
||||
@ -4,7 +4,7 @@
|
||||
#define COLVARMODULE_H
|
||||
|
||||
#ifndef COLVARS_VERSION
|
||||
#define COLVARS_VERSION "2016-09-14"
|
||||
#define COLVARS_VERSION "2016-09-30"
|
||||
#endif
|
||||
|
||||
#ifndef COLVARS_DEBUG
|
||||
|
||||
@ -243,11 +243,17 @@ int colvarscript::proc_colvar(int argc, char const *argv[]) {
|
||||
}
|
||||
|
||||
if (subcmd == "getappliedforce") {
|
||||
result = (cv->bias_force()).to_simple_string();
|
||||
result = (cv->applied_force()).to_simple_string();
|
||||
return COLVARS_OK;
|
||||
}
|
||||
|
||||
if (subcmd == "getsystemforce") {
|
||||
// TODO warning here
|
||||
result = (cv->total_force()).to_simple_string();
|
||||
return COLVARS_OK;
|
||||
}
|
||||
|
||||
if (subcmd == "gettotalforce") {
|
||||
result = (cv->total_force()).to_simple_string();
|
||||
return COLVARS_OK;
|
||||
}
|
||||
|
||||
@ -57,6 +57,12 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
/// Return a reference to the data
|
||||
inline std::vector<T> &data_array()
|
||||
{
|
||||
return data;
|
||||
}
|
||||
|
||||
inline ~vector1d()
|
||||
{
|
||||
data.clear();
|
||||
@ -203,6 +209,16 @@ public:
|
||||
return std::sqrt(this->norm2());
|
||||
}
|
||||
|
||||
inline cvm::real sum() const
|
||||
{
|
||||
cvm::real result = 0.0;
|
||||
size_t i;
|
||||
for (i = 0; i < this->size(); i++) {
|
||||
result += (*this)[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/// Slicing
|
||||
inline vector1d<T> const slice(size_t const i1, size_t const i2) const
|
||||
{
|
||||
@ -295,11 +311,23 @@ public:
|
||||
{
|
||||
std::stringstream stream(s);
|
||||
size_t i = 0;
|
||||
while ((stream >> (*this)[i]) && (i < this->size())) {
|
||||
i++;
|
||||
}
|
||||
if (i < this->size()) {
|
||||
return COLVARS_ERROR;
|
||||
if (this->size()) {
|
||||
while ((stream >> (*this)[i]) && (i < this->size())) {
|
||||
i++;
|
||||
}
|
||||
if (i < this->size()) {
|
||||
return COLVARS_ERROR;
|
||||
}
|
||||
} else {
|
||||
T input;
|
||||
while (stream >> input) {
|
||||
if ((i % 100) == 0) {
|
||||
data.reserve(data.size()+100);
|
||||
}
|
||||
data.resize(data.size()+1);
|
||||
data[i] = input;
|
||||
i++;
|
||||
}
|
||||
}
|
||||
return COLVARS_OK;
|
||||
}
|
||||
@ -434,6 +462,12 @@ public:
|
||||
this->clear();
|
||||
}
|
||||
|
||||
/// Return a reference to the data
|
||||
inline std::vector<T> &data_array()
|
||||
{
|
||||
return data;
|
||||
}
|
||||
|
||||
inline row & operator [] (size_t const i)
|
||||
{
|
||||
return rows[i];
|
||||
|
||||
0
lib/kokkos/config/configure_compton_cpu.sh
Normal file → Executable file
0
lib/kokkos/config/configure_compton_cpu.sh
Normal file → Executable file
0
lib/kokkos/config/configure_compton_mic.sh
Normal file → Executable file
0
lib/kokkos/config/configure_compton_mic.sh
Normal file → Executable file
0
lib/kokkos/config/configure_kokkos.sh
Normal file → Executable file
0
lib/kokkos/config/configure_kokkos.sh
Normal file → Executable file
0
lib/kokkos/config/configure_kokkos_nvidia.sh
Normal file → Executable file
0
lib/kokkos/config/configure_kokkos_nvidia.sh
Normal file → Executable file
0
lib/kokkos/config/configure_shannon.sh
Normal file → Executable file
0
lib/kokkos/config/configure_shannon.sh
Normal file → Executable file
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user