Compare commits

...

481 Commits

Author SHA1 Message Date
78533e25dc git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16053 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-26 21:05:57 +00:00
be3cacddef git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16052 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-26 21:05:55 +00:00
5d3e441e59 sync with latest GHub bug fixes
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16051 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2017-01-26 20:54:58 +00:00
43e2d2443f Added validated parameter file for 2NN Tungsten potential
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16050 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2017-01-26 02:07:37 +00:00
406a4da000 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16049 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-23 23:04:40 +00:00
841cae3682 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16048 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-23 22:40:21 +00:00
28af591168 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16046 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-20 20:23:11 +00:00
20805d47b3 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16045 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-20 20:23:08 +00:00
4008b967ee git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16044 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-20 20:21:13 +00:00
c79a21970b sync latest bug fixes from GHub
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16043 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2017-01-20 20:20:31 +00:00
c771e00a1c git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16042 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-19 20:47:38 +00:00
507b038f41 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16041 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-19 15:50:30 +00:00
bd4d5bdcac git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16040 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-19 15:50:18 +00:00
e0d0ef12cc git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16039 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-19 15:14:59 +00:00
43370b75a1 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16038 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-19 15:11:33 +00:00
60f2b25b3f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16037 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-19 15:11:17 +00:00
9a3d05a86a git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16036 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-18 23:40:20 +00:00
88eca7c181 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16035 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-18 23:32:26 +00:00
298e62ae70 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16034 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-18 23:32:09 +00:00
6ac456e751 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16033 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-18 23:15:15 +00:00
02b6519599 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16032 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-18 22:08:26 +00:00
b471be9638 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16031 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-18 20:07:25 +00:00
019d28ae7d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16030 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-18 20:04:19 +00:00
062450abc8 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16029 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-18 18:36:08 +00:00
e13633b881 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16028 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-18 18:34:39 +00:00
52c45f67f3 sync with GHub and new OXDNA user package
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16027 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2017-01-18 18:33:29 +00:00
1f0e32e0ae git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16024 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-17 17:06:43 +00:00
465f33d3f4 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16023 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-17 17:06:41 +00:00
fdef2e7011 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16022 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-17 17:06:28 +00:00
e878b8fd52 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16021 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-17 16:53:53 +00:00
460202c149 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16020 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-17 16:53:04 +00:00
e6adb5c2a1 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16019 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-17 16:51:53 +00:00
9b01275837 neighbor list bug fixes, new compute coord/atom option
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16018 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2017-01-17 16:44:40 +00:00
23cfb88bb9 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16017 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-17 16:00:09 +00:00
645d30dfa4 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16016 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-11 20:57:49 +00:00
6dc24ea90d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16015 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-11 17:25:33 +00:00
1820b6785f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16014 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-10 23:31:32 +00:00
9c01b1b75f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16013 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-10 21:33:27 +00:00
9619521426 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16011 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-09 20:31:56 +00:00
f5b8906eb6 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16010 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-09 20:31:54 +00:00
eb79a5f03c git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16009 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-09 20:30:53 +00:00
9daf579909 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16008 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-09 20:30:12 +00:00
515a68d663 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16007 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-09 20:29:27 +00:00
2bf46e0c11 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16006 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-09 20:20:07 +00:00
de83ad9df1 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16003 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-09 20:11:26 +00:00
27805f36b2 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16002 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-09 19:56:54 +00:00
f9f2c96d17 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16001 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-09 18:26:52 +00:00
c093ec15a5 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@16000 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-09 18:15:09 +00:00
663f6403ef git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15999 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-09 18:15:00 +00:00
f22fcaed9f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15998 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-09 17:47:31 +00:00
fd2bdcd5d5 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15997 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-09 17:46:25 +00:00
f8ee20372b git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15996 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-09 17:39:37 +00:00
3e5991f7da git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15995 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-09 17:38:53 +00:00
8423271025 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15994 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-09 16:17:20 +00:00
77339b61b7 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15992 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-06 18:12:13 +00:00
72c5cf7045 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15991 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-06 18:12:10 +00:00
fd8876234a git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15990 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-06 17:24:38 +00:00
2b77cb5c5d sync with GHub
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15989 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2017-01-06 17:16:03 +00:00
a56413c0da git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15988 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-05 23:38:44 +00:00
8b3c8341e1 Updating modify_kokkos to match modify
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15987 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2017-01-05 22:50:55 +00:00
6e26482003 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15986 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-05 22:08:14 +00:00
9e91ee9ffc Updating modify_kokkos to match modify
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15985 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2017-01-05 21:31:06 +00:00
171530acc1 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15984 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-05 20:55:13 +00:00
58fb78379d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15983 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-05 20:13:13 +00:00
102f30005c git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15982 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-05 20:12:52 +00:00
f7bd264706 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15981 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-05 20:11:35 +00:00
35a929015e git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15980 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-05 20:10:41 +00:00
13a8dbca4a git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15979 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-05 20:09:54 +00:00
5a46527886 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15978 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-05 20:08:12 +00:00
c0165e1261 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15977 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-05 20:07:11 +00:00
f55a51e1b5 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15976 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-05 19:57:44 +00:00
b597aa6dac git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15975 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-05 19:56:46 +00:00
702b480cc0 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15974 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-05 19:56:42 +00:00
07c0fccf7b git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15973 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-05 19:56:37 +00:00
d85648ae2d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15972 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-05 19:56:10 +00:00
9c1de594e8 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15971 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-04 23:26:22 +00:00
139a159a5d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15970 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-04 23:25:56 +00:00
2854350708 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15969 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-04 19:55:04 +00:00
d289d195e9 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15968 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-04 16:12:26 +00:00
ac342f3687 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15967 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-04 15:52:53 +00:00
0f819c1e25 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15966 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-03 23:41:02 +00:00
c28560301d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15965 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-03 23:36:00 +00:00
2449e14f6d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15964 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2017-01-03 23:31:04 +00:00
8486258c73 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15959 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-21 16:53:12 +00:00
e1b30b2787 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15958 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-21 16:53:09 +00:00
a47b59c303 sync with GHub
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15957 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-12-21 16:51:39 +00:00
4732f90521 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15956 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-21 16:44:36 +00:00
7339480095 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15952 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-17 00:46:28 +00:00
68a358a0f4 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15951 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-17 00:43:52 +00:00
34216ead1f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15950 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-16 20:08:46 +00:00
0bb23c5810 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15948 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-16 18:36:32 +00:00
f9f487f5ca git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15947 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-16 18:36:30 +00:00
44fd05c97d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15946 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-16 18:32:09 +00:00
4b8b9b97cc git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15944 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-16 17:29:46 +00:00
fbc8fa111a git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15943 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-16 17:29:44 +00:00
c71bba1980 sync with GHub
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15942 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-12-16 17:26:10 +00:00
47a6449148 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15941 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-16 17:22:59 +00:00
e72aa59d83 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15940 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-16 17:22:46 +00:00
1b7e8eb7aa git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15939 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-16 16:24:33 +00:00
bee06997fb git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15938 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-14 16:11:08 +00:00
60e08ad7b7 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15936 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-14 00:10:56 +00:00
104ad18e0c git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15935 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-14 00:10:53 +00:00
155dccacda git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15933 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-14 00:04:50 +00:00
35f8a9009d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15932 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-14 00:04:35 +00:00
5f04559071 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15931 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-14 00:00:20 +00:00
89719fb171 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15930 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-14 00:00:07 +00:00
6963dd2d83 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15929 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-13 23:58:45 +00:00
11e436ab43 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15928 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-13 23:44:51 +00:00
b0d24754a3 changes to all neighbor classes
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15927 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-12-13 23:27:33 +00:00
8320f9dcee git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15926 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-13 23:20:43 +00:00
45715f993c git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15925 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-13 22:56:08 +00:00
abab6e8d99 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15924 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-13 22:46:40 +00:00
3846395e09 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15923 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-12-09 15:31:23 +00:00
c24d10ad7c Fixing bug in ewald disp
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15922 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-12-08 20:03:23 +00:00
e14a2bf12d Tweaking ewald disp error estimator
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15921 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-12-08 16:54:30 +00:00
2d36ae2f8d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15920 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-30 23:04:18 +00:00
0d64dd3eea git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15919 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-30 22:49:05 +00:00
8bd4c37e0e git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15918 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-30 22:45:53 +00:00
a70e2f6db4 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15916 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-30 21:04:12 +00:00
8d7ba77ab2 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15915 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-30 21:04:08 +00:00
745050a374 sync with GHub
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15914 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-30 21:03:35 +00:00
c2b852f940 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15913 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-30 20:59:16 +00:00
489272ed91 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15912 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-30 20:57:03 +00:00
a5ee9da9c5 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15911 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-30 20:56:54 +00:00
7a3103c911 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15910 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-30 20:10:37 +00:00
ecfa2d85f5 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15908 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-30 20:06:19 +00:00
9b9291b417 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15906 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-22 20:18:28 +00:00
fa304895ea git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15905 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-22 20:17:01 +00:00
64c021824a git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15904 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-22 18:17:52 +00:00
6a5a95d0b0 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15902 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-22 16:21:57 +00:00
810a7bca52 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15901 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-22 16:21:55 +00:00
09a388e5d4 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15897 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-22 16:10:37 +00:00
09eb377cb8 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15896 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-22 15:58:36 +00:00
a70d5f71b9 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15895 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-22 15:55:07 +00:00
d692a47d73 sync with recent GHub PRs
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15894 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-22 15:52:42 +00:00
40762e69ce git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15893 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-22 15:47:10 +00:00
3856965055 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15892 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-22 15:43:59 +00:00
a4eaf200b5 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15891 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-22 15:43:28 +00:00
1a3a1b1e72 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15890 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-22 15:20:24 +00:00
da9bea2355 new temper_grem command
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15889 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-22 15:16:29 +00:00
98b025d053 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15888 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-22 15:14:36 +00:00
2af2091bd2 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15886 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-17 23:13:20 +00:00
6471c2750b git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15885 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-17 23:13:17 +00:00
76182cb892 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15884 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-17 23:10:42 +00:00
dad749b37f Updated explanation of how virial is computed
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15883 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-17 19:36:20 +00:00
0701201e03 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15882 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-17 17:37:27 +00:00
80d6518602 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15880 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-17 17:21:17 +00:00
e81c5e3fdf git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15879 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-17 16:23:37 +00:00
47be003191 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15878 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-17 16:15:56 +00:00
41745a3b90 pair vashishta/kk, pair tersoff/mod/c, pair agni
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15877 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-17 16:06:01 +00:00
5692ea7977 Added note on pressure for periodic systems
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15876 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-16 19:53:05 +00:00
597f874f3d Fixing Kokkos bug
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15875 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-15 19:37:05 +00:00
2b82e83d13 Fixing Kokkos bug
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15874 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-15 19:33:36 +00:00
23b468e74f Fixing Kokkos bug
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15873 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-15 17:41:16 +00:00
16efa68d35 Fixing clang compile error
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15872 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-15 17:07:06 +00:00
fa8d7c1d6e Adding missing Kokkos dependency
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15871 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-15 15:42:30 +00:00
846f11db5c Fixing bug with Kokkos/CUDA
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15870 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-15 15:28:36 +00:00
1ee5247500 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15869 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-14 21:49:29 +00:00
1d8db38a75 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15868 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-11 15:59:32 +00:00
f378934817 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15866 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-09 22:47:02 +00:00
aa8cce5b06 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15865 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-09 22:46:59 +00:00
57c0d77c71 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15863 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-09 22:42:46 +00:00
b1f7de2776 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15862 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-09 22:41:53 +00:00
ebe6ee813c git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15861 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-09 22:41:17 +00:00
b222f8b946 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15860 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-09 22:40:33 +00:00
6b0a8628f2 sync pointer changes with GHub and 2 new pair styles
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15859 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-09 22:37:03 +00:00
5c141edca7 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15858 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-09 22:35:41 +00:00
3a2cea52d8 Fixing Kokkos bug
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15857 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-09 20:00:27 +00:00
45f2940225 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15856 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-09 18:45:21 +00:00
07bb6fe443 Adding support for CommTiledKokkos
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15854 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-08 16:23:24 +00:00
b6b7c3ad67 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15852 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-08 16:04:44 +00:00
55fa0f2e8a git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15851 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-08 16:04:40 +00:00
c770e270f2 Adding support for CommTiledKokkos
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15848 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-08 15:43:15 +00:00
d077a8b024 Adding support for CommTiledKokkos
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15847 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-08 15:30:12 +00:00
e147701e87 Updating Kokkos phi Makefile
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15846 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-08 15:26:08 +00:00
cc0be86470 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15841 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-07 15:23:10 +00:00
34966b3a38 Added 4-stage version of coord2ssaAIR
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15840 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-05 12:48:53 +00:00
9197eea89b Fixed a few errors and updated citations
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15838 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-04 17:10:33 +00:00
b682c8d98a git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15837 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-04 17:08:10 +00:00
c7d3af81f1 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15836 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-04 17:07:58 +00:00
8ded262792 sync with GHub
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15835 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-04 17:01:14 +00:00
7830537091 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15834 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-11-04 16:54:31 +00:00
e24fff05b3 Fixed a few things I forgot
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15833 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-03 00:26:41 +00:00
30e14c7f37 Added threebody tests for sw, tersoff, vashishta
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15832 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-03 00:16:18 +00:00
5ffdbc1a97 Edited some of the comments in the file headers
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15831 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-02 23:31:41 +00:00
639b22cd56 Updating docs for Kokkkos
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15830 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-01 15:22:44 +00:00
8e0b69478a Fixing Kokkos bug
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15829 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-11-01 00:22:36 +00:00
dd296bf237 Improving performance of Kokkos ReaxFF
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15828 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-31 22:00:06 +00:00
8de4680898 Adding short neighbor lists
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15827 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-28 18:42:43 +00:00
ef4dc21c15 Adding short neighbor list to tersoff Kokkos from C. Trott
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15826 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-27 21:55:25 +00:00
ceff3565d6 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15825 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-27 17:09:15 +00:00
41f666db52 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15823 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-27 15:32:57 +00:00
f2df16e0f0 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15822 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-27 15:32:53 +00:00
4475897049 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15821 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-27 15:32:32 +00:00
02ae428e37 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15820 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-27 15:28:59 +00:00
21887831ff git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15819 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-27 14:29:02 +00:00
7a13d54a0d Fixed typo in temperature formula
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15818 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-26 22:28:56 +00:00
01209d450c git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15817 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-26 22:24:50 +00:00
bc250ab7b9 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15816 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-26 22:24:31 +00:00
0270a33ab4 Fixing clang compile error
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15815 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-26 20:28:23 +00:00
287c57daf4 Adding Kokkos error check
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15814 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-26 17:36:13 +00:00
7d3d315753 Fixing Kokkos bug
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15813 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-26 16:46:30 +00:00
77fa5ee08d Fixing Kokkos bug
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15812 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-26 16:41:57 +00:00
0fd26f7b9d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15811 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-25 22:49:56 +00:00
f092df34d4 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15810 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-25 22:49:20 +00:00
e517e5a5a5 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15809 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-25 22:48:44 +00:00
79250a7916 Adding support for FixReaxCBonds and FixReaxCSpecies to the Kokkos ReaxFF
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15808 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-25 22:31:05 +00:00
3de6f5b9c3 Adding support for FixReaxCBonds and FixReaxCSpecies to the Kokkos ReaxFF
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15807 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-25 22:15:00 +00:00
b42db824da Adding support for FixReaxCBonds and FixReaxCBonds to the Kokkos ReaxFF
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15806 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-25 20:47:40 +00:00
c587a3106f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15805 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-25 19:26:35 +00:00
d7304c5843 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15804 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-25 16:55:25 +00:00
8ed519045f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15803 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-25 16:55:11 +00:00
18b452c9c2 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15802 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-25 16:55:06 +00:00
8770adf78a git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15801 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-25 16:54:48 +00:00
2a07f06924 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15800 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-25 16:53:20 +00:00
bb78ea0248 sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15799 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-25 16:33:34 +00:00
bfdaa09a72 sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15798 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-25 15:47:44 +00:00
a1cb91486b git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15796 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-24 14:19:10 +00:00
b9fc540733 sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15795 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-24 14:16:13 +00:00
c0b98f5299 Recommitting reverted change
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15794 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-19 19:02:08 +00:00
5d076bafea git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15792 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-19 17:03:39 +00:00
51e7c77aec git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15791 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-19 17:03:33 +00:00
8fa049edda git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15790 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-19 16:29:44 +00:00
218ab76d0b git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15789 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-19 16:27:17 +00:00
09a3a259c2 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15788 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-19 16:27:13 +00:00
aab7de9579 sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15787 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-19 14:58:39 +00:00
616724091e git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15786 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-19 14:50:50 +00:00
252c52b9b8 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15785 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-19 14:43:54 +00:00
3089edfce1 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15784 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-19 14:42:40 +00:00
82badf85a4 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15783 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-19 14:42:24 +00:00
6d759f1b6f sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15782 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-19 14:39:50 +00:00
2babec1b38 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15780 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-18 19:09:14 +00:00
15dbceee76 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15779 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-18 19:09:11 +00:00
49f6e138e6 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15778 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-18 19:04:11 +00:00
773aec0f1c sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15777 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-18 18:59:37 +00:00
a9b065ca3a git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15776 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-18 17:14:54 +00:00
bc43acd4e9 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15775 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-18 17:10:29 +00:00
95ed575b66 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15774 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-18 15:40:09 +00:00
4f1ea743bd git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15773 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-18 15:39:51 +00:00
9a6dc87fa6 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15772 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-17 15:41:42 +00:00
daf719470f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15771 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-14 14:36:10 +00:00
fdd61cf314 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15769 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-13 23:03:30 +00:00
3593ca7f48 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15768 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-13 23:03:27 +00:00
d58e86625b sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15767 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-13 23:01:03 +00:00
06fa6ce105 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15766 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-13 19:58:01 +00:00
c3c2587fef Added fix for problem with energy_full and shake
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15765 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-13 19:11:48 +00:00
115d67c1a0 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15764 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-13 19:07:38 +00:00
011568fae3 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15763 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-13 19:07:22 +00:00
0f1c56d0fc git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15762 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-13 19:04:21 +00:00
2f98f4ad98 Added fix for problem with energy_full and shake
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15761 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-13 18:56:05 +00:00
0145275cd2 Added fix for problem with energy_full and shake
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15760 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-13 18:52:26 +00:00
1ce8f1479e git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15759 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-12 23:39:29 +00:00
5661aea6d5 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15758 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-12 23:39:17 +00:00
6ec1550081 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15757 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-12 21:13:30 +00:00
c660a813e4 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15756 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-12 20:52:53 +00:00
96eaa5d59f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15754 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-12 13:35:01 +00:00
409fe28ee9 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15753 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-12 13:34:58 +00:00
ab2998e4dd git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15752 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-12 13:34:48 +00:00
fb4cbf1a4a git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15751 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-12 13:34:37 +00:00
1d501f05e4 sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15750 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-12 13:32:56 +00:00
a6ceebf5b1 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15749 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-11 20:33:10 +00:00
338f6ae70a git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15748 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-11 19:51:46 +00:00
7e37c5aecb sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15747 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-11 19:42:15 +00:00
e710053de6 sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15746 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-11 18:43:51 +00:00
7a4da54a71 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15744 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-11 18:34:01 +00:00
d1145f14ee git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15743 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-11 18:33:59 +00:00
b195d32105 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15742 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-11 18:23:52 +00:00
66b073415b git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15741 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-11 18:23:09 +00:00
6888a80d7d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15740 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-11 18:20:53 +00:00
59215db1a3 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15739 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-10 20:02:41 +00:00
dcdb53cc79 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15737 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-10 19:40:11 +00:00
b31b4093ca Fixing Kokkos compile error
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15736 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-10 18:17:51 +00:00
c4ab7c8245 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15735 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-10 15:16:43 +00:00
c35d0d77e0 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15734 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 22:46:55 +00:00
fda969f1c9 sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15733 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-06 21:50:57 +00:00
50ea9d151f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15731 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 21:41:42 +00:00
325aa50c67 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15730 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 21:41:40 +00:00
3b67310233 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15729 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 21:41:21 +00:00
5c8fb1d55c git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15728 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 21:41:07 +00:00
94ebde04e3 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15722 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 21:06:14 +00:00
720c352a08 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15721 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 20:03:35 +00:00
65585e69a6 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15720 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 20:03:13 +00:00
cd8d18dc71 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15719 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 20:01:30 +00:00
5bc562b095 Fixing Kokkos bugs
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15718 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-06 19:48:28 +00:00
2a52034786 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15717 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 19:17:50 +00:00
b35352153c sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15716 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-06 19:05:57 +00:00
4f01a3055a git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15715 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 18:59:16 +00:00
44ef94958c git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15714 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 18:46:54 +00:00
54413ce1b7 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15713 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 18:46:21 +00:00
2d6f118846 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15712 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 18:44:52 +00:00
47b3de2554 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15711 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 18:44:36 +00:00
e51650664f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15710 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 18:43:25 +00:00
df0694e4e5 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15709 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 18:43:06 +00:00
a227a63ddb git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15708 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 18:42:51 +00:00
3f7821ba1f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15707 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 18:09:53 +00:00
2a93bca2a6 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15706 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 18:09:45 +00:00
f9ff3bd0bd git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15705 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 18:08:43 +00:00
9327eb756d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15704 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-06 18:03:27 +00:00
8a8c9fa8e8 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15701 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-05 21:41:11 +00:00
f4948ad5ff git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15700 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-05 21:03:06 +00:00
f86f711115 python lib callback issue fixed
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15699 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-05 16:55:23 +00:00
26da91a157 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15698 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-05 16:32:33 +00:00
82cac1a0e6 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15697 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-05 15:43:36 +00:00
ce665801ea git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15696 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-05 15:43:33 +00:00
28f88a6085 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15695 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-05 15:39:31 +00:00
44a8d082e8 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15694 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-05 15:32:07 +00:00
998c5b7d2d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15693 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-05 15:07:50 +00:00
05c027fcaf git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15692 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-04 15:11:27 +00:00
57dfa51b97 sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15691 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-10-04 00:00:38 +00:00
dc2bd269d6 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15690 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-03 23:56:44 +00:00
d86416aee3 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15689 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-03 23:56:06 +00:00
58f1297b61 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15688 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-10-03 22:23:47 +00:00
87540fbac0 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15684 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-30 15:25:09 +00:00
0311121190 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15683 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-30 15:25:07 +00:00
49e66858ab sync with GH: colvars update, add forgotten CMAP potential files
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15682 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-30 15:22:12 +00:00
40ec180798 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15681 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-30 15:16:16 +00:00
bcd4dad2f1 sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15680 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-29 21:52:57 +00:00
f60331a5fb git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15678 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-29 20:32:11 +00:00
d7bb53e4d2 Fixing Kokkos bug and adding host version of CommTiled
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15676 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-29 20:21:39 +00:00
78a22be93f sync Make.py and fix addforce change with GHub
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15675 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-28 22:36:54 +00:00
189825489c git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15673 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-28 22:32:14 +00:00
bdd0f665ca git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15672 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-28 22:32:12 +00:00
6897cc803f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15671 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-28 22:29:06 +00:00
f511c177c6 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15670 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-28 14:37:45 +00:00
1ec3987b31 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15669 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-28 14:36:30 +00:00
45e50b46c3 sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15668 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-27 21:37:17 +00:00
f82e0c53b6 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15666 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 21:31:04 +00:00
1fbddc97d1 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15665 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 21:31:02 +00:00
1cfa49f03d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15664 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 21:28:06 +00:00
3486b7d503 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15663 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 21:24:10 +00:00
6fedf8d899 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15662 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 21:18:32 +00:00
56b0856e2f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15661 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 21:16:33 +00:00
3333e4b475 Put snap before zbl to get more helpful error message
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15660 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-27 17:21:42 +00:00
2ae966c26f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15657 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 16:49:51 +00:00
d1b8ffd924 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15656 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 16:49:48 +00:00
b66039b8bb git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15653 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 16:43:18 +00:00
995ecea5ed git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15652 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 16:02:08 +00:00
43633180eb git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15651 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 15:08:34 +00:00
b68e954761 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15650 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 15:06:58 +00:00
2b88050a1f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15649 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 15:06:14 +00:00
063307c71c git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15648 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-27 15:05:29 +00:00
f280bd32a6 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15647 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-26 23:34:26 +00:00
53eac4431d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15646 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-26 23:32:16 +00:00
fb64ae612f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15645 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-26 16:23:53 +00:00
5769c10189 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15643 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-26 14:39:43 +00:00
7453a4f55f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15642 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-26 14:39:40 +00:00
50d59454d2 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15640 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-23 23:06:49 +00:00
24ff008a0f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15639 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-23 23:06:44 +00:00
da480bd4d4 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15638 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-23 23:00:00 +00:00
8a6e5ed3ce git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15637 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-23 22:59:43 +00:00
756cac0f60 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15636 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-23 22:59:35 +00:00
8662662afe fix ti/spring
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15635 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-23 21:14:00 +00:00
f718c54430 sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15634 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-23 21:04:56 +00:00
2a30b76277 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15633 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-23 16:49:40 +00:00
31e41707e0 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15632 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-22 15:46:03 +00:00
32cec47ffb git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15631 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-22 15:45:27 +00:00
c22df8db57 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15630 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-22 14:05:57 +00:00
d0bbf3fb97 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15629 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-22 02:22:08 +00:00
32872a7b35 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15628 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-22 02:22:05 +00:00
6dd4480482 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15626 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 22:31:49 +00:00
26e16ed968 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15625 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 22:31:45 +00:00
ca5ad04b01 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15624 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 22:15:17 +00:00
0329aaaf72 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15623 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 22:14:06 +00:00
fc434b36b3 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15622 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 21:29:19 +00:00
a1364adce1 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15621 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 21:26:00 +00:00
c382759406 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15620 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 21:25:55 +00:00
e7fb82a645 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15619 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 21:22:57 +00:00
03c5ce601b git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15618 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 21:22:32 +00:00
d7c6f57fe4 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15617 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 20:50:23 +00:00
0bcd90195d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15616 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 20:38:57 +00:00
72c5792230 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15615 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 15:40:42 +00:00
71f7dde12a git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15614 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-21 15:26:31 +00:00
f8c8434c44 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15613 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 22:39:20 +00:00
3eee584956 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15612 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 18:08:38 +00:00
26b9b955a9 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15611 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 18:04:18 +00:00
fe73c3e4e3 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15610 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 17:25:49 +00:00
8944d48bd1 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15608 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 16:36:15 +00:00
f86bd1fceb git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15607 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 16:35:30 +00:00
f1d3637b03 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15605 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 16:26:57 +00:00
ce3676677e git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15604 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 16:21:39 +00:00
f81f0da734 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15603 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 16:20:45 +00:00
ed9f13663b git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15602 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 16:20:28 +00:00
4f941abdfd git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15601 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 16:19:25 +00:00
af4a42345f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15600 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 16:14:15 +00:00
df0ed58bbd git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15599 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 16:12:56 +00:00
8b80d0cf9a git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15598 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-20 16:09:43 +00:00
558303072d sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15597 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-20 14:52:43 +00:00
900c83960e git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15595 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-18 00:06:34 +00:00
484122b8b6 sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15592 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-16 19:21:34 +00:00
ed532358ad git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15591 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-16 16:29:55 +00:00
5336ec0735 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15590 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-16 16:26:52 +00:00
7d77aea42d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15589 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-16 16:24:05 +00:00
6fd60f50ad git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15588 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-16 16:20:06 +00:00
54b2f3c970 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15583 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-15 21:02:02 +00:00
e14eab610e git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15582 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-15 21:01:16 +00:00
2049fa7380 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15581 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-15 17:18:05 +00:00
cf33c0e7fb git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15580 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-15 16:59:28 +00:00
b23e9f0d54 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15579 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-14 19:29:22 +00:00
b29782d5ab git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15577 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-14 15:33:37 +00:00
0f6d21acda sync with Git
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15576 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-14 15:27:51 +00:00
206f4e18a6 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15573 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-13 23:06:23 +00:00
b3fa20718f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15572 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-13 23:05:03 +00:00
9d0e853925 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15571 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-13 22:58:33 +00:00
babaa839b0 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15570 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-13 22:55:40 +00:00
9f3118341a git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15569 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-13 21:00:30 +00:00
342421babb git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15568 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-13 20:43:30 +00:00
423052134b git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15567 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-13 20:43:17 +00:00
fd5363fb6e git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15566 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-13 20:42:47 +00:00
d913f5e094 Fixing Kokkos bugs
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15565 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-12 21:09:35 +00:00
a8d7ca367d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15564 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-10 20:19:52 +00:00
99d5bf89bc git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15563 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-10 19:48:18 +00:00
1dd7a13d82 sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15562 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-08 20:37:31 +00:00
b190abea39 sync with GH
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15561 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-08 20:20:32 +00:00
06b7d56e16 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15560 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-07 17:17:53 +00:00
ee4a1f0452 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15559 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-07 16:12:51 +00:00
d3694613fd git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15558 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-07 15:49:34 +00:00
bf0c18a0f2 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15557 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 23:19:15 +00:00
39be4185c4 Updating Kokkos lib
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15556 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-06 23:06:32 +00:00
1ad033ec0c Updating Kokkos lib
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15555 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-06 23:02:50 +00:00
f67a9722ea git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15554 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 23:01:25 +00:00
06bac161ae git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15553 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 22:58:43 +00:00
5277242cfe GH changes to doc pages
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15552 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-06 22:56:36 +00:00
83f139642e Reverting optimizations that hurt performance on some compilers
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15551 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-06 22:09:41 +00:00
5568320bd6 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15549 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 22:05:53 +00:00
74d0bc4df6 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15548 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 22:05:14 +00:00
56945a56aa git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15547 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 21:55:39 +00:00
f9c106897f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15545 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 16:53:15 +00:00
626ae8d85c git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15544 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 16:52:36 +00:00
4282107e5d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15543 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 16:39:57 +00:00
1e11d2d923 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15541 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 16:38:58 +00:00
c21cf0364f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15540 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-09-06 16:33:48 +00:00
688b1f1efc Fixing bug in Kokkos ReaxFF
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15539 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-06 14:06:59 +00:00
fc80281fd9 Fixing bugs in per-atom
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15538 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-02 22:45:29 +00:00
519a3ee242 Adding Kokkos version of PPPM
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15537 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-01 21:45:00 +00:00
a4914bc9d8 Adding Kokkos version of PPPM
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15536 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-01 21:01:23 +00:00
b4785cd038 Adding Kokkos version of PPPM
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15535 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-01 20:53:40 +00:00
3769f9077f chunk doc pages
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15534 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-01 01:58:35 +00:00
159d722cc2 removing searchindex.js
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15533 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-09-01 01:55:31 +00:00
f94bbc0de0 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15532 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-31 22:21:11 +00:00
fab2f01a58 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15531 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-31 22:20:28 +00:00
ae458497bf git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15530 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-31 21:11:34 +00:00
bcb2e6dd38 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15529 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-31 21:10:51 +00:00
93c6c26b83 sync with Git
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15528 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-31 21:08:32 +00:00
083ff54c0c small bug fixes
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15527 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-31 20:26:15 +00:00
e3d0a32272 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15526 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-31 20:10:32 +00:00
8f6439843d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15525 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-31 19:25:40 +00:00
9d8027c900 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15524 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-31 19:25:08 +00:00
76acb8caf1 Fixing Kokkos memory issue
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15523 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-30 23:18:07 +00:00
ba444a4c6b git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15522 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-30 19:33:56 +00:00
dbaaf4dbbd Removing aggressive_vectorization flag due to safety issue
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15521 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-30 17:52:49 +00:00
958e3e6a80 sync with Git
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15520 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-29 23:49:20 +00:00
2993aec312 sync with Git
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15519 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-29 22:52:03 +00:00
236241b100 sync with Git
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15518 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-27 23:09:15 +00:00
a62bae7d33 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15517 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-27 23:07:38 +00:00
57b24b5668 updated USER-MANIFOLD doc pages
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15516 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-27 23:07:03 +00:00
fc4e63130c git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15514 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-27 22:41:46 +00:00
0ec104088f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15513 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-27 22:41:05 +00:00
4f49acf903 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15511 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-27 22:40:37 +00:00
5714890627 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15510 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-27 22:40:11 +00:00
18d05e04a2 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15509 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-27 22:37:35 +00:00
90e6032f97 new fix flow/gauss command
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15508 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-27 22:18:45 +00:00
646d5bb1b9 Added check for undefined hbonds
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15507 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-26 20:03:55 +00:00
5348c1c70f Adding Kokkos warning
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15506 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-26 18:37:44 +00:00
56628fe2b6 Adding Kokkos warning
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15505 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-26 18:17:16 +00:00
8a7fecbd91 Cleaning up code
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15504 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-26 16:32:11 +00:00
cc4b2dd6ed Changing default
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15503 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-26 15:50:25 +00:00
3366136493 Fixing Kokkos memory issue
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15502 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-26 15:43:13 +00:00
b2470fd80d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15501 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-25 17:19:46 +00:00
484e726c78 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15500 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-25 17:15:22 +00:00
67958a8bfa git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15499 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-25 17:03:56 +00:00
bfb01b84e6 Fixing compiler warning
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15498 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-25 16:59:45 +00:00
e96ac8eb59 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15497 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-25 16:55:30 +00:00
29d04c1fbb git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15496 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-24 20:31:41 +00:00
a411023a75 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15495 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-24 20:25:54 +00:00
647ffab74f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15493 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-23 22:45:54 +00:00
662335db13 git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15492 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-23 22:44:48 +00:00
1e1f68c30d git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15491 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-23 22:41:41 +00:00
7646321bfb git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15490 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-23 22:21:04 +00:00
7bf1d9b40f git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15489 f3b2605a-c512-4ea7-a41b-209d697bcdaa 2016-08-23 22:17:44 +00:00
d007faca51 Fixing Kokkos output for number of OpenMP threads
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15488 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-23 16:07:26 +00:00
89fc866ba7 Fixing bug on Macs
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@15487 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-08-23 15:45:00 +00:00
4626 changed files with 565247 additions and 675525 deletions

View File

@ -1,78 +0,0 @@
LAMMPS (15 Feb 2016)
# FENE beadspring benchmark
units lj
atom_style bond
special_bonds fene
read_data data.chain
orthogonal box = (-16.796 -16.796 -16.796) to (16.796 16.796 16.796)
1 by 1 by 1 MPI processor grid
reading atoms ...
32000 atoms
reading velocities ...
32000 velocities
scanning bonds ...
1 = max bonds/atom
reading bonds ...
31680 bonds
2 = max # of 1-2 neighbors
2 = max # of special neighbors
neighbor 0.4 bin
neigh_modify every 1 delay 1
bond_style fene
bond_coeff 1 30.0 1.5 1.0 1.0
pair_style lj/cut 1.12
pair_modify shift yes
pair_coeff 1 1 1.0 1.0 1.12
fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297
thermo 100
timestep 0.012
run 100
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 1 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 1.52
ghost atom cutoff = 1.52
binsize = 0.76 -> bins = 45 45 45
Memory usage per processor = 11.5189 Mbytes
Step Temp E_pair E_mol TotEng Press
0 0.97029772 0.44484087 20.494523 22.394765 4.6721833
100 0.9729966 0.4361122 20.507698 22.40326 4.6548819
Loop time of 0.978585 on 1 procs for 100 steps with 32000 atoms
Performance: 105948.895 tau/day, 102.188 timesteps/s
100.0% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.19562 | 0.19562 | 0.19562 | 0.0 | 19.99
Bond | 0.087475 | 0.087475 | 0.087475 | 0.0 | 8.94
Neigh | 0.44861 | 0.44861 | 0.44861 | 0.0 | 45.84
Comm | 0.032932 | 0.032932 | 0.032932 | 0.0 | 3.37
Output | 0.00010395 | 0.00010395 | 0.00010395 | 0.0 | 0.01
Modify | 0.19413 | 0.19413 | 0.19413 | 0.0 | 19.84
Other | | 0.01972 | | | 2.02
Nlocal: 32000 ave 32000 max 32000 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 9493 ave 9493 max 9493 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 155873 ave 155873 max 155873 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 155873
Ave neighs/atom = 4.87103
Ave special neighs/atom = 1.98
Neighbor list builds = 25
Dangerous builds = 0
Total wall time: 0:00:01

View File

@ -1,78 +0,0 @@
LAMMPS (15 Feb 2016)
# FENE beadspring benchmark
units lj
atom_style bond
special_bonds fene
read_data data.chain
orthogonal box = (-16.796 -16.796 -16.796) to (16.796 16.796 16.796)
1 by 2 by 2 MPI processor grid
reading atoms ...
32000 atoms
reading velocities ...
32000 velocities
scanning bonds ...
1 = max bonds/atom
reading bonds ...
31680 bonds
2 = max # of 1-2 neighbors
2 = max # of special neighbors
neighbor 0.4 bin
neigh_modify every 1 delay 1
bond_style fene
bond_coeff 1 30.0 1.5 1.0 1.0
pair_style lj/cut 1.12
pair_modify shift yes
pair_coeff 1 1 1.0 1.0 1.12
fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297
thermo 100
timestep 0.012
run 100
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 1 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 1.52
ghost atom cutoff = 1.52
binsize = 0.76 -> bins = 45 45 45
Memory usage per processor = 3.91518 Mbytes
Step Temp E_pair E_mol TotEng Press
0 0.97029772 0.44484087 20.494523 22.394765 4.6721833
100 0.97145835 0.43803883 20.502691 22.397872 4.626988
Loop time of 0.271187 on 4 procs for 100 steps with 32000 atoms
Performance: 382319.453 tau/day, 368.749 timesteps/s
99.6% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.048621 | 0.050076 | 0.051229 | 0.4 | 18.47
Bond | 0.022254 | 0.022942 | 0.023567 | 0.3 | 8.46
Neigh | 0.11873 | 0.11881 | 0.11887 | 0.0 | 43.81
Comm | 0.019066 | 0.021357 | 0.024297 | 1.3 | 7.88
Output | 5.0068e-05 | 5.5015e-05 | 6.1035e-05 | 0.1 | 0.02
Modify | 0.048737 | 0.050198 | 0.051231 | 0.4 | 18.51
Other | | 0.007751 | | | 2.86
Nlocal: 8000 ave 8030 max 7974 min
Histogram: 1 0 0 1 0 1 0 0 0 1
Nghost: 4177 ave 4191 max 4160 min
Histogram: 1 0 0 0 1 0 0 1 0 1
Neighs: 38995.8 ave 39169 max 38852 min
Histogram: 1 0 0 1 1 0 0 0 0 1
Total # of neighbors = 155983
Ave neighs/atom = 4.87447
Ave special neighs/atom = 1.98
Neighbor list builds = 25
Dangerous builds = 0
Total wall time: 0:00:00

View File

@ -1,94 +0,0 @@
LAMMPS (15 Feb 2016)
# FENE beadspring benchmark
variable x index 1
variable y index 1
variable z index 1
units lj
atom_style bond
atom_modify map hash
special_bonds fene
read_data data.chain
orthogonal box = (-16.796 -16.796 -16.796) to (16.796 16.796 16.796)
1 by 2 by 2 MPI processor grid
reading atoms ...
32000 atoms
reading velocities ...
32000 velocities
scanning bonds ...
1 = max bonds/atom
reading bonds ...
31680 bonds
2 = max # of 1-2 neighbors
2 = max # of special neighbors
replicate $x $y $z
replicate 2 $y $z
replicate 2 2 $z
replicate 2 2 1
orthogonal box = (-16.796 -16.796 -16.796) to (50.388 50.388 16.796)
2 by 2 by 1 MPI processor grid
128000 atoms
126720 bonds
2 = max # of 1-2 neighbors
2 = max # of special neighbors
neighbor 0.4 bin
neigh_modify every 1 delay 1
bond_style fene
bond_coeff 1 30.0 1.5 1.0 1.0
pair_style lj/cut 1.12
pair_modify shift yes
pair_coeff 1 1 1.0 1.0 1.12
fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297
thermo 100
timestep 0.012
run 100
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 1 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 1.52
ghost atom cutoff = 1.52
binsize = 0.76 -> bins = 89 89 45
Memory usage per processor = 12.8735 Mbytes
Step Temp E_pair E_mol TotEng Press
0 0.97027498 0.44484087 20.494523 22.394765 4.6721833
100 0.97682955 0.44239968 20.500229 22.407862 4.6527025
Loop time of 1.20889 on 4 procs for 100 steps with 128000 atoms
Performance: 85764.410 tau/day, 82.720 timesteps/s
99.8% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.21738 | 0.23306 | 0.23926 | 1.9 | 19.28
Bond | 0.094536 | 0.10196 | 0.10534 | 1.4 | 8.43
Neigh | 0.52311 | 0.52392 | 0.52519 | 0.1 | 43.34
Comm | 0.090161 | 0.10022 | 0.12557 | 4.7 | 8.29
Output | 0.00012207 | 0.00017327 | 0.00019598 | 0.2 | 0.01
Modify | 0.19662 | 0.20262 | 0.20672 | 0.8 | 16.76
Other | | 0.04694 | | | 3.88
Nlocal: 32000 ave 32015 max 31983 min
Histogram: 1 0 1 0 0 0 0 0 1 1
Nghost: 9492 ave 9522 max 9432 min
Histogram: 1 0 0 0 0 0 1 0 0 2
Neighs: 155837 ave 156079 max 155506 min
Histogram: 1 0 0 0 0 1 0 0 1 1
Total # of neighbors = 623349
Ave neighs/atom = 4.86991
Ave special neighs/atom = 1.98
Neighbor list builds = 25
Dangerous builds = 0
Total wall time: 0:00:01

View File

@ -1,80 +0,0 @@
LAMMPS (15 Feb 2016)
# LAMMPS benchmark of granular flow
# chute flow of 32000 atoms with frozen base at 26 degrees
units lj
atom_style sphere
boundary p p fs
newton off
comm_modify vel yes
read_data data.chute
orthogonal box = (0 0 0) to (40 20 37.2886)
1 by 1 by 1 MPI processor grid
reading atoms ...
32000 atoms
reading velocities ...
32000 velocities
pair_style gran/hooke/history 200000.0 NULL 50.0 NULL 0.5 0
pair_coeff * *
neighbor 0.1 bin
neigh_modify every 1 delay 0
timestep 0.0001
group bottom type 2
912 atoms in group bottom
group active subtract all bottom
31088 atoms in group active
neigh_modify exclude group bottom bottom
fix 1 all gravity 1.0 chute 26.0
fix 2 bottom freeze
fix 3 active nve/sphere
compute 1 all erotate/sphere
thermo_style custom step atoms ke c_1 vol
thermo_modify norm no
thermo 100
run 100
Neighbor list info ...
2 neighbor list requests
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 1.1
ghost atom cutoff = 1.1
binsize = 0.55 -> bins = 73 37 68
Memory usage per processor = 15.567 Mbytes
Step Atoms KinEng 1 Volume
0 32000 784139.13 1601.1263 29833.783
100 32000 784292.08 1571.0968 29834.707
Loop time of 0.550482 on 1 procs for 100 steps with 32000 atoms
Performance: 1569.534 tau/day, 181.659 timesteps/s
100.1% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.33849 | 0.33849 | 0.33849 | 0.0 | 61.49
Neigh | 0.040353 | 0.040353 | 0.040353 | 0.0 | 7.33
Comm | 0.018023 | 0.018023 | 0.018023 | 0.0 | 3.27
Output | 0.00020385 | 0.00020385 | 0.00020385 | 0.0 | 0.04
Modify | 0.13155 | 0.13155 | 0.13155 | 0.0 | 23.90
Other | | 0.02186 | | | 3.97
Nlocal: 32000 ave 32000 max 32000 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 5463 ave 5463 max 5463 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 115133 ave 115133 max 115133 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 115133
Ave neighs/atom = 3.59791
Neighbor list builds = 2
Dangerous builds = 0
Total wall time: 0:00:00

View File

@ -1,80 +0,0 @@
LAMMPS (15 Feb 2016)
# LAMMPS benchmark of granular flow
# chute flow of 32000 atoms with frozen base at 26 degrees
units lj
atom_style sphere
boundary p p fs
newton off
comm_modify vel yes
read_data data.chute
orthogonal box = (0 0 0) to (40 20 37.2886)
2 by 1 by 2 MPI processor grid
reading atoms ...
32000 atoms
reading velocities ...
32000 velocities
pair_style gran/hooke/history 200000.0 NULL 50.0 NULL 0.5 0
pair_coeff * *
neighbor 0.1 bin
neigh_modify every 1 delay 0
timestep 0.0001
group bottom type 2
912 atoms in group bottom
group active subtract all bottom
31088 atoms in group active
neigh_modify exclude group bottom bottom
fix 1 all gravity 1.0 chute 26.0
fix 2 bottom freeze
fix 3 active nve/sphere
compute 1 all erotate/sphere
thermo_style custom step atoms ke c_1 vol
thermo_modify norm no
thermo 100
run 100
Neighbor list info ...
2 neighbor list requests
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 1.1
ghost atom cutoff = 1.1
binsize = 0.55 -> bins = 73 37 68
Memory usage per processor = 6.81783 Mbytes
Step Atoms KinEng 1 Volume
0 32000 784139.13 1601.1263 29833.783
100 32000 784292.08 1571.0968 29834.707
Loop time of 0.13141 on 4 procs for 100 steps with 32000 atoms
Performance: 6574.833 tau/day, 760.976 timesteps/s
99.3% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.062505 | 0.067 | 0.07152 | 1.5 | 50.99
Neigh | 0.010041 | 0.0101 | 0.010178 | 0.1 | 7.69
Comm | 0.012347 | 0.012895 | 0.013444 | 0.5 | 9.81
Output | 6.3896e-05 | 0.00010294 | 0.00014091 | 0.3 | 0.08
Modify | 0.031802 | 0.032348 | 0.032897 | 0.3 | 24.62
Other | | 0.008965 | | | 6.82
Nlocal: 8000 ave 8008 max 7992 min
Histogram: 2 0 0 0 0 0 0 0 0 2
Nghost: 2439 ave 2450 max 2428 min
Histogram: 2 0 0 0 0 0 0 0 0 2
Neighs: 29500.5 ave 30488 max 28513 min
Histogram: 2 0 0 0 0 0 0 0 0 2
Total # of neighbors = 118002
Ave neighs/atom = 3.68756
Neighbor list builds = 2
Dangerous builds = 0
Total wall time: 0:00:00

View File

@ -1,90 +0,0 @@
LAMMPS (15 Feb 2016)
# LAMMPS benchmark of granular flow
# chute flow of 32000 atoms with frozen base at 26 degrees
variable x index 1
variable y index 1
units lj
atom_style sphere
boundary p p fs
newton off
comm_modify vel yes
read_data data.chute
orthogonal box = (0 0 0) to (40 20 37.2886)
2 by 1 by 2 MPI processor grid
reading atoms ...
32000 atoms
reading velocities ...
32000 velocities
replicate $x $y 1
replicate 2 $y 1
replicate 2 2 1
orthogonal box = (0 0 0) to (80 40 37.2922)
2 by 2 by 1 MPI processor grid
128000 atoms
pair_style gran/hooke/history 200000.0 NULL 50.0 NULL 0.5 0
pair_coeff * *
neighbor 0.1 bin
neigh_modify every 1 delay 0
timestep 0.0001
group bottom type 2
3648 atoms in group bottom
group active subtract all bottom
124352 atoms in group active
neigh_modify exclude group bottom bottom
fix 1 all gravity 1.0 chute 26.0
fix 2 bottom freeze
fix 3 active nve/sphere
compute 1 all erotate/sphere
thermo_style custom step atoms ke c_1 vol
thermo_modify norm no
thermo 100
run 100
Neighbor list info ...
2 neighbor list requests
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 1.1
ghost atom cutoff = 1.1
binsize = 0.55 -> bins = 146 73 68
Memory usage per processor = 15.7007 Mbytes
Step Atoms KinEng 1 Volume
0 128000 3136556.5 6404.5051 119335.13
100 128000 3137168.3 6284.3873 119338.83
Loop time of 0.906913 on 4 procs for 100 steps with 128000 atoms
Performance: 952.683 tau/day, 110.264 timesteps/s
99.7% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.51454 | 0.53094 | 0.55381 | 2.0 | 58.54
Neigh | 0.042597 | 0.043726 | 0.045801 | 0.6 | 4.82
Comm | 0.063027 | 0.064657 | 0.067367 | 0.7 | 7.13
Output | 0.00024891 | 0.00059718 | 0.00086498 | 1.0 | 0.07
Modify | 0.16508 | 0.17656 | 0.1925 | 2.6 | 19.47
Other | | 0.09043 | | | 9.97
Nlocal: 32000 ave 32000 max 32000 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Nghost: 5463 ave 5463 max 5463 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Neighs: 115133 ave 115133 max 115133 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Total # of neighbors = 460532
Ave neighs/atom = 3.59791
Neighbor list builds = 2
Dangerous builds = 0
Total wall time: 0:00:01

View File

@ -1,83 +0,0 @@
LAMMPS (15 Feb 2016)
# bulk Cu lattice
variable x index 1
variable y index 1
variable z index 1
variable xx equal 20*$x
variable xx equal 20*1
variable yy equal 20*$y
variable yy equal 20*1
variable zz equal 20*$z
variable zz equal 20*1
units metal
atom_style atomic
lattice fcc 3.615
Lattice spacing in x,y,z = 3.615 3.615 3.615
region box block 0 ${xx} 0 ${yy} 0 ${zz}
region box block 0 20 0 ${yy} 0 ${zz}
region box block 0 20 0 20 0 ${zz}
region box block 0 20 0 20 0 20
create_box 1 box
Created orthogonal box = (0 0 0) to (72.3 72.3 72.3)
1 by 1 by 1 MPI processor grid
create_atoms 1 box
Created 32000 atoms
pair_style eam
pair_coeff 1 1 Cu_u3.eam
Reading potential file Cu_u3.eam with DATE: 2007-06-11
velocity all create 1600.0 376847 loop geom
neighbor 1.0 bin
neigh_modify every 1 delay 5 check yes
fix 1 all nve
timestep 0.005
thermo 50
run 100
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 5 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 5.95
ghost atom cutoff = 5.95
binsize = 2.975 -> bins = 25 25 25
Memory usage per processor = 10.2238 Mbytes
Step Temp E_pair E_mol TotEng Press
0 1600 -113280 0 -106662.09 18703.573
50 781.69049 -109873.35 0 -106640.13 52273.088
100 801.832 -109957.3 0 -106640.77 51322.821
Loop time of 5.90097 on 1 procs for 100 steps with 32000 atoms
Performance: 7.321 ns/day, 3.278 hours/ns, 16.946 timesteps/s
99.9% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 5.2121 | 5.2121 | 5.2121 | 0.0 | 88.33
Neigh | 0.58212 | 0.58212 | 0.58212 | 0.0 | 9.86
Comm | 0.030392 | 0.030392 | 0.030392 | 0.0 | 0.52
Output | 0.00023389 | 0.00023389 | 0.00023389 | 0.0 | 0.00
Modify | 0.060871 | 0.060871 | 0.060871 | 0.0 | 1.03
Other | | 0.01527 | | | 0.26
Nlocal: 32000 ave 32000 max 32000 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 19909 ave 19909 max 19909 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 1.20778e+06 ave 1.20778e+06 max 1.20778e+06 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 1207784
Ave neighs/atom = 37.7433
Neighbor list builds = 13
Dangerous builds = 0
Total wall time: 0:00:06

View File

@ -1,83 +0,0 @@
LAMMPS (15 Feb 2016)
# bulk Cu lattice
variable x index 1
variable y index 1
variable z index 1
variable xx equal 20*$x
variable xx equal 20*1
variable yy equal 20*$y
variable yy equal 20*1
variable zz equal 20*$z
variable zz equal 20*1
units metal
atom_style atomic
lattice fcc 3.615
Lattice spacing in x,y,z = 3.615 3.615 3.615
region box block 0 ${xx} 0 ${yy} 0 ${zz}
region box block 0 20 0 ${yy} 0 ${zz}
region box block 0 20 0 20 0 ${zz}
region box block 0 20 0 20 0 20
create_box 1 box
Created orthogonal box = (0 0 0) to (72.3 72.3 72.3)
1 by 2 by 2 MPI processor grid
create_atoms 1 box
Created 32000 atoms
pair_style eam
pair_coeff 1 1 Cu_u3.eam
Reading potential file Cu_u3.eam with DATE: 2007-06-11
velocity all create 1600.0 376847 loop geom
neighbor 1.0 bin
neigh_modify every 1 delay 5 check yes
fix 1 all nve
timestep 0.005
thermo 50
run 100
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 5 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 5.95
ghost atom cutoff = 5.95
binsize = 2.975 -> bins = 25 25 25
Memory usage per processor = 5.09629 Mbytes
Step Temp E_pair E_mol TotEng Press
0 1600 -113280 0 -106662.09 18703.573
50 781.69049 -109873.35 0 -106640.13 52273.088
100 801.832 -109957.3 0 -106640.77 51322.821
Loop time of 1.58019 on 4 procs for 100 steps with 32000 atoms
Performance: 27.338 ns/day, 0.878 hours/ns, 63.284 timesteps/s
99.8% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 1.3617 | 1.366 | 1.3723 | 0.4 | 86.45
Neigh | 0.15123 | 0.15232 | 0.15374 | 0.2 | 9.64
Comm | 0.033429 | 0.041275 | 0.047066 | 2.7 | 2.61
Output | 0.00011301 | 0.0001573 | 0.000211 | 0.3 | 0.01
Modify | 0.014694 | 0.015085 | 0.015421 | 0.2 | 0.95
Other | | 0.005342 | | | 0.34
Nlocal: 8000 ave 8008 max 7993 min
Histogram: 2 0 0 0 0 0 0 0 1 1
Nghost: 9130.25 ave 9138 max 9122 min
Histogram: 2 0 0 0 0 0 0 0 0 2
Neighs: 301946 ave 302392 max 301360 min
Histogram: 1 0 0 0 1 0 0 0 1 1
Total # of neighbors = 1207784
Ave neighs/atom = 37.7433
Neighbor list builds = 13
Dangerous builds = 0
Total wall time: 0:00:01

View File

@ -1,83 +0,0 @@
LAMMPS (15 Feb 2016)
# bulk Cu lattice
variable x index 1
variable y index 1
variable z index 1
variable xx equal 20*$x
variable xx equal 20*2
variable yy equal 20*$y
variable yy equal 20*2
variable zz equal 20*$z
variable zz equal 20*1
units metal
atom_style atomic
lattice fcc 3.615
Lattice spacing in x,y,z = 3.615 3.615 3.615
region box block 0 ${xx} 0 ${yy} 0 ${zz}
region box block 0 40 0 ${yy} 0 ${zz}
region box block 0 40 0 40 0 ${zz}
region box block 0 40 0 40 0 20
create_box 1 box
Created orthogonal box = (0 0 0) to (144.6 144.6 72.3)
2 by 2 by 1 MPI processor grid
create_atoms 1 box
Created 128000 atoms
pair_style eam
pair_coeff 1 1 Cu_u3.eam
Reading potential file Cu_u3.eam with DATE: 2007-06-11
velocity all create 1600.0 376847 loop geom
neighbor 1.0 bin
neigh_modify every 1 delay 5 check yes
fix 1 all nve
timestep 0.005
thermo 50
run 100
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 5 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 5.95
ghost atom cutoff = 5.95
binsize = 2.975 -> bins = 49 49 25
Memory usage per processor = 10.1402 Mbytes
Step Temp E_pair E_mol TotEng Press
0 1600 -453120 0 -426647.73 18704.012
50 779.50001 -439457.02 0 -426560.06 52355.276
100 797.97828 -439764.76 0 -426562.07 51474.74
Loop time of 6.46849 on 4 procs for 100 steps with 128000 atoms
Performance: 6.679 ns/day, 3.594 hours/ns, 15.460 timesteps/s
99.9% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 5.581 | 5.5997 | 5.6265 | 0.8 | 86.57
Neigh | 0.65287 | 0.658 | 0.66374 | 0.5 | 10.17
Comm | 0.075706 | 0.11015 | 0.13655 | 7.2 | 1.70
Output | 0.00026488 | 0.00028312 | 0.00029302 | 0.1 | 0.00
Modify | 0.069607 | 0.072407 | 0.074555 | 0.7 | 1.12
Other | | 0.02794 | | | 0.43
Nlocal: 32000 ave 32092 max 31914 min
Histogram: 1 0 0 1 0 1 0 0 0 1
Nghost: 19910 ave 19997 max 19818 min
Histogram: 1 0 0 0 1 0 1 0 0 1
Neighs: 1.20728e+06 ave 1.21142e+06 max 1.2036e+06 min
Histogram: 1 0 0 1 1 0 0 0 0 1
Total # of neighbors = 4829126
Ave neighs/atom = 37.7275
Neighbor list builds = 14
Dangerous builds = 0
Total wall time: 0:00:06

View File

@ -1,79 +0,0 @@
LAMMPS (15 Feb 2016)
# 3d Lennard-Jones melt
variable x index 1
variable y index 1
variable z index 1
variable xx equal 20*$x
variable xx equal 20*1
variable yy equal 20*$y
variable yy equal 20*1
variable zz equal 20*$z
variable zz equal 20*1
units lj
atom_style atomic
lattice fcc 0.8442
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
region box block 0 ${xx} 0 ${yy} 0 ${zz}
region box block 0 20 0 ${yy} 0 ${zz}
region box block 0 20 0 20 0 ${zz}
region box block 0 20 0 20 0 20
create_box 1 box
Created orthogonal box = (0 0 0) to (33.5919 33.5919 33.5919)
1 by 1 by 1 MPI processor grid
create_atoms 1 box
Created 32000 atoms
mass 1 1.0
velocity all create 1.44 87287 loop geom
pair_style lj/cut 2.5
pair_coeff 1 1 1.0 1.0 2.5
neighbor 0.3 bin
neigh_modify delay 0 every 20 check no
fix 1 all nve
run 100
Neighbor list info ...
1 neighbor list requests
update every 20 steps, delay 0 steps, check no
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 2.8
ghost atom cutoff = 2.8
binsize = 1.4 -> bins = 24 24 24
Memory usage per processor = 8.21387 Mbytes
Step Temp E_pair E_mol TotEng Press
0 1.44 -6.7733681 0 -4.6134356 -5.0197073
100 0.7574531 -5.7585055 0 -4.6223613 0.20726105
Loop time of 2.26309 on 1 procs for 100 steps with 32000 atoms
Performance: 19088.920 tau/day, 44.187 timesteps/s
99.9% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 1.9341 | 1.9341 | 1.9341 | 0.0 | 85.46
Neigh | 0.2442 | 0.2442 | 0.2442 | 0.0 | 10.79
Comm | 0.024158 | 0.024158 | 0.024158 | 0.0 | 1.07
Output | 0.00011611 | 0.00011611 | 0.00011611 | 0.0 | 0.01
Modify | 0.053222 | 0.053222 | 0.053222 | 0.0 | 2.35
Other | | 0.007258 | | | 0.32
Nlocal: 32000 ave 32000 max 32000 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 19657 ave 19657 max 19657 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 1.20283e+06 ave 1.20283e+06 max 1.20283e+06 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 1202833
Ave neighs/atom = 37.5885
Neighbor list builds = 5
Dangerous builds not checked
Total wall time: 0:00:02

View File

@ -1,79 +0,0 @@
LAMMPS (15 Feb 2016)
# 3d Lennard-Jones melt
variable x index 1
variable y index 1
variable z index 1
variable xx equal 20*$x
variable xx equal 20*1
variable yy equal 20*$y
variable yy equal 20*1
variable zz equal 20*$z
variable zz equal 20*1
units lj
atom_style atomic
lattice fcc 0.8442
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
region box block 0 ${xx} 0 ${yy} 0 ${zz}
region box block 0 20 0 ${yy} 0 ${zz}
region box block 0 20 0 20 0 ${zz}
region box block 0 20 0 20 0 20
create_box 1 box
Created orthogonal box = (0 0 0) to (33.5919 33.5919 33.5919)
1 by 2 by 2 MPI processor grid
create_atoms 1 box
Created 32000 atoms
mass 1 1.0
velocity all create 1.44 87287 loop geom
pair_style lj/cut 2.5
pair_coeff 1 1 1.0 1.0 2.5
neighbor 0.3 bin
neigh_modify delay 0 every 20 check no
fix 1 all nve
run 100
Neighbor list info ...
1 neighbor list requests
update every 20 steps, delay 0 steps, check no
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 2.8
ghost atom cutoff = 2.8
binsize = 1.4 -> bins = 24 24 24
Memory usage per processor = 4.09506 Mbytes
Step Temp E_pair E_mol TotEng Press
0 1.44 -6.7733681 0 -4.6134356 -5.0197073
100 0.7574531 -5.7585055 0 -4.6223613 0.20726105
Loop time of 0.640733 on 4 procs for 100 steps with 32000 atoms
Performance: 67422.779 tau/day, 156.071 timesteps/s
99.7% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.49487 | 0.51733 | 0.5322 | 1.9 | 80.74
Neigh | 0.061131 | 0.063685 | 0.065433 | 0.6 | 9.94
Comm | 0.02457 | 0.042349 | 0.069598 | 8.1 | 6.61
Output | 5.9843e-05 | 6.3181e-05 | 6.6996e-05 | 0.0 | 0.01
Modify | 0.012961 | 0.013863 | 0.014491 | 0.5 | 2.16
Other | | 0.003448 | | | 0.54
Nlocal: 8000 ave 8037 max 7964 min
Histogram: 2 0 0 0 0 0 0 0 1 1
Nghost: 9007.5 ave 9050 max 8968 min
Histogram: 1 1 0 0 0 0 0 1 0 1
Neighs: 300708 ave 305113 max 297203 min
Histogram: 1 0 0 1 1 0 0 0 0 1
Total # of neighbors = 1202833
Ave neighs/atom = 37.5885
Neighbor list builds = 5
Dangerous builds not checked
Total wall time: 0:00:00

View File

@ -1,79 +0,0 @@
LAMMPS (15 Feb 2016)
# 3d Lennard-Jones melt
variable x index 1
variable y index 1
variable z index 1
variable xx equal 20*$x
variable xx equal 20*2
variable yy equal 20*$y
variable yy equal 20*2
variable zz equal 20*$z
variable zz equal 20*1
units lj
atom_style atomic
lattice fcc 0.8442
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
region box block 0 ${xx} 0 ${yy} 0 ${zz}
region box block 0 40 0 ${yy} 0 ${zz}
region box block 0 40 0 40 0 ${zz}
region box block 0 40 0 40 0 20
create_box 1 box
Created orthogonal box = (0 0 0) to (67.1838 67.1838 33.5919)
2 by 2 by 1 MPI processor grid
create_atoms 1 box
Created 128000 atoms
mass 1 1.0
velocity all create 1.44 87287 loop geom
pair_style lj/cut 2.5
pair_coeff 1 1 1.0 1.0 2.5
neighbor 0.3 bin
neigh_modify delay 0 every 20 check no
fix 1 all nve
run 100
Neighbor list info ...
1 neighbor list requests
update every 20 steps, delay 0 steps, check no
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 2.8
ghost atom cutoff = 2.8
binsize = 1.4 -> bins = 48 48 24
Memory usage per processor = 8.13678 Mbytes
Step Temp E_pair E_mol TotEng Press
0 1.44 -6.7733681 0 -4.6133849 -5.0196788
100 0.75841891 -5.759957 0 -4.6223375 0.20008866
Loop time of 2.57914 on 4 procs for 100 steps with 128000 atoms
Performance: 16749.768 tau/day, 38.773 timesteps/s
99.8% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 2.042 | 2.1092 | 2.1668 | 3.1 | 81.78
Neigh | 0.23982 | 0.24551 | 0.25233 | 1.0 | 9.52
Comm | 0.067088 | 0.13887 | 0.22681 | 15.7 | 5.38
Output | 0.00013185 | 0.00021666 | 0.00027108 | 0.4 | 0.01
Modify | 0.060348 | 0.071269 | 0.077063 | 2.5 | 2.76
Other | | 0.01403 | | | 0.54
Nlocal: 32000 ave 32060 max 31939 min
Histogram: 1 0 1 0 0 0 0 1 0 1
Nghost: 19630.8 ave 19681 max 19562 min
Histogram: 1 0 0 0 1 0 0 0 1 1
Neighs: 1.20195e+06 ave 1.20354e+06 max 1.19931e+06 min
Histogram: 1 0 0 0 0 0 0 2 0 1
Total # of neighbors = 4807797
Ave neighs/atom = 37.5609
Neighbor list builds = 5
Dangerous builds not checked
Total wall time: 0:00:02

View File

@ -1,121 +0,0 @@
LAMMPS (15 Feb 2016)
# Rhodopsin model
units real
neigh_modify delay 5 every 1
atom_style full
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
pair_style lj/charmm/coul/long 8.0 10.0
pair_modify mix arithmetic
kspace_style pppm 1e-4
read_data data.rhodo
orthogonal box = (-27.5 -38.5 -36.3646) to (27.5 38.5 36.3615)
1 by 1 by 1 MPI processor grid
reading atoms ...
32000 atoms
reading velocities ...
32000 velocities
scanning bonds ...
4 = max bonds/atom
scanning angles ...
8 = max angles/atom
scanning dihedrals ...
18 = max dihedrals/atom
scanning impropers ...
2 = max impropers/atom
reading bonds ...
27723 bonds
reading angles ...
40467 angles
reading dihedrals ...
56829 dihedrals
reading impropers ...
1034 impropers
4 = max # of 1-2 neighbors
12 = max # of 1-3 neighbors
24 = max # of 1-4 neighbors
26 = max # of special neighbors
fix 1 all shake 0.0001 5 0 m 1.0 a 232
1617 = # of size 2 clusters
3633 = # of size 3 clusters
747 = # of size 4 clusters
4233 = # of frozen angles
fix 2 all npt temp 300.0 300.0 100.0 z 0.0 0.0 1000.0 mtk no pchain 0 tchain 1
special_bonds charmm
thermo 50
thermo_style multi
timestep 2.0
run 100
PPPM initialization ...
G vector (1/distance) = 0.248835
grid = 25 32 32
stencil order = 5
estimated absolute RMS force accuracy = 0.0355478
estimated relative force accuracy = 0.000107051
using double precision FFTs
3d grid and FFT values/proc = 41070 25600
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 5 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 12
ghost atom cutoff = 12
binsize = 6 -> bins = 10 13 13
Memory usage per processor = 91.7487 Mbytes
---------------- Step 0 ----- CPU = 0.0000 (sec) ----------------
TotEng = -25356.2064 KinEng = 21444.8313 Temp = 299.0397
PotEng = -46801.0377 E_bond = 2537.9940 E_angle = 10921.3742
E_dihed = 5211.7865 E_impro = 213.5116 E_vdwl = -2307.8634
E_coul = 207025.8927 E_long = -270403.7333 Press = -142.6035
Volume = 307995.0335
---------------- Step 50 ----- CPU = 17.6362 (sec) ----------------
TotEng = -25330.0828 KinEng = 21501.0029 Temp = 299.8230
PotEng = -46831.0857 E_bond = 2471.7004 E_angle = 10836.4975
E_dihed = 5239.6299 E_impro = 227.1218 E_vdwl = -1993.2754
E_coul = 206797.6331 E_long = -270410.3930 Press = 237.6701
Volume = 308031.5639
---------------- Step 100 ----- CPU = 35.9089 (sec) ----------------
TotEng = -25290.7593 KinEng = 21592.0117 Temp = 301.0920
PotEng = -46882.7709 E_bond = 2567.9807 E_angle = 10781.9408
E_dihed = 5198.7432 E_impro = 216.7834 E_vdwl = -1902.4783
E_coul = 206659.2326 E_long = -270404.9733 Press = 6.9960
Volume = 308133.9888
Loop time of 35.9089 on 1 procs for 100 steps with 32000 atoms
Performance: 0.481 ns/day, 49.874 hours/ns, 2.785 timesteps/s
99.9% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 25.731 | 25.731 | 25.731 | 0.0 | 71.66
Bond | 1.2771 | 1.2771 | 1.2771 | 0.0 | 3.56
Kspace | 3.2094 | 3.2094 | 3.2094 | 0.0 | 8.94
Neigh | 4.4538 | 4.4538 | 4.4538 | 0.0 | 12.40
Comm | 0.068507 | 0.068507 | 0.068507 | 0.0 | 0.19
Output | 0.00025916 | 0.00025916 | 0.00025916 | 0.0 | 0.00
Modify | 1.1417 | 1.1417 | 1.1417 | 0.0 | 3.18
Other | | 0.027 | | | 0.08
Nlocal: 32000 ave 32000 max 32000 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 47958 ave 47958 max 47958 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 1.20281e+07 ave 1.20281e+07 max 1.20281e+07 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 12028107
Ave neighs/atom = 375.878
Ave special neighs/atom = 7.43187
Neighbor list builds = 11
Dangerous builds = 0
Total wall time: 0:00:37

View File

@ -1,121 +0,0 @@
LAMMPS (15 Feb 2016)
# Rhodopsin model
units real
neigh_modify delay 5 every 1
atom_style full
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
pair_style lj/charmm/coul/long 8.0 10.0
pair_modify mix arithmetic
kspace_style pppm 1e-4
read_data data.rhodo
orthogonal box = (-27.5 -38.5 -36.3646) to (27.5 38.5 36.3615)
1 by 2 by 2 MPI processor grid
reading atoms ...
32000 atoms
reading velocities ...
32000 velocities
scanning bonds ...
4 = max bonds/atom
scanning angles ...
8 = max angles/atom
scanning dihedrals ...
18 = max dihedrals/atom
scanning impropers ...
2 = max impropers/atom
reading bonds ...
27723 bonds
reading angles ...
40467 angles
reading dihedrals ...
56829 dihedrals
reading impropers ...
1034 impropers
4 = max # of 1-2 neighbors
12 = max # of 1-3 neighbors
24 = max # of 1-4 neighbors
26 = max # of special neighbors
fix 1 all shake 0.0001 5 0 m 1.0 a 232
1617 = # of size 2 clusters
3633 = # of size 3 clusters
747 = # of size 4 clusters
4233 = # of frozen angles
fix 2 all npt temp 300.0 300.0 100.0 z 0.0 0.0 1000.0 mtk no pchain 0 tchain 1
special_bonds charmm
thermo 50
thermo_style multi
timestep 2.0
run 100
PPPM initialization ...
G vector (1/distance) = 0.248835
grid = 25 32 32
stencil order = 5
estimated absolute RMS force accuracy = 0.0355478
estimated relative force accuracy = 0.000107051
using double precision FFTs
3d grid and FFT values/proc = 13230 6400
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 5 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 12
ghost atom cutoff = 12
binsize = 6 -> bins = 10 13 13
Memory usage per processor = 36.629 Mbytes
---------------- Step 0 ----- CPU = 0.0000 (sec) ----------------
TotEng = -25356.2064 KinEng = 21444.8313 Temp = 299.0397
PotEng = -46801.0377 E_bond = 2537.9940 E_angle = 10921.3742
E_dihed = 5211.7865 E_impro = 213.5116 E_vdwl = -2307.8634
E_coul = 207025.8927 E_long = -270403.7333 Press = -142.6035
Volume = 307995.0335
---------------- Step 50 ----- CPU = 4.7461 (sec) ----------------
TotEng = -25330.0828 KinEng = 21501.0029 Temp = 299.8230
PotEng = -46831.0857 E_bond = 2471.7004 E_angle = 10836.4975
E_dihed = 5239.6299 E_impro = 227.1218 E_vdwl = -1993.2754
E_coul = 206797.6331 E_long = -270410.3930 Press = 237.6701
Volume = 308031.5639
---------------- Step 100 ----- CPU = 9.6332 (sec) ----------------
TotEng = -25290.7591 KinEng = 21592.0117 Temp = 301.0920
PotEng = -46882.7708 E_bond = 2567.9807 E_angle = 10781.9408
E_dihed = 5198.7432 E_impro = 216.7834 E_vdwl = -1902.4783
E_coul = 206659.2327 E_long = -270404.9733 Press = 6.9960
Volume = 308133.9888
Loop time of 9.63322 on 4 procs for 100 steps with 32000 atoms
Performance: 1.794 ns/day, 13.379 hours/ns, 10.381 timesteps/s
99.9% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 6.4364 | 6.5993 | 6.7208 | 4.7 | 68.51
Bond | 0.30755 | 0.32435 | 0.35704 | 3.4 | 3.37
Kspace | 0.92248 | 1.0782 | 1.2597 | 13.0 | 11.19
Neigh | 1.1669 | 1.1672 | 1.1675 | 0.0 | 12.12
Comm | 0.094674 | 0.098065 | 0.10543 | 1.4 | 1.02
Output | 0.00015521 | 0.00016224 | 0.00018215 | 0.1 | 0.00
Modify | 0.32982 | 0.34654 | 0.35365 | 1.6 | 3.60
Other | | 0.01943 | | | 0.20
Nlocal: 8000 ave 8143 max 7933 min
Histogram: 1 2 0 0 0 0 0 0 0 1
Nghost: 22733.5 ave 22769 max 22693 min
Histogram: 1 0 0 0 0 2 0 0 0 1
Neighs: 3.00703e+06 ave 3.0975e+06 max 2.96493e+06 min
Histogram: 1 2 0 0 0 0 0 0 0 1
Total # of neighbors = 12028107
Ave neighs/atom = 375.878
Ave special neighs/atom = 7.43187
Neighbor list builds = 11
Dangerous builds = 0
Total wall time: 0:00:10

View File

@ -1,142 +0,0 @@
LAMMPS (15 Feb 2016)
# Rhodopsin model
variable x index 1
variable y index 1
variable z index 1
units real
neigh_modify delay 5 every 1
atom_style full
atom_modify map hash
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
pair_style lj/charmm/coul/long 8.0 10.0
pair_modify mix arithmetic
kspace_style pppm 1e-4
read_data data.rhodo
orthogonal box = (-27.5 -38.5 -36.3646) to (27.5 38.5 36.3615)
1 by 2 by 2 MPI processor grid
reading atoms ...
32000 atoms
reading velocities ...
32000 velocities
scanning bonds ...
4 = max bonds/atom
scanning angles ...
8 = max angles/atom
scanning dihedrals ...
18 = max dihedrals/atom
scanning impropers ...
2 = max impropers/atom
reading bonds ...
27723 bonds
reading angles ...
40467 angles
reading dihedrals ...
56829 dihedrals
reading impropers ...
1034 impropers
4 = max # of 1-2 neighbors
12 = max # of 1-3 neighbors
24 = max # of 1-4 neighbors
26 = max # of special neighbors
replicate $x $y $z
replicate 2 $y $z
replicate 2 2 $z
replicate 2 2 1
orthogonal box = (-27.5 -38.5 -36.3646) to (82.5 115.5 36.3615)
2 by 2 by 1 MPI processor grid
128000 atoms
110892 bonds
161868 angles
227316 dihedrals
4136 impropers
4 = max # of 1-2 neighbors
12 = max # of 1-3 neighbors
24 = max # of 1-4 neighbors
26 = max # of special neighbors
fix 1 all shake 0.0001 5 0 m 1.0 a 232
6468 = # of size 2 clusters
14532 = # of size 3 clusters
2988 = # of size 4 clusters
16932 = # of frozen angles
fix 2 all npt temp 300.0 300.0 100.0 z 0.0 0.0 1000.0 mtk no pchain 0 tchain 1
special_bonds charmm
thermo 50
thermo_style multi
timestep 2.0
run 100
PPPM initialization ...
G vector (1/distance) = 0.248593
grid = 48 60 36
stencil order = 5
estimated absolute RMS force accuracy = 0.0359793
estimated relative force accuracy = 0.00010835
using double precision FFTs
3d grid and FFT values/proc = 41615 25920
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 5 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 12
ghost atom cutoff = 12
binsize = 6 -> bins = 19 26 13
Memory usage per processor = 95.5339 Mbytes
---------------- Step 0 ----- CPU = 0.0000 (sec) ----------------
TotEng = -101425.4887 KinEng = 85779.3251 Temp = 299.0304
PotEng = -187204.8138 E_bond = 10151.9760 E_angle = 43685.4968
E_dihed = 20847.1460 E_impro = 854.0463 E_vdwl = -9231.4537
E_coul = 827053.5824 E_long = -1080565.6077 Press = -142.3092
Volume = 1231980.1340
---------------- Step 50 ----- CPU = 18.7806 (sec) ----------------
TotEng = -101320.2677 KinEng = 86003.4837 Temp = 299.8118
PotEng = -187323.7514 E_bond = 9887.1072 E_angle = 43346.7922
E_dihed = 20958.7032 E_impro = 908.4715 E_vdwl = -7973.4457
E_coul = 826141.3831 E_long = -1080592.7629 Press = 238.0161
Volume = 1232126.1855
---------------- Step 100 ----- CPU = 38.3684 (sec) ----------------
TotEng = -101158.1849 KinEng = 86355.6149 Temp = 301.0393
PotEng = -187513.7998 E_bond = 10272.0693 E_angle = 43128.6454
E_dihed = 20793.9759 E_impro = 867.0826 E_vdwl = -7586.7186
E_coul = 825583.7122 E_long = -1080572.5667 Press = 15.2151
Volume = 1232535.8423
Loop time of 38.3684 on 4 procs for 100 steps with 128000 atoms
Performance: 0.450 ns/day, 53.289 hours/ns, 2.606 timesteps/s
99.9% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 26.205 | 26.538 | 26.911 | 5.0 | 69.17
Bond | 1.298 | 1.3125 | 1.3277 | 1.0 | 3.42
Kspace | 3.7099 | 4.0992 | 4.4422 | 13.3 | 10.68
Neigh | 4.6137 | 4.6144 | 4.615 | 0.0 | 12.03
Comm | 0.21398 | 0.21992 | 0.22886 | 1.2 | 0.57
Output | 0.00030518 | 0.00031543 | 0.00033307 | 0.1 | 0.00
Modify | 1.5066 | 1.5232 | 1.5388 | 1.0 | 3.97
Other | | 0.06051 | | | 0.16
Nlocal: 32000 ave 32000 max 32000 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Nghost: 47957 ave 47957 max 47957 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Neighs: 1.20281e+07 ave 1.20572e+07 max 1.1999e+07 min
Histogram: 2 0 0 0 0 0 0 0 0 2
Total # of neighbors = 48112472
Ave neighs/atom = 375.879
Ave special neighs/atom = 7.43187
Neighbor list builds = 11
Dangerous builds = 0
Total wall time: 0:00:39

View File

@ -0,0 +1,78 @@
LAMMPS (6 Oct 2016)
# FENE beadspring benchmark
units lj
atom_style bond
special_bonds fene
read_data data.chain
orthogonal box = (-16.796 -16.796 -16.796) to (16.796 16.796 16.796)
1 by 1 by 1 MPI processor grid
reading atoms ...
32000 atoms
reading velocities ...
32000 velocities
scanning bonds ...
1 = max bonds/atom
reading bonds ...
31680 bonds
2 = max # of 1-2 neighbors
2 = max # of special neighbors
neighbor 0.4 bin
neigh_modify every 1 delay 1
bond_style fene
bond_coeff 1 30.0 1.5 1.0 1.0
pair_style lj/cut 1.12
pair_modify shift yes
pair_coeff 1 1 1.0 1.0 1.12
fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297
thermo 100
timestep 0.012
run 100
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 1 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 1.52
ghost atom cutoff = 1.52
binsize = 0.76 -> bins = 45 45 45
Memory usage per processor = 12.0423 Mbytes
Step Temp E_pair E_mol TotEng Press
0 0.97029772 0.44484087 20.494523 22.394765 4.6721833
100 0.9729966 0.4361122 20.507698 22.40326 4.6548819
Loop time of 0.977647 on 1 procs for 100 steps with 32000 atoms
Performance: 106050.541 tau/day, 102.286 timesteps/s
99.9% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.19421 | 0.19421 | 0.19421 | 0.0 | 19.86
Bond | 0.08741 | 0.08741 | 0.08741 | 0.0 | 8.94
Neigh | 0.45791 | 0.45791 | 0.45791 | 0.0 | 46.84
Comm | 0.032649 | 0.032649 | 0.032649 | 0.0 | 3.34
Output | 0.00012207 | 0.00012207 | 0.00012207 | 0.0 | 0.01
Modify | 0.18071 | 0.18071 | 0.18071 | 0.0 | 18.48
Other | | 0.02464 | | | 2.52
Nlocal: 32000 ave 32000 max 32000 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 9493 ave 9493 max 9493 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 155873 ave 155873 max 155873 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 155873
Ave neighs/atom = 4.87103
Ave special neighs/atom = 1.98
Neighbor list builds = 25
Dangerous builds = 0
Total wall time: 0:00:01

View File

@ -0,0 +1,78 @@
LAMMPS (6 Oct 2016)
# FENE beadspring benchmark
units lj
atom_style bond
special_bonds fene
read_data data.chain
orthogonal box = (-16.796 -16.796 -16.796) to (16.796 16.796 16.796)
1 by 2 by 2 MPI processor grid
reading atoms ...
32000 atoms
reading velocities ...
32000 velocities
scanning bonds ...
1 = max bonds/atom
reading bonds ...
31680 bonds
2 = max # of 1-2 neighbors
2 = max # of special neighbors
neighbor 0.4 bin
neigh_modify every 1 delay 1
bond_style fene
bond_coeff 1 30.0 1.5 1.0 1.0
pair_style lj/cut 1.12
pair_modify shift yes
pair_coeff 1 1 1.0 1.0 1.12
fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297
thermo 100
timestep 0.012
run 100
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 1 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 1.52
ghost atom cutoff = 1.52
binsize = 0.76 -> bins = 45 45 45
Memory usage per processor = 4.14663 Mbytes
Step Temp E_pair E_mol TotEng Press
0 0.97029772 0.44484087 20.494523 22.394765 4.6721833
100 0.97145835 0.43803883 20.502691 22.397872 4.626988
Loop time of 0.269205 on 4 procs for 100 steps with 32000 atoms
Performance: 385133.446 tau/day, 371.464 timesteps/s
99.8% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.049383 | 0.049756 | 0.049988 | 0.1 | 18.48
Bond | 0.022701 | 0.022813 | 0.022872 | 0.0 | 8.47
Neigh | 0.11982 | 0.12002 | 0.12018 | 0.0 | 44.58
Comm | 0.020274 | 0.021077 | 0.022348 | 0.5 | 7.83
Output | 5.3167e-05 | 5.6148e-05 | 6.3181e-05 | 0.1 | 0.02
Modify | 0.046276 | 0.046809 | 0.047016 | 0.1 | 17.39
Other | | 0.008669 | | | 3.22
Nlocal: 8000 ave 8030 max 7974 min
Histogram: 1 0 0 1 0 1 0 0 0 1
Nghost: 4177 ave 4191 max 4160 min
Histogram: 1 0 0 0 1 0 0 1 0 1
Neighs: 38995.8 ave 39169 max 38852 min
Histogram: 1 0 0 1 1 0 0 0 0 1
Total # of neighbors = 155983
Ave neighs/atom = 4.87447
Ave special neighs/atom = 1.98
Neighbor list builds = 25
Dangerous builds = 0
Total wall time: 0:00:00

View File

@ -0,0 +1,94 @@
LAMMPS (6 Oct 2016)
# FENE beadspring benchmark
variable x index 1
variable y index 1
variable z index 1
units lj
atom_style bond
atom_modify map hash
special_bonds fene
read_data data.chain
orthogonal box = (-16.796 -16.796 -16.796) to (16.796 16.796 16.796)
1 by 2 by 2 MPI processor grid
reading atoms ...
32000 atoms
reading velocities ...
32000 velocities
scanning bonds ...
1 = max bonds/atom
reading bonds ...
31680 bonds
2 = max # of 1-2 neighbors
2 = max # of special neighbors
replicate $x $y $z
replicate 2 $y $z
replicate 2 2 $z
replicate 2 2 1
orthogonal box = (-16.796 -16.796 -16.796) to (50.388 50.388 16.796)
2 by 2 by 1 MPI processor grid
128000 atoms
126720 bonds
2 = max # of 1-2 neighbors
2 = max # of special neighbors
neighbor 0.4 bin
neigh_modify every 1 delay 1
bond_style fene
bond_coeff 1 30.0 1.5 1.0 1.0
pair_style lj/cut 1.12
pair_modify shift yes
pair_coeff 1 1 1.0 1.0 1.12
fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297
thermo 100
timestep 0.012
run 100
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 1 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 1.52
ghost atom cutoff = 1.52
binsize = 0.76 -> bins = 89 89 45
Memory usage per processor = 13.2993 Mbytes
Step Temp E_pair E_mol TotEng Press
0 0.97027498 0.44484087 20.494523 22.394765 4.6721833
100 0.97682955 0.44239968 20.500229 22.407862 4.6527025
Loop time of 1.14845 on 4 procs for 100 steps with 128000 atoms
Performance: 90277.919 tau/day, 87.074 timesteps/s
99.9% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.2203 | 0.22207 | 0.22386 | 0.3 | 19.34
Bond | 0.094861 | 0.095302 | 0.095988 | 0.1 | 8.30
Neigh | 0.52127 | 0.5216 | 0.52189 | 0.0 | 45.42
Comm | 0.079585 | 0.082159 | 0.084366 | 0.7 | 7.15
Output | 0.00013304 | 0.00015306 | 0.00018501 | 0.2 | 0.01
Modify | 0.18351 | 0.18419 | 0.1856 | 0.2 | 16.04
Other | | 0.04298 | | | 3.74
Nlocal: 32000 ave 32015 max 31983 min
Histogram: 1 0 1 0 0 0 0 0 1 1
Nghost: 9492 ave 9522 max 9432 min
Histogram: 1 0 0 0 0 0 1 0 0 2
Neighs: 155837 ave 156079 max 155506 min
Histogram: 1 0 0 0 0 1 0 0 1 1
Total # of neighbors = 623349
Ave neighs/atom = 4.86991
Ave special neighs/atom = 1.98
Neighbor list builds = 25
Dangerous builds = 0
Total wall time: 0:00:01

View File

@ -0,0 +1,80 @@
LAMMPS (6 Oct 2016)
# LAMMPS benchmark of granular flow
# chute flow of 32000 atoms with frozen base at 26 degrees
units lj
atom_style sphere
boundary p p fs
newton off
comm_modify vel yes
read_data data.chute
orthogonal box = (0 0 0) to (40 20 37.2886)
1 by 1 by 1 MPI processor grid
reading atoms ...
32000 atoms
reading velocities ...
32000 velocities
pair_style gran/hooke/history 200000.0 NULL 50.0 NULL 0.5 0
pair_coeff * *
neighbor 0.1 bin
neigh_modify every 1 delay 0
timestep 0.0001
group bottom type 2
912 atoms in group bottom
group active subtract all bottom
31088 atoms in group active
neigh_modify exclude group bottom bottom
fix 1 all gravity 1.0 chute 26.0
fix 2 bottom freeze
fix 3 active nve/sphere
compute 1 all erotate/sphere
thermo_style custom step atoms ke c_1 vol
thermo_modify norm no
thermo 100
run 100
Neighbor list info ...
2 neighbor list requests
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 1.1
ghost atom cutoff = 1.1
binsize = 0.55 -> bins = 73 37 68
Memory usage per processor = 16.0904 Mbytes
Step Atoms KinEng c_1 Volume
0 32000 784139.13 1601.1263 29833.783
100 32000 784292.08 1571.0968 29834.707
Loop time of 0.534174 on 1 procs for 100 steps with 32000 atoms
Performance: 1617.451 tau/day, 187.205 timesteps/s
99.8% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.33346 | 0.33346 | 0.33346 | 0.0 | 62.43
Neigh | 0.043902 | 0.043902 | 0.043902 | 0.0 | 8.22
Comm | 0.018391 | 0.018391 | 0.018391 | 0.0 | 3.44
Output | 0.00022411 | 0.00022411 | 0.00022411 | 0.0 | 0.04
Modify | 0.11666 | 0.11666 | 0.11666 | 0.0 | 21.84
Other | | 0.02153 | | | 4.03
Nlocal: 32000 ave 32000 max 32000 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 5463 ave 5463 max 5463 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 115133 ave 115133 max 115133 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 115133
Ave neighs/atom = 3.59791
Neighbor list builds = 2
Dangerous builds = 0
Total wall time: 0:00:00

View File

@ -0,0 +1,80 @@
LAMMPS (6 Oct 2016)
# LAMMPS benchmark of granular flow
# chute flow of 32000 atoms with frozen base at 26 degrees
units lj
atom_style sphere
boundary p p fs
newton off
comm_modify vel yes
read_data data.chute
orthogonal box = (0 0 0) to (40 20 37.2886)
2 by 1 by 2 MPI processor grid
reading atoms ...
32000 atoms
reading velocities ...
32000 velocities
pair_style gran/hooke/history 200000.0 NULL 50.0 NULL 0.5 0
pair_coeff * *
neighbor 0.1 bin
neigh_modify every 1 delay 0
timestep 0.0001
group bottom type 2
912 atoms in group bottom
group active subtract all bottom
31088 atoms in group active
neigh_modify exclude group bottom bottom
fix 1 all gravity 1.0 chute 26.0
fix 2 bottom freeze
fix 3 active nve/sphere
compute 1 all erotate/sphere
thermo_style custom step atoms ke c_1 vol
thermo_modify norm no
thermo 100
run 100
Neighbor list info ...
2 neighbor list requests
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 1.1
ghost atom cutoff = 1.1
binsize = 0.55 -> bins = 73 37 68
Memory usage per processor = 7.04927 Mbytes
Step Atoms KinEng c_1 Volume
0 32000 784139.13 1601.1263 29833.783
100 32000 784292.08 1571.0968 29834.707
Loop time of 0.171815 on 4 procs for 100 steps with 32000 atoms
Performance: 5028.653 tau/day, 582.020 timesteps/s
99.7% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.093691 | 0.096898 | 0.10005 | 0.8 | 56.40
Neigh | 0.011976 | 0.012059 | 0.012146 | 0.1 | 7.02
Comm | 0.016384 | 0.017418 | 0.018465 | 0.8 | 10.14
Output | 7.7963e-05 | 0.00010747 | 0.00013304 | 0.2 | 0.06
Modify | 0.031744 | 0.031943 | 0.032167 | 0.1 | 18.59
Other | | 0.01339 | | | 7.79
Nlocal: 8000 ave 8008 max 7992 min
Histogram: 2 0 0 0 0 0 0 0 0 2
Nghost: 2439 ave 2450 max 2428 min
Histogram: 2 0 0 0 0 0 0 0 0 2
Neighs: 29500.5 ave 30488 max 28513 min
Histogram: 2 0 0 0 0 0 0 0 0 2
Total # of neighbors = 118002
Ave neighs/atom = 3.68756
Neighbor list builds = 2
Dangerous builds = 0
Total wall time: 0:00:00

View File

@ -0,0 +1,90 @@
LAMMPS (6 Oct 2016)
# LAMMPS benchmark of granular flow
# chute flow of 32000 atoms with frozen base at 26 degrees
variable x index 1
variable y index 1
units lj
atom_style sphere
boundary p p fs
newton off
comm_modify vel yes
read_data data.chute
orthogonal box = (0 0 0) to (40 20 37.2886)
2 by 1 by 2 MPI processor grid
reading atoms ...
32000 atoms
reading velocities ...
32000 velocities
replicate $x $y 1
replicate 2 $y 1
replicate 2 2 1
orthogonal box = (0 0 0) to (80 40 37.2922)
2 by 2 by 1 MPI processor grid
128000 atoms
pair_style gran/hooke/history 200000.0 NULL 50.0 NULL 0.5 0
pair_coeff * *
neighbor 0.1 bin
neigh_modify every 1 delay 0
timestep 0.0001
group bottom type 2
3648 atoms in group bottom
group active subtract all bottom
124352 atoms in group active
neigh_modify exclude group bottom bottom
fix 1 all gravity 1.0 chute 26.0
fix 2 bottom freeze
fix 3 active nve/sphere
compute 1 all erotate/sphere
thermo_style custom step atoms ke c_1 vol
thermo_modify norm no
thermo 100
run 100
Neighbor list info ...
2 neighbor list requests
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 1.1
ghost atom cutoff = 1.1
binsize = 0.55 -> bins = 146 73 68
Memory usage per processor = 16.1265 Mbytes
Step Atoms KinEng c_1 Volume
0 128000 3136556.5 6404.5051 119335.13
100 128000 3137168.3 6284.3873 119338.83
Loop time of 0.832365 on 4 procs for 100 steps with 128000 atoms
Performance: 1038.006 tau/day, 120.140 timesteps/s
99.8% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.5178 | 0.52208 | 0.52793 | 0.5 | 62.72
Neigh | 0.047003 | 0.047113 | 0.047224 | 0.0 | 5.66
Comm | 0.05233 | 0.052988 | 0.053722 | 0.2 | 6.37
Output | 0.00024986 | 0.00032717 | 0.00036693 | 0.3 | 0.04
Modify | 0.15517 | 0.15627 | 0.15808 | 0.3 | 18.77
Other | | 0.0536 | | | 6.44
Nlocal: 32000 ave 32000 max 32000 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Nghost: 5463 ave 5463 max 5463 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Neighs: 115133 ave 115133 max 115133 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Total # of neighbors = 460532
Ave neighs/atom = 3.59791
Neighbor list builds = 2
Dangerous builds = 0
Total wall time: 0:00:00

View File

@ -0,0 +1,83 @@
LAMMPS (6 Oct 2016)
# bulk Cu lattice
variable x index 1
variable y index 1
variable z index 1
variable xx equal 20*$x
variable xx equal 20*1
variable yy equal 20*$y
variable yy equal 20*1
variable zz equal 20*$z
variable zz equal 20*1
units metal
atom_style atomic
lattice fcc 3.615
Lattice spacing in x,y,z = 3.615 3.615 3.615
region box block 0 ${xx} 0 ${yy} 0 ${zz}
region box block 0 20 0 ${yy} 0 ${zz}
region box block 0 20 0 20 0 ${zz}
region box block 0 20 0 20 0 20
create_box 1 box
Created orthogonal box = (0 0 0) to (72.3 72.3 72.3)
1 by 1 by 1 MPI processor grid
create_atoms 1 box
Created 32000 atoms
pair_style eam
pair_coeff 1 1 Cu_u3.eam
Reading potential file Cu_u3.eam with DATE: 2007-06-11
velocity all create 1600.0 376847 loop geom
neighbor 1.0 bin
neigh_modify every 1 delay 5 check yes
fix 1 all nve
timestep 0.005
thermo 50
run 100
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 5 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 5.95
ghost atom cutoff = 5.95
binsize = 2.975 -> bins = 25 25 25
Memory usage per processor = 11.2238 Mbytes
Step Temp E_pair E_mol TotEng Press
0 1600 -113280 0 -106662.09 18703.573
50 781.69049 -109873.35 0 -106640.13 52273.088
100 801.832 -109957.3 0 -106640.77 51322.821
Loop time of 5.96529 on 1 procs for 100 steps with 32000 atoms
Performance: 7.242 ns/day, 3.314 hours/ns, 16.764 timesteps/s
99.9% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 5.2743 | 5.2743 | 5.2743 | 0.0 | 88.42
Neigh | 0.59212 | 0.59212 | 0.59212 | 0.0 | 9.93
Comm | 0.030399 | 0.030399 | 0.030399 | 0.0 | 0.51
Output | 0.00026202 | 0.00026202 | 0.00026202 | 0.0 | 0.00
Modify | 0.050487 | 0.050487 | 0.050487 | 0.0 | 0.85
Other | | 0.01776 | | | 0.30
Nlocal: 32000 ave 32000 max 32000 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 19909 ave 19909 max 19909 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 1.20778e+06 ave 1.20778e+06 max 1.20778e+06 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 1207784
Ave neighs/atom = 37.7433
Neighbor list builds = 13
Dangerous builds = 0
Total wall time: 0:00:06

View File

@ -0,0 +1,83 @@
LAMMPS (6 Oct 2016)
# bulk Cu lattice
variable x index 1
variable y index 1
variable z index 1
variable xx equal 20*$x
variable xx equal 20*1
variable yy equal 20*$y
variable yy equal 20*1
variable zz equal 20*$z
variable zz equal 20*1
units metal
atom_style atomic
lattice fcc 3.615
Lattice spacing in x,y,z = 3.615 3.615 3.615
region box block 0 ${xx} 0 ${yy} 0 ${zz}
region box block 0 20 0 ${yy} 0 ${zz}
region box block 0 20 0 20 0 ${zz}
region box block 0 20 0 20 0 20
create_box 1 box
Created orthogonal box = (0 0 0) to (72.3 72.3 72.3)
1 by 2 by 2 MPI processor grid
create_atoms 1 box
Created 32000 atoms
pair_style eam
pair_coeff 1 1 Cu_u3.eam
Reading potential file Cu_u3.eam with DATE: 2007-06-11
velocity all create 1600.0 376847 loop geom
neighbor 1.0 bin
neigh_modify every 1 delay 5 check yes
fix 1 all nve
timestep 0.005
thermo 50
run 100
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 5 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 5.95
ghost atom cutoff = 5.95
binsize = 2.975 -> bins = 25 25 25
Memory usage per processor = 5.59629 Mbytes
Step Temp E_pair E_mol TotEng Press
0 1600 -113280 0 -106662.09 18703.573
50 781.69049 -109873.35 0 -106640.13 52273.088
100 801.832 -109957.3 0 -106640.77 51322.821
Loop time of 1.64562 on 4 procs for 100 steps with 32000 atoms
Performance: 26.252 ns/day, 0.914 hours/ns, 60.767 timesteps/s
99.8% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 1.408 | 1.4175 | 1.4341 | 0.9 | 86.14
Neigh | 0.15512 | 0.15722 | 0.16112 | 0.6 | 9.55
Comm | 0.029105 | 0.049986 | 0.061822 | 5.8 | 3.04
Output | 0.00010991 | 0.00011539 | 0.00012302 | 0.0 | 0.01
Modify | 0.013383 | 0.013573 | 0.013883 | 0.2 | 0.82
Other | | 0.007264 | | | 0.44
Nlocal: 8000 ave 8008 max 7993 min
Histogram: 2 0 0 0 0 0 0 0 1 1
Nghost: 9130.25 ave 9138 max 9122 min
Histogram: 2 0 0 0 0 0 0 0 0 2
Neighs: 301946 ave 302392 max 301360 min
Histogram: 1 0 0 0 1 0 0 0 1 1
Total # of neighbors = 1207784
Ave neighs/atom = 37.7433
Neighbor list builds = 13
Dangerous builds = 0
Total wall time: 0:00:01

View File

@ -0,0 +1,83 @@
LAMMPS (6 Oct 2016)
# bulk Cu lattice
variable x index 1
variable y index 1
variable z index 1
variable xx equal 20*$x
variable xx equal 20*2
variable yy equal 20*$y
variable yy equal 20*2
variable zz equal 20*$z
variable zz equal 20*1
units metal
atom_style atomic
lattice fcc 3.615
Lattice spacing in x,y,z = 3.615 3.615 3.615
region box block 0 ${xx} 0 ${yy} 0 ${zz}
region box block 0 40 0 ${yy} 0 ${zz}
region box block 0 40 0 40 0 ${zz}
region box block 0 40 0 40 0 20
create_box 1 box
Created orthogonal box = (0 0 0) to (144.6 144.6 72.3)
2 by 2 by 1 MPI processor grid
create_atoms 1 box
Created 128000 atoms
pair_style eam
pair_coeff 1 1 Cu_u3.eam
Reading potential file Cu_u3.eam with DATE: 2007-06-11
velocity all create 1600.0 376847 loop geom
neighbor 1.0 bin
neigh_modify every 1 delay 5 check yes
fix 1 all nve
timestep 0.005
thermo 50
run 100
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 5 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 5.95
ghost atom cutoff = 5.95
binsize = 2.975 -> bins = 49 49 25
Memory usage per processor = 11.1402 Mbytes
Step Temp E_pair E_mol TotEng Press
0 1600 -453120 0 -426647.73 18704.012
50 779.50001 -439457.02 0 -426560.06 52355.276
100 797.97828 -439764.76 0 -426562.07 51474.74
Loop time of 6.60121 on 4 procs for 100 steps with 128000 atoms
Performance: 6.544 ns/day, 3.667 hours/ns, 15.149 timesteps/s
99.9% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 5.6676 | 5.7011 | 5.7469 | 1.3 | 86.36
Neigh | 0.66423 | 0.67119 | 0.68082 | 0.7 | 10.17
Comm | 0.079367 | 0.13668 | 0.1791 | 10.5 | 2.07
Output | 0.00026989 | 0.00028622 | 0.00031209 | 0.1 | 0.00
Modify | 0.060046 | 0.062203 | 0.065009 | 0.9 | 0.94
Other | | 0.02974 | | | 0.45
Nlocal: 32000 ave 32092 max 31914 min
Histogram: 1 0 0 1 0 1 0 0 0 1
Nghost: 19910 ave 19997 max 19818 min
Histogram: 1 0 0 0 1 0 1 0 0 1
Neighs: 1.20728e+06 ave 1.21142e+06 max 1.2036e+06 min
Histogram: 1 0 0 1 1 0 0 0 0 1
Total # of neighbors = 4829126
Ave neighs/atom = 37.7275
Neighbor list builds = 14
Dangerous builds = 0
Total wall time: 0:00:06

View File

@ -0,0 +1,79 @@
LAMMPS (6 Oct 2016)
# 3d Lennard-Jones melt
variable x index 1
variable y index 1
variable z index 1
variable xx equal 20*$x
variable xx equal 20*1
variable yy equal 20*$y
variable yy equal 20*1
variable zz equal 20*$z
variable zz equal 20*1
units lj
atom_style atomic
lattice fcc 0.8442
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
region box block 0 ${xx} 0 ${yy} 0 ${zz}
region box block 0 20 0 ${yy} 0 ${zz}
region box block 0 20 0 20 0 ${zz}
region box block 0 20 0 20 0 20
create_box 1 box
Created orthogonal box = (0 0 0) to (33.5919 33.5919 33.5919)
1 by 1 by 1 MPI processor grid
create_atoms 1 box
Created 32000 atoms
mass 1 1.0
velocity all create 1.44 87287 loop geom
pair_style lj/cut 2.5
pair_coeff 1 1 1.0 1.0 2.5
neighbor 0.3 bin
neigh_modify delay 0 every 20 check no
fix 1 all nve
run 100
Neighbor list info ...
1 neighbor list requests
update every 20 steps, delay 0 steps, check no
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 2.8
ghost atom cutoff = 2.8
binsize = 1.4 -> bins = 24 24 24
Memory usage per processor = 8.21387 Mbytes
Step Temp E_pair E_mol TotEng Press
0 1.44 -6.7733681 0 -4.6134356 -5.0197073
100 0.7574531 -5.7585055 0 -4.6223613 0.20726105
Loop time of 2.26185 on 1 procs for 100 steps with 32000 atoms
Performance: 19099.377 tau/day, 44.212 timesteps/s
99.9% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 1.9328 | 1.9328 | 1.9328 | 0.0 | 85.45
Neigh | 0.2558 | 0.2558 | 0.2558 | 0.0 | 11.31
Comm | 0.024061 | 0.024061 | 0.024061 | 0.0 | 1.06
Output | 0.00012612 | 0.00012612 | 0.00012612 | 0.0 | 0.01
Modify | 0.040887 | 0.040887 | 0.040887 | 0.0 | 1.81
Other | | 0.008214 | | | 0.36
Nlocal: 32000 ave 32000 max 32000 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 19657 ave 19657 max 19657 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 1.20283e+06 ave 1.20283e+06 max 1.20283e+06 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 1202833
Ave neighs/atom = 37.5885
Neighbor list builds = 5
Dangerous builds not checked
Total wall time: 0:00:02

View File

@ -0,0 +1,79 @@
LAMMPS (6 Oct 2016)
# 3d Lennard-Jones melt
variable x index 1
variable y index 1
variable z index 1
variable xx equal 20*$x
variable xx equal 20*1
variable yy equal 20*$y
variable yy equal 20*1
variable zz equal 20*$z
variable zz equal 20*1
units lj
atom_style atomic
lattice fcc 0.8442
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
region box block 0 ${xx} 0 ${yy} 0 ${zz}
region box block 0 20 0 ${yy} 0 ${zz}
region box block 0 20 0 20 0 ${zz}
region box block 0 20 0 20 0 20
create_box 1 box
Created orthogonal box = (0 0 0) to (33.5919 33.5919 33.5919)
1 by 2 by 2 MPI processor grid
create_atoms 1 box
Created 32000 atoms
mass 1 1.0
velocity all create 1.44 87287 loop geom
pair_style lj/cut 2.5
pair_coeff 1 1 1.0 1.0 2.5
neighbor 0.3 bin
neigh_modify delay 0 every 20 check no
fix 1 all nve
run 100
Neighbor list info ...
1 neighbor list requests
update every 20 steps, delay 0 steps, check no
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 2.8
ghost atom cutoff = 2.8
binsize = 1.4 -> bins = 24 24 24
Memory usage per processor = 4.09506 Mbytes
Step Temp E_pair E_mol TotEng Press
0 1.44 -6.7733681 0 -4.6134356 -5.0197073
100 0.7574531 -5.7585055 0 -4.6223613 0.20726105
Loop time of 0.635957 on 4 procs for 100 steps with 32000 atoms
Performance: 67929.172 tau/day, 157.243 timesteps/s
99.9% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.51335 | 0.51822 | 0.52569 | 0.7 | 81.49
Neigh | 0.063695 | 0.064309 | 0.065397 | 0.3 | 10.11
Comm | 0.027525 | 0.03629 | 0.041959 | 3.1 | 5.71
Output | 6.3896e-05 | 6.6698e-05 | 7.081e-05 | 0.0 | 0.01
Modify | 0.012472 | 0.01254 | 0.012618 | 0.1 | 1.97
Other | | 0.004529 | | | 0.71
Nlocal: 8000 ave 8037 max 7964 min
Histogram: 2 0 0 0 0 0 0 0 1 1
Nghost: 9007.5 ave 9050 max 8968 min
Histogram: 1 1 0 0 0 0 0 1 0 1
Neighs: 300708 ave 305113 max 297203 min
Histogram: 1 0 0 1 1 0 0 0 0 1
Total # of neighbors = 1202833
Ave neighs/atom = 37.5885
Neighbor list builds = 5
Dangerous builds not checked
Total wall time: 0:00:00

View File

@ -0,0 +1,79 @@
LAMMPS (6 Oct 2016)
# 3d Lennard-Jones melt
variable x index 1
variable y index 1
variable z index 1
variable xx equal 20*$x
variable xx equal 20*2
variable yy equal 20*$y
variable yy equal 20*2
variable zz equal 20*$z
variable zz equal 20*1
units lj
atom_style atomic
lattice fcc 0.8442
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
region box block 0 ${xx} 0 ${yy} 0 ${zz}
region box block 0 40 0 ${yy} 0 ${zz}
region box block 0 40 0 40 0 ${zz}
region box block 0 40 0 40 0 20
create_box 1 box
Created orthogonal box = (0 0 0) to (67.1838 67.1838 33.5919)
2 by 2 by 1 MPI processor grid
create_atoms 1 box
Created 128000 atoms
mass 1 1.0
velocity all create 1.44 87287 loop geom
pair_style lj/cut 2.5
pair_coeff 1 1 1.0 1.0 2.5
neighbor 0.3 bin
neigh_modify delay 0 every 20 check no
fix 1 all nve
run 100
Neighbor list info ...
1 neighbor list requests
update every 20 steps, delay 0 steps, check no
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 2.8
ghost atom cutoff = 2.8
binsize = 1.4 -> bins = 48 48 24
Memory usage per processor = 8.13678 Mbytes
Step Temp E_pair E_mol TotEng Press
0 1.44 -6.7733681 0 -4.6133849 -5.0196788
100 0.75841891 -5.759957 0 -4.6223375 0.20008866
Loop time of 2.55762 on 4 procs for 100 steps with 128000 atoms
Performance: 16890.677 tau/day, 39.099 timesteps/s
99.8% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 2.0583 | 2.0988 | 2.1594 | 2.6 | 82.06
Neigh | 0.24411 | 0.24838 | 0.25585 | 0.9 | 9.71
Comm | 0.066397 | 0.13872 | 0.1863 | 11.9 | 5.42
Output | 0.00012994 | 0.00021023 | 0.00025702 | 0.3 | 0.01
Modify | 0.055533 | 0.058343 | 0.061791 | 1.2 | 2.28
Other | | 0.0132 | | | 0.52
Nlocal: 32000 ave 32060 max 31939 min
Histogram: 1 0 1 0 0 0 0 1 0 1
Nghost: 19630.8 ave 19681 max 19562 min
Histogram: 1 0 0 0 1 0 0 0 1 1
Neighs: 1.20195e+06 ave 1.20354e+06 max 1.19931e+06 min
Histogram: 1 0 0 0 0 0 0 2 0 1
Total # of neighbors = 4807797
Ave neighs/atom = 37.5609
Neighbor list builds = 5
Dangerous builds not checked
Total wall time: 0:00:02

View File

@ -0,0 +1,122 @@
LAMMPS (6 Oct 2016)
# Rhodopsin model
units real
neigh_modify delay 5 every 1
atom_style full
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
pair_style lj/charmm/coul/long 8.0 10.0
pair_modify mix arithmetic
kspace_style pppm 1e-4
read_data data.rhodo
orthogonal box = (-27.5 -38.5 -36.3646) to (27.5 38.5 36.3615)
1 by 1 by 1 MPI processor grid
reading atoms ...
32000 atoms
reading velocities ...
32000 velocities
scanning bonds ...
4 = max bonds/atom
scanning angles ...
8 = max angles/atom
scanning dihedrals ...
18 = max dihedrals/atom
scanning impropers ...
2 = max impropers/atom
reading bonds ...
27723 bonds
reading angles ...
40467 angles
reading dihedrals ...
56829 dihedrals
reading impropers ...
1034 impropers
4 = max # of 1-2 neighbors
12 = max # of 1-3 neighbors
24 = max # of 1-4 neighbors
26 = max # of special neighbors
fix 1 all shake 0.0001 5 0 m 1.0 a 232
1617 = # of size 2 clusters
3633 = # of size 3 clusters
747 = # of size 4 clusters
4233 = # of frozen angles
fix 2 all npt temp 300.0 300.0 100.0 z 0.0 0.0 1000.0 mtk no pchain 0 tchain 1
special_bonds charmm
thermo 50
thermo_style multi
timestep 2.0
run 100
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:316)
G vector (1/distance) = 0.248835
grid = 25 32 32
stencil order = 5
estimated absolute RMS force accuracy = 0.0355478
estimated relative force accuracy = 0.000107051
using double precision FFTs
3d grid and FFT values/proc = 41070 25600
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 5 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 12
ghost atom cutoff = 12
binsize = 6 -> bins = 10 13 13
Memory usage per processor = 93.2721 Mbytes
---------------- Step 0 ----- CPU = 0.0000 (sec) ----------------
TotEng = -25356.2064 KinEng = 21444.8313 Temp = 299.0397
PotEng = -46801.0377 E_bond = 2537.9940 E_angle = 10921.3742
E_dihed = 5211.7865 E_impro = 213.5116 E_vdwl = -2307.8634
E_coul = 207025.8927 E_long = -270403.7333 Press = -149.3301
Volume = 307995.0335
---------------- Step 50 ----- CPU = 17.2007 (sec) ----------------
TotEng = -25330.0321 KinEng = 21501.0036 Temp = 299.8230
PotEng = -46831.0357 E_bond = 2471.7033 E_angle = 10836.5108
E_dihed = 5239.6316 E_impro = 227.1219 E_vdwl = -1993.2763
E_coul = 206797.6655 E_long = -270410.3927 Press = 237.6866
Volume = 308031.5640
---------------- Step 100 ----- CPU = 35.0315 (sec) ----------------
TotEng = -25290.7387 KinEng = 21591.9096 Temp = 301.0906
PotEng = -46882.6484 E_bond = 2567.9789 E_angle = 10781.9556
E_dihed = 5198.7493 E_impro = 216.7863 E_vdwl = -1902.6458
E_coul = 206659.5006 E_long = -270404.9733 Press = 6.7898
Volume = 308133.9933
Loop time of 35.0316 on 1 procs for 100 steps with 32000 atoms
Performance: 0.493 ns/day, 48.655 hours/ns, 2.855 timesteps/s
99.9% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 25.021 | 25.021 | 25.021 | 0.0 | 71.42
Bond | 1.2834 | 1.2834 | 1.2834 | 0.0 | 3.66
Kspace | 3.2116 | 3.2116 | 3.2116 | 0.0 | 9.17
Neigh | 4.2767 | 4.2767 | 4.2767 | 0.0 | 12.21
Comm | 0.069283 | 0.069283 | 0.069283 | 0.0 | 0.20
Output | 0.00028205 | 0.00028205 | 0.00028205 | 0.0 | 0.00
Modify | 1.14 | 1.14 | 1.14 | 0.0 | 3.25
Other | | 0.02938 | | | 0.08
Nlocal: 32000 ave 32000 max 32000 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 47958 ave 47958 max 47958 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 1.20281e+07 ave 1.20281e+07 max 1.20281e+07 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 12028098
Ave neighs/atom = 375.878
Ave special neighs/atom = 7.43187
Neighbor list builds = 11
Dangerous builds = 0
Total wall time: 0:00:36

View File

@ -0,0 +1,122 @@
LAMMPS (6 Oct 2016)
# Rhodopsin model
units real
neigh_modify delay 5 every 1
atom_style full
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
pair_style lj/charmm/coul/long 8.0 10.0
pair_modify mix arithmetic
kspace_style pppm 1e-4
read_data data.rhodo
orthogonal box = (-27.5 -38.5 -36.3646) to (27.5 38.5 36.3615)
1 by 2 by 2 MPI processor grid
reading atoms ...
32000 atoms
reading velocities ...
32000 velocities
scanning bonds ...
4 = max bonds/atom
scanning angles ...
8 = max angles/atom
scanning dihedrals ...
18 = max dihedrals/atom
scanning impropers ...
2 = max impropers/atom
reading bonds ...
27723 bonds
reading angles ...
40467 angles
reading dihedrals ...
56829 dihedrals
reading impropers ...
1034 impropers
4 = max # of 1-2 neighbors
12 = max # of 1-3 neighbors
24 = max # of 1-4 neighbors
26 = max # of special neighbors
fix 1 all shake 0.0001 5 0 m 1.0 a 232
1617 = # of size 2 clusters
3633 = # of size 3 clusters
747 = # of size 4 clusters
4233 = # of frozen angles
fix 2 all npt temp 300.0 300.0 100.0 z 0.0 0.0 1000.0 mtk no pchain 0 tchain 1
special_bonds charmm
thermo 50
thermo_style multi
timestep 2.0
run 100
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:316)
G vector (1/distance) = 0.248835
grid = 25 32 32
stencil order = 5
estimated absolute RMS force accuracy = 0.0355478
estimated relative force accuracy = 0.000107051
using double precision FFTs
3d grid and FFT values/proc = 13230 6400
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 5 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 12
ghost atom cutoff = 12
binsize = 6 -> bins = 10 13 13
Memory usage per processor = 37.3604 Mbytes
---------------- Step 0 ----- CPU = 0.0000 (sec) ----------------
TotEng = -25356.2064 KinEng = 21444.8313 Temp = 299.0397
PotEng = -46801.0377 E_bond = 2537.9940 E_angle = 10921.3742
E_dihed = 5211.7865 E_impro = 213.5116 E_vdwl = -2307.8634
E_coul = 207025.8927 E_long = -270403.7333 Press = -149.3301
Volume = 307995.0335
---------------- Step 50 ----- CPU = 4.6056 (sec) ----------------
TotEng = -25330.0321 KinEng = 21501.0036 Temp = 299.8230
PotEng = -46831.0357 E_bond = 2471.7033 E_angle = 10836.5108
E_dihed = 5239.6316 E_impro = 227.1219 E_vdwl = -1993.2763
E_coul = 206797.6655 E_long = -270410.3927 Press = 237.6866
Volume = 308031.5640
---------------- Step 100 ----- CPU = 9.3910 (sec) ----------------
TotEng = -25290.7386 KinEng = 21591.9096 Temp = 301.0906
PotEng = -46882.6482 E_bond = 2567.9789 E_angle = 10781.9556
E_dihed = 5198.7493 E_impro = 216.7863 E_vdwl = -1902.6458
E_coul = 206659.5007 E_long = -270404.9733 Press = 6.7898
Volume = 308133.9933
Loop time of 9.39107 on 4 procs for 100 steps with 32000 atoms
Performance: 1.840 ns/day, 13.043 hours/ns, 10.648 timesteps/s
99.8% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 6.2189 | 6.3266 | 6.6072 | 6.5 | 67.37
Bond | 0.30793 | 0.32122 | 0.3414 | 2.4 | 3.42
Kspace | 0.87994 | 1.1644 | 1.2855 | 15.3 | 12.40
Neigh | 1.1358 | 1.136 | 1.1362 | 0.0 | 12.10
Comm | 0.08292 | 0.084935 | 0.087077 | 0.5 | 0.90
Output | 0.00015712 | 0.00016558 | 0.00018501 | 0.1 | 0.00
Modify | 0.33717 | 0.34246 | 0.34794 | 0.7 | 3.65
Other | | 0.01526 | | | 0.16
Nlocal: 8000 ave 8143 max 7933 min
Histogram: 1 2 0 0 0 0 0 0 0 1
Nghost: 22733.5 ave 22769 max 22693 min
Histogram: 1 0 0 0 0 2 0 0 0 1
Neighs: 3.00702e+06 ave 3.0975e+06 max 2.96492e+06 min
Histogram: 1 2 0 0 0 0 0 0 0 1
Total # of neighbors = 12028098
Ave neighs/atom = 375.878
Ave special neighs/atom = 7.43187
Neighbor list builds = 11
Dangerous builds = 0
Total wall time: 0:00:09

View File

@ -0,0 +1,143 @@
LAMMPS (6 Oct 2016)
# Rhodopsin model
variable x index 1
variable y index 1
variable z index 1
units real
neigh_modify delay 5 every 1
atom_style full
atom_modify map hash
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
pair_style lj/charmm/coul/long 8.0 10.0
pair_modify mix arithmetic
kspace_style pppm 1e-4
read_data data.rhodo
orthogonal box = (-27.5 -38.5 -36.3646) to (27.5 38.5 36.3615)
1 by 2 by 2 MPI processor grid
reading atoms ...
32000 atoms
reading velocities ...
32000 velocities
scanning bonds ...
4 = max bonds/atom
scanning angles ...
8 = max angles/atom
scanning dihedrals ...
18 = max dihedrals/atom
scanning impropers ...
2 = max impropers/atom
reading bonds ...
27723 bonds
reading angles ...
40467 angles
reading dihedrals ...
56829 dihedrals
reading impropers ...
1034 impropers
4 = max # of 1-2 neighbors
12 = max # of 1-3 neighbors
24 = max # of 1-4 neighbors
26 = max # of special neighbors
replicate $x $y $z
replicate 2 $y $z
replicate 2 2 $z
replicate 2 2 1
orthogonal box = (-27.5 -38.5 -36.3646) to (82.5 115.5 36.3615)
2 by 2 by 1 MPI processor grid
128000 atoms
110892 bonds
161868 angles
227316 dihedrals
4136 impropers
4 = max # of 1-2 neighbors
12 = max # of 1-3 neighbors
24 = max # of 1-4 neighbors
26 = max # of special neighbors
fix 1 all shake 0.0001 5 0 m 1.0 a 232
6468 = # of size 2 clusters
14532 = # of size 3 clusters
2988 = # of size 4 clusters
16932 = # of frozen angles
fix 2 all npt temp 300.0 300.0 100.0 z 0.0 0.0 1000.0 mtk no pchain 0 tchain 1
special_bonds charmm
thermo 50
thermo_style multi
timestep 2.0
run 100
PPPM initialization ...
WARNING: Using 12-bit tables for long-range coulomb (../kspace.cpp:316)
G vector (1/distance) = 0.248593
grid = 48 60 36
stencil order = 5
estimated absolute RMS force accuracy = 0.0359793
estimated relative force accuracy = 0.00010835
using double precision FFTs
3d grid and FFT values/proc = 41615 25920
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 5 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 12
ghost atom cutoff = 12
binsize = 6 -> bins = 19 26 13
Memory usage per processor = 96.9597 Mbytes
---------------- Step 0 ----- CPU = 0.0000 (sec) ----------------
TotEng = -101425.4887 KinEng = 85779.3251 Temp = 299.0304
PotEng = -187204.8138 E_bond = 10151.9760 E_angle = 43685.4968
E_dihed = 20847.1460 E_impro = 854.0463 E_vdwl = -9231.4537
E_coul = 827053.5824 E_long = -1080565.6077 Press = -149.0358
Volume = 1231980.1340
---------------- Step 50 ----- CPU = 18.1689 (sec) ----------------
TotEng = -101320.0211 KinEng = 86003.4933 Temp = 299.8118
PotEng = -187323.5144 E_bond = 9887.1189 E_angle = 43346.8448
E_dihed = 20958.7108 E_impro = 908.4721 E_vdwl = -7973.4486
E_coul = 826141.5493 E_long = -1080592.7617 Press = 238.0404
Volume = 1232126.1814
---------------- Step 100 ----- CPU = 37.2027 (sec) ----------------
TotEng = -101157.9546 KinEng = 86355.7413 Temp = 301.0398
PotEng = -187513.6959 E_bond = 10272.0456 E_angle = 43128.7018
E_dihed = 20794.0107 E_impro = 867.0928 E_vdwl = -7587.2409
E_coul = 825584.2416 E_long = -1080572.5474 Press = 15.1729
Volume = 1232535.8440
Loop time of 37.2028 on 4 procs for 100 steps with 128000 atoms
Performance: 0.464 ns/day, 51.671 hours/ns, 2.688 timesteps/s
99.9% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 25.431 | 25.738 | 25.984 | 4.0 | 69.18
Bond | 1.2966 | 1.3131 | 1.3226 | 0.9 | 3.53
Kspace | 3.7563 | 4.0123 | 4.3127 | 10.0 | 10.79
Neigh | 4.3778 | 4.378 | 4.3782 | 0.0 | 11.77
Comm | 0.1903 | 0.19549 | 0.20485 | 1.3 | 0.53
Output | 0.00031805 | 0.00037521 | 0.00039601 | 0.2 | 0.00
Modify | 1.4861 | 1.5051 | 1.5122 | 0.9 | 4.05
Other | | 0.05992 | | | 0.16
Nlocal: 32000 ave 32000 max 32000 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Nghost: 47957 ave 47957 max 47957 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Neighs: 1.20281e+07 ave 1.20572e+07 max 1.19991e+07 min
Histogram: 2 0 0 0 0 0 0 0 0 2
Total # of neighbors = 48112540
Ave neighs/atom = 375.879
Ave special neighs/atom = 7.43187
Neighbor list builds = 11
Dangerous builds = 0
Total wall time: 0:00:38

Binary file not shown.

View File

@ -1,40 +1,49 @@
# Makefile for LAMMPS documentation
SHA1 = $(shell echo $USER-$PWD | sha1sum | cut -f1 -d" ")
SHELL = /bin/bash
SHA1 = $(shell echo $USER-$PWD | python utils/sha1sum.py)
BUILDDIR = /tmp/lammps-docs-$(SHA1)
RSTDIR = $(BUILDDIR)/rst
VENV = $(BUILDDIR)/docenv
TXT2RST = $(VENV)/bin/txt2rst
PYTHON = $(shell which python3)
HAS_PYTHON3 = NO
HAS_VIRTUALENV = NO
ifeq ($(shell which python3 >/dev/null 2>&1; echo $$?), 1)
$(error Python3 was not found! Please check README.md for further instructions)
ifeq ($(shell which python3 >/dev/null 2>&1; echo $$?), 0)
HAS_PYTHON3 = YES
endif
ifeq ($(shell which virtualenv >/dev/null 2>&1; echo $$?), 1)
$(error virtualenv was not found! Please check README.md for further instructions)
ifeq ($(shell which virtualenv >/dev/null 2>&1; echo $$?), 0)
HAS_VIRTUALENV = YES
endif
SOURCES=$(wildcard src/*.txt)
OBJECTS=$(SOURCES:src/%.txt=$(RSTDIR)/%.rst)
.PHONY: help clean-all clean html pdf venv
.PHONY: help clean-all clean epub html pdf old venv
# ------------------------------------------
help:
@echo "Please use \`make <target>' where <target> is one of"
@echo " html to make HTML version of documentation using Sphinx"
@echo " pdf to make Manual.pdf"
@echo " txt2html to build txt2html tool"
@echo " clean to remove all generated RST files"
@echo " clean-all to reset the entire build environment"
@echo " html create HTML doc pages in html dir"
@echo " pdf create Manual.pdf and Developer.pdf in this dir"
@echo " old create old-style HTML doc pages in old dir"
@echo " fetch fetch HTML and PDF files from LAMMPS web site"
@echo " epub create ePUB format manual for e-book readers"
@echo " clean remove all intermediate RST files"
@echo " clean-all reset the entire build environment"
@echo " txt2html build txt2html tool"
# ------------------------------------------
clean-all:
rm -rf $(BUILDDIR)/* utils/txt2html/txt2html.exe
clean:
rm -rf $(RSTDIR)
txt2html: utils/txt2html/txt2html.exe
rm -rf $(RSTDIR) html
html: $(OBJECTS)
@(\
@ -43,19 +52,68 @@ html: $(OBJECTS)
sphinx-build -j 8 -b html -c utils/sphinx-config -d $(BUILDDIR)/doctrees $(RSTDIR) html ;\
deactivate ;\
)
-rm html/searchindex.js
@rm -rf html/_sources
@rm -rf html/PDF
@rm -rf html/USER
@cp -r src/PDF html/PDF
@cp -r src/USER html/USER
@rm -rf html/PDF/.[sg]*
@rm -rf html/USER/.[sg]*
@rm -rf html/USER/*/.[sg]*
@rm -rf html/USER/*/*.[sg]*
@echo "Build finished. The HTML pages are in doc/html."
epub: $(OBJECTS)
@mkdir -p epub
@rm -f LAMMPS.epub
@cp src/JPG/lammps-logo.png epub/
@(\
. $(VENV)/bin/activate ;\
cp -r src/* $(RSTDIR)/ ;\
sphinx-build -j 8 -b epub -c utils/sphinx-config -d $(BUILDDIR)/doctrees $(RSTDIR) epub ;\
deactivate ;\
)
@mv epub/LAMMPS.epub .
@rm -rf epub
@echo "Build finished. The ePUB manual file is created."
pdf: utils/txt2html/txt2html.exe
@(\
cd src; \
../utils/txt2html/txt2html.exe -b *.txt; \
htmldoc --batch ../lammps.book; \
htmldoc --batch lammps.book; \
for s in `echo *.txt | sed -e 's,\.txt,\.html,g'` ; \
do grep -q $$s ../lammps.book || \
echo doc file $$s missing in lammps.book; done; \
do grep -q $$s lammps.book || \
echo doc file $$s missing in src/lammps.book; done; \
rm *.html; \
cd Developer; \
pdflatex developer; \
pdflatex developer; \
mv developer.pdf ../../Developer.pdf; \
)
old: utils/txt2html/txt2html.exe
@rm -rf old
@mkdir old; mkdir old/Eqs; mkdir old/JPG; mkdir old/PDF
@cd src; ../utils/txt2html/txt2html.exe -b *.txt; \
mv *.html ../old; \
cp Eqs/*.jpg ../old/Eqs; \
cp JPG/* ../old/JPG; \
cp PDF/* ../old/PDF;
fetch:
@rm -rf html_www Manual_www.pdf Developer_www.pdf
@curl -s -o Manual_www.pdf http://lammps.sandia.gov/doc/Manual.pdf
@curl -s -o Developer_www.pdf http://lammps.sandia.gov/doc/Developer.pdf
@curl -s -o lammps-doc.tar.gz http://lammps.sandia.gov/tars/lammps-doc.tar.gz
@tar xzf lammps-doc.tar.gz
@rm -f lammps-doc.tar.gz
txt2html: utils/txt2html/txt2html.exe
# ------------------------------------------
utils/txt2html/txt2html.exe: utils/txt2html/txt2html.cpp
g++ -O -Wall -o $@ $<
@ -68,6 +126,8 @@ $(RSTDIR)/%.rst : src/%.txt $(TXT2RST)
)
$(VENV):
@if [ "$(HAS_PYTHON3)" == "NO" ] ; then echo "Python3 was not found! Please check README.md for further instructions" 1>&2; exit 1; fi
@if [ "$(HAS_VIRTUALENV)" == "NO" ] ; then echo "virtualenv was not found! Please check README.md for further instructions" 1>&2; exit 1; fi
@( \
virtualenv -p $(PYTHON) $(VENV); \
. $(VENV)/bin/activate; \

Binary file not shown.

115
doc/README Normal file
View File

@ -0,0 +1,115 @@
LAMMPS Documentation
Depending on how you obtained LAMMPS, this directory has 2 or 3
sub-directories and optionally 2 PDF files and an ePUB file:
src content files for LAMMPS documentation
html HTML version of the LAMMPS manual (see html/Manual.html)
tools tools and settings for building the documentation
Manual.pdf large PDF version of entire manual
Developer.pdf small PDF with info about how LAMMPS is structured
LAMMPS.epub Manual in ePUB format
If you downloaded LAMMPS as a tarball from the web site, all these
directories and files should be included.
If you downloaded LAMMPS from the public SVN or Git repositories, then
the HTML and PDF files are not included. Instead you need to create
them, in one of three ways:
(a) You can "fetch" the current HTML and PDF files from the LAMMPS web
site. Just type "make fetch". This should create a html_www dir and
Manual_www.pdf/Developer_www.pdf files. Note that if new LAMMPS
features have been added more recently than the date of your version,
the fetched documentation will include those changes (but your source
code will not, unless you update your local repository).
(b) You can build the HTML and PDF files yourself, by typing "make
html" followed by "make pdf". Note that the PDF make requires the
HTML files already exist. This requires various tools including
Sphinx, which the build process will attempt to download and install
on your system, if not already available. See more details below.
(c) You can genererate an older, simpler, less-fancy style of HTML
documentation by typing "make old". This will create an "old"
directory. This can be useful if (b) does not work on your box for
some reason, or you want to quickly view the HTML version of a doc
page you have created or edited yourself within the src directory.
E.g. if you are planning to submit a new feature to LAMMPS.
----------------
The generation of all documentation is managed by the Makefile in this
dir.
Options:
make html # generate HTML in html dir using Sphinx
make pdf # generate 2 PDF files (Manual.pdf,Developer.pdf)
# in this dir via htmldoc and pdflatex
make old # generate old-style HTML pages in old dir via txt2html
make fetch # fetch HTML doc pages and 2 PDF files from web site
# as a tarball and unpack into html dir and 2 PDFs
make epub # generate LAMMPS.epub in ePUB format using Sphinx
make clean # remove intermediate RST files created by HTML build
make clean-all # remove entire build folder and any cached data
----------------
Installing prerequisites for HTML build
To run the HTML documention build toolchain, Python 3 and virtualenv
have to be installed. Here are instructions for common setups:
# Ubuntu
sudo apt-get install python-virtualenv
# Fedora (up to version 21)
# Red Hat Enterprise Linux or CentOS (up to version 7.x)
sudo yum install python3-virtualenv
# Fedora (since version 22)
sudo dnf install python3-virtualenv
# MacOS X
## Python 3
Download the latest Python 3 MacOS X package from
https://www.python.org and install it. This will install both Python
3 and pip3.
## virtualenv
Once Python 3 is installed, open a Terminal and type
pip3 install virtualenv
This will install virtualenv from the Python Package Index.
----------------
Installing prerequisites for PDF build
[TBA]
----------------
Installing prerequisites for epub build
## ePUB
Same as for HTML. This uses the same tools and configuration
files as the HTML tree.
For converting the generated ePUB file to a mobi format file
(for e-book readers like Kindle, that cannot read ePUB), you
also need to have the 'ebook-convert' tool from the "calibre"
software installed. http://calibre-ebook.com/
You first create the ePUB file with 'make epub' and then do:
ebook-convert LAMMPS.epub LAMMPS.mobi

View File

@ -1,32 +0,0 @@
# Generation of LAMMPS Documentation
The generation of all the documentation is managed by the Makefile inside the
`doc/` folder.
## Usage:
```bash
make html # generate HTML using Sphinx
make pdf # generate PDF using htmldoc
make clean # remove generated RST files
make clean-all # remove entire build folder and any cached data
```
## Installing prerequisites
To run the documention build toolchain Python 3 and virtualenv have to be
installed. The following are instructions for common Linux distributions:
### virtualenv
#### Ubuntu
```bash
sudo apt-get install python-virtualenv
```
#### Fedora
```
sudo yum install python-virtualenv
```

2
doc/html/.gitignore vendored
View File

@ -1,2 +0,0 @@
.buildinfo
objects.inv

View File

@ -1,174 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
LAMMPS</H2>
<P>
LAMMPS = Large-scale Atomic/Molecular Massively Parallel Simulator</P>
<P>
This is the documentation for the LAMMPS 2001 version, written in F90,
which has been superceded by more current versions. See the <A
HREF="http://www.cs.sandia.gov/~sjplimp/lammps.html">LAMMPS WWW
Site</A> for more information.
<P>
LAMMPS is a classical molecular dynamics code designed for simulating
molecular and atomic systems on parallel computers using
spatial-decomposition techniques. It runs on any parallel platform that
supports F90 and the MPI message-passing library or on single-processor
workstations.</P>
<P>
LAMMPS 2001 is copyrighted code that is distributed freely as
open-source software under the GNU Public License (GPL). See the
LICENSE file or <A HREF="http://www.gnu.org">www.gnu.org</A> for more
details. Basically the GPL allows you as a user to use, modify, or
distribute LAMMPS however you wish, so long as any software you
distribute remains under the GPL.
<P>
Features of LAMMPS 2001 include:</P>
<UL>
<LI>
short-range pairwise Lennard-Jones and Coulombic interactions
<LI>
long-range Coulombic interactions via Ewald or PPPM (particle-mesh
Ewald)
<LI>
short-range harmonic bond potentials (bond, angle, torsion, improper)
<LI>
short-range class II (cross-term) molecular potentials
<LI>
NVE, NVT, NPT dynamics
<LI>
constraints on atoms or groups of atoms
<LI>
rRESPA long-timescale integrator
<LI>
energy minimizer (Hessian-free truncated Newton method)
</UL>
<P>
For users of LAMMPS 99, this version is written in F90 to take
advantage of dynamic memory allocation. This means the user does not
have to fiddle with parameter settings and re-compile the code so
often for different problems. This enhancment means there are new
rules for the ordering of commands in a LAMMPS input script, as well
as a few new commands to guide the memory allocator. Users should read
the beginning sections of the <A
HREF="input_commands.html">input_commands</A> file for an
explanation.</P>
<P>
More details about the code can be found <A
HREF="#_cch3_930958294">here</A>, in the HTML- or text-based
documentation. The LAMMPS Web page is at <A
HREF="http://www.cs.sandia.gov/~sjplimp/lammps.html">www.cs.sandia.gov/~sjplimp/lammps.html</A>
, which includes benchmark timings and a list of papers written using
LAMMPS results. They illustrate the kinds of scientific problems that
can be modeled with LAMMPS. These two papers describe the parallel
algorithms used in the code. Please cite these if you incorporate
LAMMPS results in your work. And if you send me citations for your
papers, I'll be pleased to add them to the LAMMPS WWW page.
</P>
<P>
S. J. Plimpton, R. Pollock, M. Stevens, &quot;Particle-Mesh Ewald and
rRESPA for Parallel Molecular Dynamics Simulations&quot;, in Proc of
the Eighth SIAM Conference on Parallel Processing for Scientific
Computing, Minneapolis, MN, March 1997.</P>
<P>
S. J. Plimpton, "Fast Parallel Algorithms for Short-Range Molecular Dynamics", J Comp Phys, 117, 1-19 (1995).</P>
<P>
LAMMPS was originally developed as part of a 5-way CRADA collaboration
between 3 industrial partners (Cray Research, Bristol-Myers Squibb, and
Dupont) and 2 DoE laboratories (Sandia National Laboratories and
Lawrence Livermore National Laboratories).</P>
<P>
The primary author of LAMMPS is Steve Plimpton, but others have written
or worked on significant portions of the code:</P>
<UL>
<LI>
Roy Pollock (LLNL): Ewald, PPPM solvers
<LI>
Mark Stevens (Sandia): rRESPA, NPT integrators
<LI>
Eric Simon (Cray Research): class II force fields
<LI>
Todd Plantenga (Sandia): energy minimizer
<LI>
Steve Lustig (Dupont): msi2lmp tool
<LI>
Mike Peachey (Cray Research): msi2lmp tool
</UL>
<P>
Other CRADA partners involved in the design and testing of LAMMPS are </P>
<UL>
<LI>
John Carpenter (Cray Research)
<LI>
Terry Stouch (Bristol-Myers Squibb)
<LI>
Jim Belak (LLNL)
</UL>
<P>
If you have questions about LAMMPS, please contact me:
</P>
<DL>
<DT>
Steve Plimpton
<DD>
sjplimp@sandia.gov
<DD>
www.cs.sandia.gov/~sjplimp
<DD>
Sandia National Labs
<DD>
Albuquerque, NM 87185
</DL>
<HR>
<H3>
<A NAME="_cch3_930958294">More Information about LAMMPS</A></H3>
<DIR>
<LI>
<A HREF="basics.html">Basics</A>
<DIR>
<LI>
how to make, run, and test LAMMPS with the example problems
</DIR>
<LI>
<A HREF="input_commands.html">Input Commands</A>
<DIR>
<LI>
a complete listing of input commands used by LAMMPS
</DIR>
<LI>
<A HREF="data_format.html">Data Format</A>
<DIR>
<LI>
the data file format used by LAMMPS
</DIR>
<LI>
<A HREF="force_fields.html">Force Fields</A>
<DIR>
<LI>
the equations LAMMPS uses to compute force-fields
</DIR>
<LI>
<A HREF="units.html">Units</A>
<DIR>
<LI>
the input/output and internal units for LAMMPS variables
</DIR>
<LI>
<A HREF="history.html">History</A>
<DIR>
<LI>
a brief timeline of features added to LAMMPS
</DIR>
<LI>
<A HREF="deficiencies.html">Deficiencies</A>
<DIR>
<LI>
features LAMMPS does not (yet) have
</DIR>
</DIR>
</BODY>
</HTML>

View File

@ -1,224 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
Basics of Using LAMMPS</H2>
<P>
<A HREF="README.html">Return</A> to top-level of LAMMPS documentation.</P>
<UL>
<LI>
<A HREF="#_cch3_931273040">Distribution</A>
<LI>
<A HREF="#_cch3_930327142">Making LAMMPS</A>
<LI>
<A HREF="#_cch3_930327155">Running LAMMPS</A>
<LI>
<A HREF="#_cch3_930759879">Examples</A>
<LI>
<A HREF="#_cch3_931282515">Other Tools</A>
<LI>
<A HREF="#_cch3_931282000">Extending LAMMPS</A>
</UL>
<HR>
<H3>
<A NAME="_cch3_931273040">Distribution</A></H3>
<P>
When you unzip/untar the LAMMPS distribution you should have several
directories: </P>
<UL>
<LI>
src = source files for LAMMPS
<LI>
doc = HTML documentation
<LI>
examples = sample problems with inputs and outputs
<LI>
tools = serial program for creating and massaging LAMMPS data files
<LI>
converters = msi2lmp, lmp2arc, amber = codes & scripts for converting
between MSI/Discover, AMBER, and LAMMPS formats
</UL>
<HR>
<H3>
<A NAME="_cch3_930327142">Making LAMMPS</A></H3>
<P>
The src directory contains the F90 and C source files for LAMMPS as
well as several sample Makefiles for different machines. To make LAMMPS
for a specfic machine, you simply type</P>
<P>
make machine</P>
<P>
from within the src directoy. E.g. "make sgi" or "make t3e". This
should create an executable such as lmp_sgi or lmp_t3e. For optimal
performance you'll want to use a good F90 compiler to make LAMMPS; on
Linux boxes I've been told the Leahy F90 compiler is a good choice.
(If you don't have an F90 compiler, I can give you an older F77-based
version of LAMMPS 99, but you'll lose the dynamic memory and some
other new features in LAMMPS 2001.)</P>
<P>
In the src directory, there is one top-level Makefile and several
low-level machine-specific files named Makefile.xxx where xxx = the
machine name. If a low-level Makefile exists for your platform, you do
not need to edit the top-level Makefile. However you should check the
system-specific section of the low-level Makefile to insure the
various paths are correct for your environment. If a low-level
Makefile does not exist for your platform, you will need to add a
suitable target to the top-level Makefile. You will also need to
create a new low-level Makefile using one of the existing ones as a
template. If you wish to make LAMMPS for a single-processor
workstation that doesn't have an installed MPI library, you can
specify the "serial" target which uses a directory of MPI stubs to
link against - e.g. &quot;make serial&quot;. You will need to make the
stub library (type &quot;make&quot; in STUBS directory) for your
workstation before doing this.</P>
<P>
Note that the two-level Makefile system allows you to make LAMMPS for
multiple platforms. Each target creates its own object directory for
separate storage of its *.o files.</P>
<P>
There are a few compiler switches of interest which can be specified
in the low-level Makefiles. If you use a F90FLAGS switch of -DSYNC
then synchronization calls will be made before the timing routines in
integrate.f. This may slow down the code slightly, but will make the
individual timings reported at the end of a run more accurate. The
F90FLAGS setting of -DSENDRECV will use MPI_Sendrecv calls for data
exchange between processors instead of MPI_Irecv, MPI_Send,
MPI_Wait. Sendrecv is often slower, but on some platforms can be
faster, so it is worth trying, particularly if your communication
timings seem slow.</P>
<P>
The CCFLAGS setting in the low-level Makefiles requires a FFT setting,
for example -DFFT_SGI or -DFFT_T3E. This is for inclusion of the
appropriate machine-specific native 1-d FFT libraries on various
platforms. Currently, the supported machines and switches (used in
fft_3d.c) are FFT_SGI, FFT_DEC, FFT_INTEL, FFT_T3E, and FFT_FFTW. The
latter is a publicly available portable FFT library, <A
HREF="http://www.fftw.org">FFTW</A>, which you can install on any
machine. If none of these options is suitable for your machine, please
contact me, and we'll discuss how to add the capability to call your
machine's native FFT library. You can also use FFT_NONE if you have no
need to use the PPPM option in LAMMPS.</P>
<P>
For Linux and T3E compilation, there is a also a CCFLAGS setting for KLUDGE
needed (see Makefile.linux and Makefile.t3e). This is to enable F90 to
call C with appropriate underscores added to C function names.
<HR>
<H3>
<A NAME="_cch3_930327155">Running LAMMPS</A></H3>
<P>
LAMMPS is run by redirecting a text file (script) of input commands into it.</P>
<P>
lmp_sgi &lt; in.lj</P>
<P>
lmp_t3e &lt; in.lj</P>
<P>
The script file contains commands that specify the parameters for the
simulation as well as to read other necessary files such as a data file
that describes the initial atom positions, molecular topology, and
force-field parameters. The <A HREF="input_commands.html">input_commands</A>
page describes all the possible commands that can be used. The <A
HREF="data_format.html">data_format</A> page describes the format of
the data file. </P>
<P>
LAMMPS can be run on any number of processors, including a single
processor. In principle you should get identical answers on any number
of processors and on any machine. In practice, numerical round-off can
cause slight differences and eventual divergence of dynamical
trajectories. </P>
<P>
When LAMMPS runs, it estimates the array sizes it should allocate based
on the problem you are simulating and the number of processors you
are running on. If you run out of physical memory, you will get a F90
allocation error and the code should hang or crash. The only thing you
can do about this is run on more processors or run a smaller problem. If
you get an error message to the screen about &quot;boosting&quot;
something, it means LAMMPS under-estimated the size needed for one (or
more) data arrays. The &quot;extra memory&quot; command can be used in
the input script to augment these sizes at run time. A few arrays are
hard-wired to sizes that should be sufficient for most users. These are
specified with parameter settings in the global.f file. If you get a
message to &quot;boost&quot; one of these parameters you will have to
change it and re-compile LAMMPS.</P>
<P>
Some LAMMPS errors are detected at setup; others like neighbor list
overflow may not occur until the middle of a run. Except for F90
allocation errors which may cause the code to hang (with an error
message) since only one processor may incur the error, LAMMPS should
always print a message to the screen and exit gracefully when it
encounters a fatal error. If the code ever crashes or hangs without
spitting out an error message first, it's probably a bug, so let me
know about it. Of course this applies to algorithmic or parallelism
issues, not to physics mistakes, like specifying too big a timestep or
putting 2 atoms on top of each other! One exception is that different
MPI implementations handle buffering of messages differently. If the
code hangs without an error message, it may be that you need to
specify an MPI setting or two (usually via an environment variable) to
enable buffering or boost the sizes of messages that can be
buffered.</P>
<HR>
<H3>
<A NAME="_cch3_930759879">Examples</A></H3>
<P>
There are several directories of sample problems in the examples
directory. All of them use an input file (in.*) of commands and a data
file (data.*) of initial atomic coordinates and produce one or more
output files. Sample outputs on different machines and numbers of
processors are included to compare your answers to. See the README
file in the examples sub-directory for more information on what LAMMPS
features the examples illustrate.</P>
<P>
(1) lj = atomic simulations of Lennard-Jones systems.
<P>
(2) class2 = phenyalanine molecule using the DISCOVER cff95 class 2
force field.
<P>
(3) lc = liquid crystal molecules with various Coulombic options and
periodicity settings.
<P>
(4) flow = 2d flow of Lennard-Jones atoms in a channel using various
constraint options.
<P>
(5) polymer = bead-spring polymer models with one or two chain types.
</P>
<HR>
<H3>
<A NAME="_cch3_931282515">Other Tools</A></H3>
<P>
The converters directory has source code and scripts for tools that
perform input/output file conversions between MSI Discover, AMBER, and
LAMMPS formats. See the README files for the individual tools for
additional information.
<P>
The tools directory has several serial programs that create and
massage LAMMPS data files.
<P>
(1) setup_chain.f = create a data file of polymer bead-spring chains
<P>
(2) setup_lj.f = create a data file of an atomic LJ mixture of species
<P>
(3) setup_flow_2d.f = create a 2d data file of LJ particles with walls for
a flow simulation
<P>
(4) replicate.c = replicate or scale an existing data file into a new one
<P>
(5) peek_restart.f = print-out info from a binary LAMMPS restart file
<P>
(6) restart2data.f = convert a binary LAMMPS restart file into a text data file
<P>
See the comments at the top of each source file for information on how
to use the tool.
<HR>
<H3>
<A NAME="_cch3_931282000">Extending LAMMPS</A></H3>
<P>
User-written routines can be compiled and linked with LAMMPS, then
invoked with the "diagnostic" command as LAMMPS runs. These routines
can be used for on-the-fly diagnostics or a variety of other purposes.
The examples/lc directory shows an example of using the diagnostic
command with the in.lc.big.fixes input script. A sample diagnostic
routine is given there also: diagnostic_temp_molecules.f.
</BODY>
</HTML>

View File

@ -1,250 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
LAMMPS Data Format</H2>
<P>
<A HREF="README.html">Return</A> to top-level of LAMMPS documentation</P>
<P>
This file describes the format of the data file read into LAMMPS with
the &quot;read data&quot; command. The data file contains basic
information about the size of the problem to be run, the initial atomic
coordinates, molecular topology, and (optionally) force-field
coefficients. It will be easiest to understand this file if you read it
while looking at a sample data file from the examples.</P>
<P>
This page has 2 sections:</P>
<UL>
<LI>
<A HREF="#_cch3_930958962">Rules for formatting the Data File</A>
<LI>
<A HREF="#_cch3_930958969">Sample file with Annotations</A>
</UL>
<HR>
<H3>
<A NAME="_cch3_930958962">Rules for formatting the Data File: </A></H3>
<P>
Blank lines are important. After the header section, new entries are
separated by blank lines. </P>
<P>
Indentation and space between words/numbers on one line is not
important except that keywords (e.g. Masses, Bond Coeffs) must be
left-justified and capitalized as shown. </P>
<P>
The header section (thru box bounds) must appear first in the file, the
remaining entries (Masses, various Coeffs, Atoms, Bonds, etc) can come
in any order. </P>
<P>
These entries must be in the file: header section, Masses, Atoms. </P>
<P>
These entries must be in the file if there are a non-zero number of
them: Bonds, Angles, Dihedrals, Impropers. Force field coefficients
can be specified in the input script, so do not have to appear in the
data file. The one exception to this is class 2 force field
coefficients which can only be specified in the data file.
<P>
The Nonbond Coeffs entry contains one line for each atom type. These
are the coefficients for an interaction between 2 atoms of the same
type. The cross-type coeffs are computed by the appropriate class I or
class II mixing rules, or can be specified explicitly using the
&quot;nonbond coeff&quot; command in the input command script. See the <A
HREF="force_fields.html">force_fields</A> page for more information. </P>
<P>
In the Atoms entry, the atoms can be in any order so long as there are
N entries. The 1st number on the line is the atom-tag (number from 1 to
N) which is used to identify the atom throughout the simulation. The
molecule-tag is a second identifier which is attached to the atom; it
can be 0, or a counter for the molecule the atom is part of, or any
other number you wish. The q value is the charge of the atom in
electron units (e.g. +1 for a proton). The xyz values are the initial
position of the atom. For 2-d simulations specify z as 0.0.</P>
<P>
The final 3 nx,ny,nz values on a line of the Atoms entry are optional.
LAMMPS only reads them if the &quot;true flag&quot; command is
specified in the input command script. Otherwise they are initialized
to 0 by LAMMPS. Their meaning, for each dimension, is that
&quot;n&quot; box-lengths are added to xyz to get the atom's
&quot;true&quot; un-remapped position. This can be useful in pre- or
post-processing to enable the unwrapping of long-chained molecules
which wind thru the periodic box one or more times. The value of
&quot;n&quot; can be positive, negative, or zero. For 2-d simulations
specify nz as 0. </P>
<P>
Atom velocities are initialized to 0.0 if there is no Velocities entry.
In the Velocities entry, the atoms can be in any order so long as there
are N entries. The 1st number on the line is the atom-tag (number from
1 to N) which is used to identify the atom which the given velocity
will be assigned to.</P>
<P>
Entries for Velocities, Bonds, Angles, Dihedrals, Impropers must appear
in the file after an Atoms entry.</P>
<P>
For simulations with periodic boundary conditions, xyz coords are
remapped into the periodic box (from as far away as needed), so the
initial coordinates need not be inside the box. The nx,ny,nz values
(as read in or as set to zero by LAMMPS) are appropriately adjusted by
this remapping. </P>
<P>
The number of coefficients specified on each line of coefficient
entries (Nonbond Coeffs, Bond Coeffs, etc) depends on the
&quot;style&quot; of interaction. This must be specified in the input
command script before the "read data" command is issued, unless the
default is used. See the <A
HREF="input_commands.html">input_commands</A> page for a description
of the various style options. The <A HREF="input_commands.html">input_commands</A>
and <A HREF="force_fields.html">force_fields</A> pages explain the
meaning and valid values for each of the coefficients. </P>
<HR>
<H3>
<A NAME="_cch3_930958969">Sample file with Annotations</A></H3>
<P>
Here is a sample file with annotations in parenthesis and lengthy
sections replaced by dots (...). Note that the blank lines are
important in this example.</P>
<PRE>
LAMMPS Description (1st line of file)
100 atoms (this must be the 3rd line, 1st 2 lines are ignored)
95 bonds (# of bonds to be simulated)
50 angles (include these lines even if number = 0)
30 dihedrals
20 impropers
5 atom types (# of nonbond atom types)
10 bond types (# of bond types = sets of bond coefficients)
18 angle types
20 dihedral types (do not include a bond,angle,dihedral,improper type
2 improper types line if number of bonds,angles,etc is 0)
-0.5 0.5 xlo xhi (for periodic systems this is box size,
-0.5 0.5 ylo yhi for non-periodic it is min/max extent of atoms)
-0.5 0.5 zlo zhi (do not include this line for 2-d simulations)
Masses
1 mass
...
N mass (N = # of atom types)
Nonbond Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of atom types)
Bond Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of bond types)
Angle Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of angle types)
Dihedral Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
Improper Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of improper types)
BondBond Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of angle types)
BondAngle Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of angle types)
MiddleBondTorsion Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
EndBondTorsion Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
AngleTorsion Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
AngleAngleTorsion Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
BondBond13 Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
AngleAngle Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of improper types)
Atoms
1 molecule-tag atom-type q x y z nx ny nz (nx,ny,nz are optional -
... see &quot;true flag&quot; input command)
...
N molecule-tag atom-type q x y z nx ny nz (N = # of atoms)
Velocities
1 vx vy vz
...
...
N vx vy vz (N = # of atoms)
Bonds
1 bond-type atom-1 atom-2
...
N bond-type atom-1 atom-2 (N = # of bonds)
Angles
1 angle-type atom-1 atom-2 atom-3 (atom-2 is the center atom in angle)
...
N angle-type atom-1 atom-2 atom-3 (N = # of angles)
Dihedrals
1 dihedral-type atom-1 atom-2 atom-3 atom-4 (atoms 2-3 form central bond)
...
N dihedral-type atom-1 atom-2 atom-3 atom-4 (N = # of dihedrals)
Impropers
1 improper-type atom-1 atom-2 atom-3 atom-4 (atom-2 is central atom)
...
N improper-type atom-1 atom-2 atom-3 atom-4 (N = # of impropers)
</PRE>
</BODY>
</HTML>

View File

@ -1,42 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
LAMMPS Deficiencies</H2>
<P>
<A HREF="README.html">Return</A> to top-level of LAMMPS documentation.</P>
<P>
This is a brief list of features lacking in the current version of
LAMMPS. Some of these deficiencies are because of lack of
time/interest; others are just hard!</P>
<UL>
<LI>
The calculation of pressure does not include a long-range Van der Waals
correction. This would be a constant for constant volume simulations
but is a source of error for constant pressure simulations where
the box-size varies dynamically.
<LI>
The smoothed Coulomb style cannot be used with class 2 force fields.
<LI>
The minimizer does not work with constant pressure conditions, nor
for some kinds of fixes (constraints).
<LI>
No support for non-rectilinear boxes (e.g. Parinello-Rahman
pressure control).
<LI>
SHAKE fixes cannot be combined with rREPSA.
<LI>
In the current F90 version of LAMMPS, Ewald computations are 2x slower
on some machines than they were in the earlier F77 version. This is
probably because of F90 compiler treatment of allocatable arrays. This
slowdown is not an issue with PPPM, which is more commonly used anyway.
<LI>
LAMMPS uses a spatial-decomposition of the simulation domain, but no
other load-balancing -- thus some geometries or density fluctuations can
lead to load imbalance on a parallel machine.
</UL>
</BODY>
</HTML>

View File

@ -1,681 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
LAMMPS Force Fields</H2>
<P>
<A HREF="README.html">Return</A> to top-level of LAMMPS documentation</P>
<P>
This file outlines the force-field formulas used in LAMMPS. Read this
file in conjunction with the <A HREF="data_format.html">data_format</A>
and <A HREF="units.html">units</A> files.</P>
<P>
The sections of this page are as follows:</P>
<UL>
<LI>
<A HREF="#_cch3_930957465">Nonbond Coulomb</A>
<LI>
<A HREF="#_cch3_930957471">Nonbond Lennard-Jones</A>
<LI>
<A HREF="#_cch3_930957478">Mixing Rules for Lennard-Jones</A>
<LI>
<A HREF="#_cch3_930957482">Bonds</A>
<LI>
<A HREF="#_cch3_930957488">Angles</A>
<LI>
<A HREF="#_cch3_930957509">Dihedrals</A>
<LI>
<A HREF="#_cch3_930957513">Impropers</A>
<LI>
<A HREF="#_cch3_930957527">Class 2 Force Field</A>
</UL>
<HR>
<H3>
<A NAME="_cch3_930957465">Nonbond Coulomb</A></H3>
<P>
Whatever Coulomb style is specified in the input command file, the
short-range Coulombic interactions are computed by this formula,
modified by an appropriate smoother for the smooth, Ewald, PPPM,
charmm, and debye styles.</P>
<PRE>
E = C q1 q2 / (epsilon * r)
r = distance (computed by LAMMPS)
C = hardwired constant to convert to energy units
q1,q2 = charge of each atom in electron units (proton = +1),
specified in &quot;Atoms&quot; entry in data file
epsilon = dielectric constant (vacuum = 1.0),
set by user in input command file
</PRE>
For the debye style, the smoother is exp(-kappa*r) where kappa is an
input parameter.
<HR>
<H3>
<A NAME="_cch3_930957471">Nonbond Lennard-Jones </A></H3>
<P>
The style of nonbond potential is specified in the input command file. </P>
<H4>
(1) lj/cutoff </H4>
<PRE>
E = 4 epsilon [ (sigma/r)^12 - (sigma/r)^6 ]
standard Lennard Jones potential
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = sigma (distance)
2 coeffs are listed in data file or set in input script
1 cutoff is set in input script
</PRE>
<H4>
(2) lj/switch </H4>
<PRE>
E = 4 epsilon [ (sigma/r)^12 - (sigma/r)^6 ] for r &lt; r_inner
= spline fit for r_inner &lt; r &lt; cutoff
= 0 for r &gt; cutoff
switching function (spline fit) is applied to standard LJ
within a switching region (from r_inner to cutoff) so that
energy and force go smoothly to zero
spline coefficients are computed by LAMMPS
so that at inner cutoff (r_inner) the potential, force,
and 1st-derivative of force are all continuous,
and at outer cutoff (cutoff) the potential and force
both go to zero
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = sigma (distance)
2 coeffs are listed in data file or set in input script
2 cutoffs (r_inner and cutoff) are set in input script
</PRE>
<H4>
(3) lj/shift </H4>
<PRE>
E = 4 epsilon [ (sigma/(r - delta))^12 - (sigma/(r - delta))^6 ]
same as lj/cutoff except that r is shifted by delta
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = sigma (distance)
coeff3 = delta (distance)
3 coeffs are listed in data file or set in input script
1 cutoff is set in input script
</PRE>
<H4>
(4) soft </H4>
<PRE>
E = A * [ 1 + cos( pi * r / cutoff ) ]
useful for pushing apart overlapping atoms by ramping A over time
r = distance (computed by LAMMPS)
coeff1 = prefactor A at start of run (energy)
coeff2 = prefactor A at end of run (energy)
2 coeffs are listed in data file or set in input script
1 cutoff is set in input script
</PRE>
<H4>
(5) class2/cutoff </H4>
<PRE>
E = epsilon [ 2 (sigma/r)^9 - 3 (sigma/r)^6 ]
used with class2 bonded force field
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = sigma (distance)
2 coeffs are listed in data file or set in input script
1 cutoff is set in input script
</PRE>
<H4>
6) lj/charmm </H4>
<PRE>
E = 4 epsilon [ (sigma/r)^12 - (sigma/r)^6 ] for r &lt; r_inner
= switch * E for r_inner &lt; r &lt; cutoff
= 0 for r &gt; cutoff
where
switch = [(cutoff^2 - r^2)^2 * (cutoff^2 + 2*r^2 - 3*r_inner)] /
[(cutoff^2 - r_inner^2)^3]
switching function is applied to standard LJ
within a switching region (from r_inner to cutoff) so that
energy and force go smoothly to zero
switching function causes that at inner cutoff (r_inner)
the potential and force are continuous,
and at outer cutoff (cutoff) the potential and force
both go to zero
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = sigma (distance)
coeff3 = epsilon for 1-4 interactions (energy)
coeff4 = sigma for 1-4 interactions (distance)
4 coeffs are listed in data file or set in input script
2 cutoffs (r_inner and cutoff) are set in input script
</PRE>
<HR>
<H3>
<A NAME="_cch3_930957478">Mixing Rules for Lennard-Jones</A></H3>
<P>
The coefficients for each nonbond style are input in either the data
file by the &quot;read data&quot; command or in the input script using
the &quot;nonbond coeff&quot; command. In the former case, only one set
of coefficients is input for each atom type. The cross-type coeffs are
computed using one of three possible mixing rules: </P>
<PRE>
geometric: epsilon_ij = sqrt(epsilon_i * epsilon_j)
sigma_ij = sqrt(sigma_i * sigma_j)
arithmetic: epsilon_ij = sqrt(epsilon_i * epsilon_j)
sigma_ij = (sigma_i + sigma_j) / 2
sixthpower: epsilon_ij =
(2 * sqrt(epsilon_i*epsilon_j) * sigma_i^3 * sigma_j^3) /
(sigma_i^6 + sigma_j^6)
sigma_ij= ((sigma_i**6 + sigma_j**6) / 2) ^ (1/6)
</PRE>
<P>
The default mixing rule for nonbond styles lj/cutoff, lj/switch,
lj/shift, and soft is &quot;geometric&quot;. The default for nonbond
style class2/cutoff is &quot;sixthpower&quot;. </P>
<P>
The default can be overridden using the &quot;mixing style&quot;
command. Two exceptions to this are for the nonbond style soft, for
which only an epsilon prefactor is input. This is always mixed
geometrically. Also, for nonbond style lj/shift, the delta
coefficient is always mixed using the rule </P>
<UL>
<LI>
delta_ij = (delta_i + delta_j) / 2
</UL>
<HR>
<H3>
<A NAME="_cch3_930957482">Bonds</A></H3>
<P>
The style of bond potential is specified in the input command file.</P>
<H4>
(1) harmonic </H4>
<PRE>
E = K (r - r0)^2
standard harmonic spring
r = distance (computed by LAMMPS)
coeff1 = K (energy/distance^2) (the usual 1/2 is included in the K)
coeff2 = r0 (distance)
2 coeffs are listed in data file or set in input script
</PRE>
<H4>
(2) FENE/standard </H4>
<PRE>
E = -0.5 K R0^2 * ln[1 - (r/R0)^2] +
4 epsilon [(sigma/r)^12 - (sigma/r)^6] + epsilon
finite extensible nonlinear elastic (FENE) potential for
polymer bead-spring models
see Kremer, Grest, J Chem Phys, 92, p 5057 (1990)
r = distance (computed by LAMMPS)
coeff1 = K (energy/distance^2)
coeff2 = R0 (distance)
coeff3 = epsilon (energy)
coeff4 = sigma (distance)
1st term is attraction, 2nd term is repulsion (shifted LJ)
1st term extends to R0
2nd term only extends to the minimum of the LJ potential,
a cutoff distance computed by LAMMPS (2^(1/6) * sigma)
4 coeffs are listed in data file or set in input script
</PRE>
<H4>
(3) FENE/shift </H4>
<PRE>
E = -0.5 K R0^2 * ln[1 - ((r - delta)/R0)^2] +
4 epsilon [(sigma/(r - delta))^12 - (sigma/(r - delta))^6] + epsilon
same as FENE/standard expect that r is shifted by delta
r = distance (computed by LAMMPS)
coeff1 = K (energy/distance^2)
coeff2 = R0 (distance)
coeff3 = epsilon (energy)
coeff4 = sigma (distance)
coeff5 = delta (distance)
1st term is attraction, 2nd term is repulsion (shifted LJ)
1st term extends to R0
2nd term only extends to the minimum of the LJ potential,
a cutoff distance computed by LAMMPS (2^(1/6) * sigma + delta)
5 coeffs are listed in data file or set in input script
</PRE>
<H4>
(4) nonlinear </H4>
<PRE>
E = epsilon (r - r0)^2 / [ lamda^2 - (r - r0)^2 ]
non-harmonic spring of equilibrium length r0
with finite extension of lamda
see Rector, Van Swol, Henderson, Molecular Physics, 82, p 1009 (1994)
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = r0 (distance)
coeff3 = lamda (distance)
3 coeffs are listed in data file or set in input script
</PRE>
<H4>
(5) class2 </H4>
<PRE>
E = K2 (r - r0)^2 + K3 (r - r0)^3 + K4 (r - r0)^4
r = distance (computed by LAMMPS)
coeff1 = r0 (distance)
coeff2 = K2 (energy/distance^2)
coeff3 = K3 (energy/distance^3)
coeff4 = K4 (energy/distance^4)
4 coeffs are listed in data file - cannot be set in input script
</PRE>
<HR>
<H3>
<A NAME="_cch3_930957488">Angles </A></H3>
<P>
The style of angle potential is specified in the input command file. </P>
<H4>
(1) harmonic </H4>
<PRE>
E = K (theta - theta0)^2
theta = radians (computed by LAMMPS)
coeff1 = K (energy/radian^2) (the usual 1/2 is included in the K)
coeff2 = theta0 (degrees) (converted to radians within LAMMPS)
2 coeffs are listed in data file or set in input script
</PRE>
<H4>
(2) class2 </H4>
<PRE>
E = K2 (theta - theta0)^2 + K3 (theta - theta0)^3 +
K4 (theta - theta0)^4
theta = radians (computed by LAMMPS)
coeff1 = theta0 (degrees) (converted to radians within LAMMPS)
coeff2 = K2 (energy/radian^2)
coeff3 = K3 (energy/radian^3)
coeff4 = K4 (energy/radian^4)
4 coeffs are listed in data file - cannot be set in input script
</PRE>
<H4>
(3) charmm </H4>
<PRE>
(harmonic + Urey-Bradley)
E = K (theta - theta0)^2 + K_UB (r_13 - r_UB)^2
theta = radians (computed by LAMMPS)
r_13 = distance (computed by LAMMPS)
coeff1 = K (energy/radian^2) (the usual 1/2 is included in the K)
coeff2 = theta0 (degrees) (converted to radians within LAMMPS)
coeff3 = K_UB (energy/distance^2)
coeff4 = r_UB (distance)
4 coeffs are listed in data file or set in input script
</PRE>
<H4>
(4) cosine </H4>
<PRE>
E = K (1 + cos(theta))
theta = radians (computed by LAMMPS)
coeff1 = K (energy)
1 coeff is listed in data file or set in input script
</PRE>
<H3>
<A NAME="_cch3_930957509">Dihedrals </A></H3>
<P>
The style of dihedral potential is specified in the input command
file. IMPORTANT NOTE for all these dihedral styles: in the LAMMPS
force field the trans position = 180 degrees, while in some force
fields trans = 0 degrees. </P>
<H4>
(1) harmonic </H4>
<PRE>
E = K [1 + d * cos (n*phi) ]
phi = radians (computed by LAMMPS)
coeff1 = K (energy)
coeff2 = d (+1 or -1)
coeff3 = n (1,2,3,4,6)
Additional cautions when comparing to other force fields:
some force fields reverse the sign convention on d so that
E = K [1 - d * cos(n*phi)]
some force fields divide/multiply K by the number of multiple
torsions that contain the j-k bond in an i-j-k-l torsion
some force fields let n be positive or negative which
corresponds to d = 1,-1
3 coeffs are listed in data file or set in input script
</PRE>
<H4>
(2) class2 </H4>
<PRE>
E = SUM(n=1,3) { K_n [ 1 - cos( n*Phi - Phi0_n ) ] }
phi = radians (computed by LAMMPS)
coeff1 = K_1 (energy)
coeff2 = Phi0_1 (degrees) (converted to radians within LAMMPS)
coeff3 = K_2 (energy)
coeff4 = Phi0_2 (degrees) (converted to radians within LAMMPS)
coeff5 = K_3 (energy)
coeff6 = Phi0_3 (degrees) (converted to radians within LAMMPS)
6 coeffs are listed in data file - cannot be set in input script
</PRE>
<H4>
(3) multiharmonic </H4>
<PRE>
E = SUM(n=1,5) { A_n * cos(Phi)^(n-1) }
phi = radians (computed by LAMMPS)
coeff1 = A_1
coeff2 = A_2
coeff3 = A_3
coeff4 = A_4
coeff5 = A_5
5 coeffs are listed in data file or set in input script
</PRE>
<H4>
(4) charmm </H4>
<PRE>
(harmonic + 1-4 interactions)
E = K [1 + cos (n*phi + d) ]
phi = radians (computed by LAMMPS)
coeff1 = K (energy)
coeff2 = n (1,2,3,4,6)
coeff3 = d (0 or 180 degrees) (converted to radians within LAMMPS)
coeff4 = weighting factor to turn on/off 1-4 neighbor nonbond interactions
coeff4 weight values are from 0.0 to 1.0 and are used to multiply the
energy and force interaction (both Coulombic and LJ) between the 2 atoms
weight of 0.0 means no interaction
weight of 1.0 means full interaction
must be used with the special bonds charmm command
"special bonds 0 0 0") which shuts off the uniform special bonds and
allows pair-specific special bonds for the 1-4 interactions to be
defined in the data file
LAMMPS assumes that all 1-4 interaction distances, which are
generally less than 6 Angstroms, are less than the smallest of the
inner LJ and Coulombic cutoffs, which are generally at least 8
Angstroms.
4 coeffs are listed in data file or set in input script
</PRE>
<HR>
<H3>
<A NAME="_cch3_930957513">Impropers</A></H3>
<P>
The style of improper potential is specified in the input command file. </P>
<H4>
(1) harmonic </H4>
<PRE>
E = K (chi - chi0)^2
chi = radians (computed by LAMMPS)
coeff1 = K (energy/radian^2) (the usual 1/2 is included in the K)
coeff2 = chi0 (degrees) (converted to radians within LAMMPS)
2 coeffs are listed in data file or set in input script
</PRE>
<H4>
(2) cvff </H4>
<PRE>
E = K [1 + d * cos (n*chi) ]
chi = radians (computed by LAMMPS)
coeff1 = K (energy)
coeff2 = d (+1 or -1)
coeff3 = n (0,1,2,3,4,6)
3 coeffs are listed in data file or set in input script
</PRE>
<H4>
(3) class2 </H4>
<PRE>
same formula, coeffs, and meaning as &quot;harmonic&quot; except that LAMMPS
averages all 3 angle-contributions to chi
in class 2 this is called a Wilson out-of-plane interaction
2 coeffs are listed in data file - cannot be set in input script
</PRE>
<HR>
<H3>
<A NAME="_cch3_930957527">Class 2 Force Field</A></H3>
<P>
If class 2 force fields are selected in the input command file,
additional cross terms are computed as part of the force field. All
class 2 coefficients must be set in the data file; they cannot be set
in the input script.</P>
<H4>
Bond-Bond (computed within class 2 angles) </H4>
<PRE>
E = K (r - r0) * (r' - r0')
r,r' = distance (computed by LAMMPS)
coeff1 = K (energy/distance^2)
coeff2 = r0 (distance)
coeff3 = r0' (distance)
3 coeffs are input in data file
</PRE>
<H4>
Bond-Angle (computed within class 2 angles for each of 2 bonds) </H4>
<PRE>
E = K_n (r - r0_n) * (theta - theta0)
r = distance (computed by LAMMPS)
theta = radians (computed by LAMMPS)
coeff1 = K_1 (energy/distance-radians)
coeff2 = K_2 (energy/distance-radians)
coeff3 = r0_1 (distance)
coeff4 = r0_2 (distance)
Note: theta0 is known from angle coeffs so don't need it specified here
4 coeffs are listed in data file
</PRE>
<H4>
Middle-Bond-Torsion (computed within class 2 dihedral) </H4>
<PRE>
E = (r - r0) * [ F1*cos(phi) + F2*cos(2*phi) + F3*cos(3*phi) ]
r = distance (computed by LAMMPS)
phi = radians (computed by LAMMPS)
coeff1 = F1 (energy/distance)
coeff2 = F2 (energy/distance)
coeff3 = F3 (energy/distance)
coeff4 = r0 (distance)
4 coeffs are listed in data file
</PRE>
<H4>
End-Bond-Torsion (computed within class 2 dihedral for each of 2 bonds) </H4>
<PRE>
E = (r - r0_n) * [ F1_n*cos(phi) + F2_n*cos(2*phi) + F3_n*cos(3*phi) ]
r = distance (computed by LAMMPS)
phi = radians (computed by LAMMPS)
coeff1 = F1_1 (energy/distance)
coeff2 = F2_1 (energy/distance)
coeff3 = F3_1 (energy/distance)
coeff4 = F1_2 (energy/distance)
coeff5 = F2_3 (energy/distance)
coeff6 = F3_3 (energy/distance)
coeff7 = r0_1 (distance)
coeff8 = r0_2 (distance)
8 coeffs are listed in data file
</PRE>
<H4>
Angle-Torsion (computed within class 2 dihedral for each of 2 angles) </H4>
<PRE>
E = (theta - theta0) * [ F1_n*cos(phi) + F2_n*cos(2*phi) + F3_n*cos(3*phi) ]
theta = radians (computed by LAMMPS)
phi = radians (computed by LAMMPS)
coeff1 = F1_1 (energy/radians)
coeff2 = F2_1 (energy/radians)
coeff3 = F3_1 (energy/radians)
coeff4 = F1_2 (energy/radians)
coeff5 = F2_3 (energy/radians)
coeff6 = F3_3 (energy/radians)
coeff7 = theta0_1 (degrees) (converted to radians within LAMMPS)
coeff8 = theta0_2 (degrees) (converted to radians within LAMMPS)
8 coeffs are listed in data file
</PRE>
<H4>
Angle-Angle-Torsion (computed within class 2 dihedral) </H4>
<PRE>
E = K (theta - theta0) * (theta' - theta0') * (phi - phi0)
theta,theta' = radians (computed by LAMMPS)
phi = radians (computed by LAMMPS)
coeff1 = K (energy/radians^3)
coeff2 = theta0 (degrees) (converted to radians within LAMMPS)
coeff3 = theta0' (degrees) (converted to radians within LAMMPS)
Note: phi0 is known from dihedral coeffs so don't need it specified here
3 coeffs are listed in data file
</PRE>
<H4>
Bond-Bond-13-Torsion (computed within class 2 dihedral) </H4>
<PRE>
E = K * (r1 - r10)*(r3 - r30)
r1,r3 = bond lengths of bonds 1 and 3 (computed by LAMMPS)
coeff1 = K (energy/distance^2)
coeff2 = r10 (distance) = equilibrium bond length for bond 1
coeff3 = r30 (distance) = equilibrium bond length for bond 3
K is only non-zero for aromatic rings
3 coeffs are listed in data file
</PRE>
<H4>
Angle-Angle (computed within class 2 improper for each of 3 pairs of
angles) </H4>
<PRE>
E = K_n (theta - theta0_n) * (theta' - theta0_n')
theta,theta' = radians (computed by LAMMPS)
coeff1 = K_1 (energy/radians^2)
coeff2 = K_2 (energy/radians^2)
coeff3 = K_3 (energy/radians^2)
coeff4 = theta0_1 (degrees) (converted to radians within LAMMPS)
coeff5 = theta0_2 (degrees) (converted to radians within LAMMPS)
coeff6 = theta0_3 (degrees) (converted to radians within LAMMPS)
6 coeffs are listed in data file
</PRE>
</BODY>
</HTML>

View File

@ -1,205 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
History of LAMMPS</H2>
<P>
<A HREF="README.html">Return</A> to top-level of LAMMPS documentation.</P>
<P>
This is a brief history of features added to each version of LAMMPS.</P>
<HR>
<H3>
LAMMPS 2001 - November 2001</H3>
<UL>
<LI>
F90 + MPI version of code
<LI>
dynamic memory, no param.h file settings to twiddle, see "extra memory"
command
<LI>
changed required ordering of some input script commands (see discussion in
<A HREF="input_commands.html">input_commands</A>) file
<LI>
new commands: "extra memory", "maximum cutoff", "restart version",
"angle coeff", "dihedral coeff", "improper coeff",
"volume control", "slab volume", "rotation zero"
<LI>
changed meaning or syntax of commands:
"special bonds", "fix style rescale", "fix style hoover/drag",
"temp control rescale", "press control", "restart"
<LI>
deleted commands: "log file", "press_x control" (and y,z)
<LI>
better match to CHARMM force fields via "nonbond style lj/charmm",
"coulomb style charmm/switch", "angle style charmm", dihedral style charmm"
(due to Mark Stevens and Paul Crozier)
<LI>
changed "special bonds" default to 0.0 weighting on 1-4 interactions for
CHARMM compatibility, added "special bonds amber" option for AMBER
compatibility
<LI>
ghost atoms and new treatment of periodic boundary conditions,
this allows for cutoffs &gt; box-size and faster neighbor binning,
binned neighbor list construction is now the default as it is almost
always faster
<LI>
perform blocked-input from data and restart files, faster for many MPI
implementations (due to Mathias Puetz)
<LI>
added Velocities option to data file to initialize each atom's
velocity (see <A HREF="data_format.html">data_format</A> file)
<LI>
pressure control was decoupled from temperature control, so that
constant NPH simulations can be run (not just NPT), temperature
controls such as rescale or Langevin can now be used with constant P
simulations (due to Mark Stevens)
<LI>
temperature rescaling (either in "temp control" or "fix style rescale")
has an added fractional parameter which allows it to be applied
in a lightweight or heavy-handed way to induce the desired temperature
<LI>
got rid of crib.html file, see global.f for documentation of all
variables
<LI>
2-d slab Ewald and PPPM option, (see "slab volume" in
<A HREF="input_commands.html">input commands</A>) (due to Paul Crozier)
<LI>
new multiharmonic dihedral and cvff improper force-field options
(due to Mathias Puetz)
<LI>
SHAKE constraint for small clusters of atoms, see "fix style shake"
and "assign fix bondtype" commands
<LI>
added option to output restart files with timestep stamp or to toggle
between 2 files, see "restart" command
<LI>
tools for converting to/from other MD program formats:
msi2lmp (updated by John Carpenter),
lmp2arc (due to John Carpenter),
amber2lammps & dump2trj (Python scripts due to Keir Novik)
<LI>
tools for creating and massaging LAMMPS data and restart files:
setup_lj, setup_flow_2d, setup_chain, peek_restart, restart2data,
replicate
</UL>
<HR>
<H3>
LAMMPS 99 - June 99 </H3>
<UL>
<LI>
all-MPI version of code (F77 + C + MPI) for maximum portablility
<LI>
only one PPPM choice now, the better of the two earlier ones
<LI>
PPPM uses portable FFTs and data remapping routines, written in C w/
MPI, can now use non-power-of-2 processors and grid sizes
<LI>
auto-mapping of simulation box to processors
<LI>
removed a few unused/unneeded commands (bdump, log file, id string,
limit)
<LI>
changed syntax of some commands for simplicity &amp; consistency (see <A
HREF="input_commands.html">input commands</A>)
<LI>
changed method of calling/writing user diagnostic routines to be
simpler
<LI>
documentation in HTML format
</UL>
<HR>
<H3>
Version 5.0 - Oct 1997 </H3>
<UL>
<LI>
final version of class II force fields (due to Eric Simon)
<LI>
new formulation of NVE, NVT, NPT and rRESPA integrators (due to
Mark Stevens)
<LI>
new version of msi2lmp pre-processing tool, does not require DISCOVER
to run, only DISCOVER force field files (due to Steve Lustig)
<LI>
energy minimizer, Hessian-free truncated Newton method
(due to Todd Plantenga)
<LI>
new pressure controllers and constraints (due to Mark Stevens)
<LI>
replicate tool for generating new data files from old ones
</UL>
<HR ALIGN="LEFT">
<H3>
Version 4.0 - March 1997 </H3>
<UL>
<LI>
1st version of class II force fields (due to Eric Simon)
<LI>
new, faster PPPM solver (newpppm, due to Roy Pollock)
<LI>
rRESPA (due to Mark Stevens)
<LI>
new data file format
<LI>
new constraints, diagnostics
<LI>
msi2lmp pre-processing tool (due to Steve Lustig)
</UL>
<HR>
<H3>
Version 3.0 - March 1996 </H3>
<UL>
<LI>
more general force-field formulation
<LI>
atom/group constraints
<LI>
LJ units and bond potentials
<LI>
smoothed LJ potential option
<LI>
Langevin thermostat
<LI>
Newton's 3rd law option
<LI>
hook for user-supplied diagnostic routines
</UL>
<HR>
<H3>
Version 2.0 - October 1995 </H3>
<UL>
<LI>
bug fix of velocity initialization which caused drift
<LI>
PPPM for long-range Coulombic (due to Roy Pollock)
<LI>
constant NPT (due to Mark Stevens)
</UL>
<HR>
<H3>
Version 1.1 - February 1995 </H3>
<UL>
<LI>
Ewald for long-range Coulombic (due to Roy Pollock)
<LI>
full Newton's 3rd law (doubled communication)
<LI>
dumping of atom positions and velocities
<LI>
restart files
</UL>
<HR>
<H3>
Version 1.0 - January 1995 </H3>
<UL>
<LI>
short-range bonded and non-bonded forces
<LI>
partial Newton's 3rd law
<LI>
velocity-Verlet integrator
</UL>
</BODY>
</HTML>

File diff suppressed because it is too large Load Diff

View File

@ -1,119 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
LAMMPS Units</H2>
<P>
<A HREF="README.html">Return</A> to top-level LAMMPS documentation.</P>
<P>
This file describes the units associated with many of the key variables
and equations used inside the LAMMPS code. Units used for input command
parameters are described in the input_commands file. The input command
&quot;units&quot; selects between conventional and Lennard-Jones units.
See the force_fields file for more information on units for the force
field parameters that are input from data files or input scripts. </P>
<P>
Conventional units: </P>
<UL>
<LI>
distance = Angstroms
<LI>
time = femtoseconds
<LI>
mass = grams/mole
<LI>
temperature = degrees K
<LI>
pressure = atmospheres
<LI>
energy = Kcal/mole
<LI>
velocity = Angstroms/femtosecond
<LI>
force = grams/mole * Angstroms/femtosecond^2
<LI>
charge = +/- 1.0 is proton/electron
</UL>
<P>
LJ reduced units: </P>
<UL>
<LI>
distance = sigmas
<LI>
time = reduced LJ tau
<LI>
mass = ratio to unitless 1.0
<LI>
temperature = reduced LJ temp
<LI>
pressure = reduced LJ pressure
<LI>
energy = epsilons
<LI>
velocity = sigmas/tau
<LI>
force = reduced LJ force (sigmas/tau^2)
<LI>
charge = ratio to unitless 1.0
</UL>
<HR>
<P>
This listing of variables assumes conventional units; to convert to LJ
reduced units, simply substitute the appropriate term from the list
above. E.g. x is in sigmas in LJ units. Per-mole in any of the units
simply means for 6.023 x 10^23 atoms.</P>
<P>
</P>
<PRE>
Meaning Variable Units
positions x Angstroms
velocities v Angstroms / click (see below)
forces f Kcal / (mole - Angstrom)
masses mass gram / mole
charges q electron units (-1 for an electron)
(1 e.u. = 1.602 x 10^-19 coul)
time --- clicks (1 click = 48.88821 fmsec)
timestep dt clicks
input timestep dt_in fmsec
time convert dtfactor 48.88821 fmsec / click
temperature t_current degrees K
t_start
t_stop
input damping t_freq_in inverse fmsec
internal temp t_freq inverse clicks
damping
dielec const dielectric 1.0 (unitless)
Boltmann const boltz 0.001987191 Kcal / (mole - degree K)
virial virial[xyz] Kcal/mole = r dot F
pressure factor pfactor 68589.796 (convert internal to atmospheres)
internal p_current Kcal / (mole - Angs^3)
pressure p_start
p_stop
input press p_start_in atmospheres
p_stop_in
output press log file atmospheres
input damping p_freq_in inverse time
internal press p_freq inverse clicks
damping
pot eng e_potential Kcal/mole
kin eng e_kinetic Kcal/mole
eng convert efactor 332.0636 (Kcal - Ang) / (q^2 - mole)
(convert Coulomb eng to Kcal/mole)
LJ coeffs lja,ljb Kcal-Angs^(6,12)/mole
bond various see force_fields file
parameters 2,3,4-body
terms
</PRE>
</BODY>
</HTML>

View File

@ -1,161 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
LAMMPS</H2>
<P>
LAMMPS = Large-scale Atomic/Molecular Massively Parallel Simulator</P>
<P>
This is the documentation for the LAMMPS 99 version, written in F77,
which has been superceded by more current versions. See the <A
HREF="http://www.cs.sandia.gov/~sjplimp/lammps.html">LAMMPS WWW
Site</A> for more information.
<P>
LAMMPS is a classical molecular dynamics code designed for simulating
molecular and atomic systems on parallel computers using
spatial-decomposition techniques. It runs on any parallel platform that
supports the MPI message-passing library or on single-processor
workstations.</P>
<P>
LAMMPS 99 is copyrighted code that is distributed freely as
open-source software under the GNU Public License (GPL). See the
LICENSE file or <A HREF="http://www.gnu.org">www.gnu.org</A> for more
details. Basically the GPL allows you as a user to use, modify, or
distribute LAMMPS however you wish, so long as any software you
distribute remains under the GPL.
<P>
Features of LAMMPS 99 include:</P>
<UL>
<LI>
short-range pairwise Lennard-Jones and Coulombic interactions
<LI>
long-range Coulombic interactions via Ewald or PPPM (particle-mesh
Ewald)
<LI>
short-range harmonic bond potentials (bond, angle, torsion, improper)
<LI>
short-range class II (cross-term) molecular potentials
<LI>
NVE, NVT, NPT dynamics
<LI>
constraints on atoms or groups of atoms
<LI>
rRESPA long-timescale integrator
<LI>
energy minimizer (Hessian-free truncated Newton method)
</UL>
<P>
More details about the code can be found <A HREF="#_cch3_930958294">here</A>,
in the HTML-based documentation. There is also a conference paper
describing the parallel algorithms used in the code:</P>
<P>
S. J. Plimpton, R. Pollock, M. Stevens, &quot;Particle-Mesh Ewald and
rRESPA for Parallel Molecular Dynamics Simulations&quot;, in Proc of
the Eighth SIAM Conference on Parallel Processing for Scientific
Computing, Minneapolis, MN, March 1997.</P>
<P>
LAMMPS was originally developed as part of a 5-way CRADA collaboration
between 3 industrial partners (Cray Research, Bristol-Myers Squibb, and
Dupont) and 2 DoE laboratories (Sandia National Laboratories and
Lawrence Livermore National Laboratories).</P>
<P>
The primary author of LAMMPS is Steve Plimpton, but others have written
or worked on significant portions of the code:</P>
<UL>
<LI>
Roy Pollock (LLNL): Ewald, PPPM solvers
<LI>
Mark Stevens (Sandia): rRESPA, NPT integrators
<LI>
Eric Simon (Cray Research): class II force fields
<LI>
Todd Plantenga (Sandia): energy minimizer
<LI>
Steve Lustig (Dupont): msi2lmp tool
<LI>
Mike Peachey (Cray Research): msi2lmp tool
</UL>
<P>
Other CRADA partners involved in the design and testing of LAMMPS are </P>
<UL>
<LI>
John Carpenter (Cray Research)
<LI>
Terry Stouch (Bristol-Myers Squibb)
<LI>
Jim Belak (LLNL)
</UL>
<P>
LAMMPS is copyrighted code that is distributed freely as open-source
software under the GNU Public License (GPL). See the LICENSE file or
<A HREF="http://www.gnu.org">www.gnu.org</A> for more details.
Basically the GPL allows you as a user to use, modify, or distribute
LAMMPS however you wish, so long as any software you distribute
remains under the GPL.
<P>
If you have questions about LAMMPS, please contact me:
</P>
<DL>
<DT>
Steve Plimpton
<DD>
sjplimp@sandia.gov
<DD>
www.cs.sandia.gov/~sjplimp
<DD>
Sandia National Labs
<DD>
Albuquerque, NM 87185
</DL>
<HR>
<H3>
<A NAME="_cch3_930958294">More Information about LAMMPS</A></H3>
<DIR>
<LI>
<A HREF="basics.html">Basics</A>
<DIR>
<LI>
how to make, run, and test LAMMPS with the example problems
</DIR>
<LI>
<A HREF="input_commands.html">Input Commands</A>
<DIR>
<LI>
a complete listing of input commands used by LAMMPS
</DIR>
<LI>
<A HREF="data_format.html">Data Format</A>
<DIR>
<LI>
the data file format used by LAMMPS
</DIR>
<LI>
<A HREF="force_fields.html">Force Fields</A>
<DIR>
<LI>
the equations LAMMPS uses to compute force-fields
</DIR>
<LI>
<A HREF="units.html">Units</A>
<DIR>
<LI>
the input/output and internal units for LAMMPS variables
</DIR>
<LI>
<A HREF="crib.html">Crib</A>
<DIR>
<LI>
a one-line description of the variables used in LAMMPS
</DIR>
<LI>
<A HREF="history.html">History</A>
<DIR>
<LI>
a brief timeline of features added to LAMMPS
</DIR>
</DIR>
</BODY>
</HTML>

View File

@ -1,207 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
Basics of Using LAMMPS</H2>
<P>
<A HREF="README.html">Return</A> to top-level of LAMMPS documentation.</P>
<UL>
<LI>
<A HREF="#_cch3_931273040">Distribution</A>
<LI>
<A HREF="#_cch3_930327142">Making LAMMPS</A>
<LI>
<A HREF="#_cch3_930327155">Running LAMMPS</A>
<LI>
<A HREF="#_cch3_930759879">Examples</A>
<LI>
<A HREF="#_cch3_931282515">Other Tools</A>
</UL>
<HR>
<H3>
<A NAME="_cch3_931273040">Distribution</A></H3>
<P>
When you unzip/untar the LAMMPS distribution you should have 5
directories: </P>
<UL>
<LI>
src = source files for LAMMPS
<LI>
doc = HTML documentation
<LI>
examples = sample problems with inputs and outputs
<LI>
msi2lmp = tool for converting files from DISCOVER to LAMMPS format
(this requires that you have DISCOVER force field files)
<LI>
tools = serial program for replicating data files
</UL>
<HR>
<H3>
<A NAME="_cch3_930327142">Making LAMMPS</A></H3>
<P>
The src directory contains the F77 and C source files for LAMMPS as
well as several sample Makefiles for different machines. To make LAMMPS
for a specfic machine, you simply type</P>
<P>
make machine</P>
<P>
from within the src directoy. E.g. &quot;make sgi&quot; or &quot;make
t3e&quot;. This should create an executable named lmp_sgi or lmp_t3e.</P>
<P>
In the src directory, there is one top-level Makefile and several
low-level machine-specific files named Makefile.xxx where xxx = the
machine name. If a low-level Makefile exists for your platform, you do
not need to edit the top-level Makefile. However you should check the
system-specific section of the low-level Makefile to make sure the
various paths are correct for your environment. If a low-level Makefile
does not exist for your platform, you will need to add a suitable
target to the top-level Makefile. You will also need to create a new
low-level Makefile using one of the existing ones as a template. If you
wish to make LAMMPS for a single-processor workstation that doesn't
have an installed MPI library, you can specify the serial target which
uses a directory of MPI stubs to link against - e.g. &quot;make
serial&quot;. You will need to make the stub library (see STUBS
directory) on your workstation before doing this.</P>
<P>
Note that the two-level Makefile system allows you to make LAMMPS for
multiple platforms. Each target creates its own object directory for
separate storage of its *.o files.</P>
<P>
There are a couple compiler switches of interest which can be specified
in the low-level Makefiles. If you use a F77FLAGS switch of -DSYNC then
synchronization calls will be made before the timing routines in
integrate.f. This may slow down the code slightly, but will make the
reported timings at the end of a run more accurate. The CCFLAGS setting
in the low-level Makefiles requires a FFT setting, for example
-DFFT_SGI or -DFFT_T3E. This is for inclusion of the appropriate
machine-specific native 1-d FFT libraries on various platforms.
Currently, the supported machines and switches (used in fft_3d.c) are
FFT_SGI, FFT_DEC, FFT_INTEL, FFT_T3E, and FFT_FFTW. The latter is a
publicly available portable FFT library, <A HREF="http://www.fftw.org">FFTW</A>,
which you can install on any machine. If none of these options is
suitable for your machine, please contact me, and we'll discuss how to
add the capability to call your machine's native FFT library.</P>
<HR>
<H3>
<A NAME="_cch3_930327155">Running LAMMPS</A></H3>
<P>
LAMMPS is run by redirecting a file of input commands into it.</P>
<P>
lmp_sgi &lt; in.lj</P>
<P>
lmp_t3e &lt; in.lj</P>
<P>
The input file contains commands that specify the parameters for the
simulation as well as read other necessary files such as a data file
that describes the initial atom positions, molecular topology, and
force-field parameters. The <A HREF="input_commands.html">input_commands</A>
page describes all the possible commands that can be used. The <A
HREF="data_format.html">data_format</A> page describes the format of
the data file. </P>
<P>
LAMMPS can be run on any number of processors, including a single
processor. In principle you should get identical answers on any number
of processors and on any machine. In practice, numerical round-off can
cause slight differences and eventual divergence of dynamical
trajectories. </P>
<P>
When LAMMPS runs, if you get an error message to the screen about
&quot;boosting&quot; something, it means one (or more) data arrays are
not allocated large enough. Some of these errors are detected at setup,
others like neighbor list overflow may not occur until the middle of a
run. When the latter happens the program will either gracefully stop
(if all processors incurred the same error) or hang (with an error
message). Unfortunately in the current version of LAMMPS which uses
static memory allocation, changing the array size(s) requires you to
edit the appropriate line(s) in the param.h file and recompile the code.</P>
<P>
I've tried to be careful about detecting memory-overflow errors in
LAMMPS. If the code ever crashes or hangs without spitting out an error
message first, it's probably a bug, so let me know about it. Of course
this applies to problems due to algorithmic or parallelism issues, not
to physics mistkaes, like specifying too big a timestep or putting 2
atoms on top of each other! One exception is that different MPI
implementations handle buffering of messages differently. If the code
hangs without an error message, it may be that you need to specify an
MPI setting or two (usually via an environment variable) to enable
buffering or boost the sizes of messages that can be buffered. </P>
<HR>
<H3>
<A NAME="_cch3_930759879">Examples</A></H3>
<P>
There are several sample problems in the examples directory. All of
them use an input file (in.*) of commands and a data file (data.*) of
initial atomic coordinates and produce one or more output files. The
*.xxx.P files are outputs on P processors on a particular machine which
you can compare your answers to.</P>
<P>
(1) lj</P>
<P>
Simple atomic simulations of Lennard-Jones atoms of 1 or 3 species with
various ensembles -- NVE, NVT, NPT.</P>
<P>
(2) charge</P>
<P>
A few timestep simulation of a box of charged atoms for testing the
Coulombic options -- cutoff, Ewald, particle-mesh Ewald (PPPM).</P>
<P>
(3) class2</P>
<P>
A simple test run of phenyalanine using DISCOVER cff95 class II force
fields.</P>
<P>
(4) min</P>
<P>
An energy minimization of a transcription protein.</P>
<P>
(5) lc</P>
<P>
Small (250 atom) and large (6750 atom) simulations of liquid crystal
molecules with various Coulombic options and periodicity settings. The
large-system date file was created by using the &quot;replicate&quot;
tool on the small-system data file.</P>
<P>
(6) flow</P>
<P>
2-d flow of Lennard-Jones atoms in a channel using various contraint
options.</P>
<P>
(7) polymer</P>
<P>
Simulations of bead-spring polymer models with one chain type and two
chain types (different size monomers). The two-chain system also has
freely diffusing monomers. This illustrates use of the setup_chain
program in the tools directory and also how to use soft potentials to
untangle the initial configurations.</P>
<HR>
<H3>
<A NAME="_cch3_931282515">Other Tools</A></H3>
<P>
The msi2lmp directory has source code for a tool that converts MSI
Discover files to LAMMPS input data files. This tool requires you to
have the Discover force-field description files in order to convert
those parameters to LAMMPS parameters. See the README file in the
msi2lmp directory for additional information.</P>
<P>
The tools directory has a C file called replicate.c which is useful for
generating new LAMMPS data files from existing ones - e.g. scaling the
atom coordinates, replicating the system to make a larger one, etc. See
the comments at the top of replicate.c for instructions on how to use
it.</P>
<P>
The tools directory has a F77 program called setup_lj (compile and link
with print.c) which can be used to generate a 3-d box of Lennard Jones
atoms (one or more atom types) like those used in examples/lj.</P>
<P>
The tools directory also has a F77 program called setup_chain.f
(compile and link with print.c) which can be used to generate random
initial polymer configurations for bead-spring models like those used
in examples/polymer. It uses an input polymer definition file (see
examples/polymer for two sample def files) that specfies how many
chains of what length, a random number seed, etc.</P>
</BODY>
</HTML>

View File

@ -1,629 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
Crib File</H2>
<P>
<A HREF="README.html">Return</A> to top-level of LAMMPS documentation.</P>
<P>
This file contains one-line descriptions of the key variables and
parameters used in LAMMPS. The variables are listed by their data type:</P>
<UL>
<LI>
<A HREF="#_cch3_930764945">Parameters</A>
<LI>
<A HREF="#_cch3_930764951">Arrays (real</A>)
<LI>
<A HREF="#_cch3_930764957">Arrays (integer)</A>
<LI>
<A HREF="#_cch3_930764964">Variables (real)</A>
<LI>
<A HREF="#_cch3_930764969">Variables (integer)</A>
<LI>
<A HREF="#_cch3_930764974">Variables (character)</A>
</UL>
<P>
Note: this file is somewhat out-of-date for LAMMPS 99.</P>
<HR>
<H3>
<A NAME="_cch3_930764945">Parameters: </A></H3>
<UL>
<LI>
maxown = max # of local owned atoms
<LI>
maxother = max # of local nearby atoms
<LI>
maxtotal = max # of total atoms in simulation
<LI>
maxtype = max # of atom types
<LI>
maxbond = max # of bonds to compute on one procesor
<LI>
maxangle = max # of angles to compute on one processor
<LI>
maxdihed = max # of dihedrals to compute on one processor
<LI>
maximpro = max # of impropers to compute on one processor
<LI>
maxbondper = max # of bonds of one atom
<LI>
maxangleper = max # of angles of one atom
<LI>
maxdihedper = max # of dihedrals of one atom
<LI>
maximproper = max # of impropers of one atom
<LI>
maxbondtype = max # of bond types
<LI>
maxangletype = max # of angle types
<LI>
maxdihedtype = max # of dihedral types
<LI>
maximprotype = max # of improper types
<LI>
maxexch = max # of atoms in exchange buffer
<LI>
maxsend = max # of atoms to send to all neighbors in all swaps
<LI>
maxsendone = max # of atoms to send in one swap
<LI>
maxswap = max # of swaps to do at each timestep
<LI>
maxneigh = max # of neighbors per owned atom
<LI>
maxsneigh = max # of special neighbors of one atom
<LI>
maxbin = max # of local neighbor bins
<LI>
maxfix = max # of defined constraints + 1
<LI>
maxdiag = max # of diagnostic routines
<LI>
maxgrid = max size of PPPM grid with ghosts on one processor
<LI>
maxfft = max size of PPPM FFT grid on one processor
<LI>
maxperatom = max # of data items stored/comm/output per atom
<LI>
maxatom = maxown + maxother = total # of own and nearby atoms
<LI>
maxexchtot = maxexch * (maxperatom + maxsneigh + 3*maxbondper +
4*maxangleper + 5*maxdihedper + 5*maximproper) = total data volume for
all exchanged atoms
<LI>
maxrestot = maxown * (maxperatom - 3 + 3*maxbondper + 4*maxangleper +
5*maxdihedper + 5*maximproper)+1 = total data volume for all buffered
restart atoms
<LI>
maxsendspec = 2 * maxsneigh * maxown total data volume for sending
special requests
<LI>
maxrecvspec = maxsneigh + 1 total data volume for receiving a list of
specials
</UL>
<HR>
<H3>
<A NAME="_cch3_930764951">Arrays (real): </A></H3>
<UL>
<LI>
anglecoeff(2,maxangletype) = angle coeffs for each angle type
<LI>
bondcoeff(5,maxbondtype) = bond coeffs for each bond type
<LI>
boundhi(maxswap) = hi slab boundary on atom positions for each swap
send
<LI>
boundlo(maxswap) = lo slab boundary on atom positions for each swap
send
<LI>
buf1(maxexchtot) = comm buffer for sending exchange atoms
<LI>
buf2(2*maxexchtot) = comm buffer for 2 recv of exchange atoms
<LI>
buf3(3*maxsendone) = comm buffer for sending one set of swap atom
positions
<LI>
buf4(8*maxown) = comm buffer for output
<LI>
buf5(maxrestot) = comm buffer for restart atoms
<LI>
buf6(maxsendone) = comm buffer for sending one set of swap charges
<LI>
cutforcesq(maxtype,maxtype) = force cutoff squared for atom pair
(LJ/Coul)
<LI>
cutljsq(maxtype,maxtype) = LJ cutoff squared for atom pairs
<LI>
cutljinner(maxtype,maxtype) = inner LJ cutoff for switched LJ
<LI>
cutljinnersq(maxtype,maxtype) = inner LJ cutoff squared for switched LJ
<LI>
cutneighsq(maxtype,maxtype) = neigh cutoff squared for atom pair
(LJ/Coul + skin)
<LI>
diagparams(6,maxdiag) = parameters to pass into a diagnostic routine
<LI>
dihedcoeff(3,maxdihedtype) = dihedral coeffs for each dihedral type
<LI>
f(3,maxown) = forces on own atoms
<LI>
fixcoeff(8,maxfix) = constraint coeffs for each constraint
<LI>
fixstore(5*maxfix) = accumulated quantities for each constraint
<LI>
improcoeff(2,maximprotype) = improper coeffs for each improper type
<LI>
lj12345(maxtype,maxtype) = pre-computed LJ coeffs for use in energy and
force
<LI>
ljsw01234(maxtype,maxtype) = pre-computed switched LJ coeffs for eng
and force
<LI>
mass(maxtype) = mass of each atom type
<LI>
noncoeff1234(maxtype,maxtype) = nonbond coeffs input for atom pairs
<LI>
offset(maxtype,maxtype) = LJ potential offsets at cutoff for energy
calc
<LI>
q(maxatom) = charge of own and nearby atoms (electron units)
<LI>
v(3,maxown) = velocity of owned atoms
<LI>
x(3,maxatom) = positions of own and nearby atoms
<LI>
xhold(3,maxown) = positions of own atoms at last reneighboring
</UL>
<HR>
<H3>
<A NAME="_cch3_930764957">Arrays (integer): </A></H3>
<UL>
<LI>
angleatom123(maxangleper,maxown) = angle atoms for angles of owned
atoms
<LI>
anglelist(4,maxangle) = atoms and type of each angle to compute locally
<LI>
angletype(maxangleper,maxown) = angle type for angles of owned atoms
<LI>
bin(maxatom) = linked list pointers from one atom to next in bin
<LI>
binpnt(maxbin) = pointer to 1st atom in each bin
<LI>
bondatom12(maxbondper,maxown) = bond atoms for bonds of owned atoms
<LI>
bondlist(3,maxbond) = atoms and type of each bond to compute locally
<LI>
bondtype(maxbondper,maxown) = bond type for bonds of owned atoms
<LI>
bondtypeflag(maxbondtype) = flag for whether bond coeffs are set
<LI>
diagfileflag(maxdiag) = whether a file has been specified for a diag
routine
<LI>
diagfreq(maxdiag) = call a diagnostic routine every this many steps
<LI>
diagnparams(maxdiag) = # of parameters specified for a diagnostic
routine
<LI>
diagstyle(maxdiag) = whether a diagnostic has been set 0/1
<LI>
dihedatom1234(maxdihedper,maxown) = dihed atoms for diheds of owned
atoms
<LI>
dihedlist(5,maxdihed) = atoms and type of each dihedral to compute
locally
<LI>
dihedtype(maxdihedper,maxown) = dihed type for diheds of owned atoms
<LI>
fix(maxown) = constraint assignments for each owned atom
<LI>
fixflag(3,maxfix) = 0/1 flags for various fix styles
<LI>
fixptr(maxfix) = how many values are accumulated for each constraint
<LI>
fixstyle(maxfix) = style of each constraint
<LI>
ibuf1(maxsendone) = comm buffer for sending one set of swap atom tags
<LI>
ibuf2(maxsendone) = comm buffer for sending one set of swap atom types
<LI>
ibuf3(maxspec) = comm buffer for sending special requests
<LI>
ibuf4(maxspec) = comm buffer for receiving special lists
<LI>
improatom1234(maximproper,maxown) = impro atoms for impros of owned
atoms
<LI>
improlist(5,maximpro) = atoms and type of each improper to compute
locally
<LI>
improtype(maximproper,maxown) = impro type for impros of owned atoms
<LI>
list(maxown) = linked list of local atoms (last one -&gt; maxown+1)
<LI>
localptr(0:maxtotal) = ptr from global atom to local array (0 if don't
have)
<LI>
molecule(maxown) = molecule id # each owned atom is in
<LI>
nlist(maxown*maxneigh+maxneigh) = neighbor lists of own atoms
<LI>
nliststart(maxown) = pointer to where neighbor list for this atom
starts
<LI>
nliststop(maxown) = pointer to where neighbor list for this atom stops
<LI>
nontypeflag(maxtype,maxtype) = flag for whether nonbond coeffs are set
<LI>
nrlist(maxswap+1) = prt to where received other atoms start for each
swap
<LI>
nslist(maxswap+1) = pointer to where swap list starts for each swap
<LI>
numangle(maxown) = # of angles of each owned atom
<LI>
numbond(maxown) = # of 1st neighbors bonded to each owned atom
<LI>
num2bond(maxown) = # of 2nd neighbors for each owned atom
<LI>
num3bond(maxown) = # of 3rd neighbors for each owned atom
<LI>
numdihed(maxown) = # of dihedrals of each owned atom
<LI>
numimpro(maxown) = # of impropers of each owned atom
<LI>
rpart(maxswap) = node # of who to recv from for each swap
<LI>
slist(maxsend) = send list of atoms to send out in all swaps
<LI>
spart(maxswap) = node # of who to send to for each swap
<LI>
specbond(maxsneigh,maxown) = special bond neighbors of each owned atom
<LI>
tag(maxatom) = global id # of own and nearby atoms
<LI>
true(maxown) = which periodic box atom is truly in for all 3 dims
<LI>
type(maxatom) = type # of own and nearby atoms
<LI>
typecheck(maxtype) = consistency check for all existing atom types
<LI>
typechecktmp(maxtype) = summing array for atom type consistency check
<LI>
velflag(maxown) = whether velocity for each atom has been created
</UL>
<HR>
<H3>
<A NAME="_cch3_930764964">Variables (real): </A></H3>
<UL>
<LI>
binsize[xyz] = size of global neighbor bins in each dimension
<LI>
boltz = Boltzmann factor
<LI>
border(2,3) = lo/hi boundaries of my sub-box in each dimension
<LI>
coulpre = Coulombic force prefactor
<LI>
createregion(6) = bounding box for atoms to create temperature for
<LI>
createvec(3) = initial velocity for create temp atoms
<LI>
cutcoul = input force cutoff for Coulombic interactions
<LI>
cutcoulsq = Coul cutoff squared for all atom pairs
<LI>
cutforce = max force cutoff for all atom pairs (LJ/Coul)
<LI>
cutlj = input global (default) LJ cutoff for all atom pairs
<LI>
cutljinterior = global inner LJ cutoff for switched LJ
<LI>
cutneigh = max neighbor cutoff for all atom pairs (LJ/Coul + skin)
<LI>
dielectric = dielectric constant
<LI>
dt = timestep
<LI>
dtfactor = timestep conversion factor from input to program units
<LI>
dthalf = timestep / 2
<LI>
efactor = energy conversion factor from Coulombic to Kcals
<LI>
e_angle = energy in angles
<LI>
e_bond = energy in bonds
<LI>
e_coul = energy in nonbond Coulombic
<LI>
e_dihedral = energy in dihedrals
<LI>
e_improper = energy in impropers
<LI>
e_total = total energy
<LI>
e_vdwl = energy in nonbond LJ
<LI>
fixregion(6) = bounding box for atoms to assign to a constraint
<LI>
skin = distance between force and neighbor cutoffs
<LI>
special(3) = weight factors for special neighbors
<LI>
triggersq = squared distance to trigger neighbor list rebuild
<LI>
two16 = 2 ^ (1/6) constant for use in FENE bond potentials
<LI>
t_create = requested initialization temp
<LI>
t_current = current temp returned from temp routine
<LI>
t_nph = default temp for constant NPH
<LI>
t_start = target temp at beginning of run
<LI>
t_stop = target temp at end of run
<LI>
t_window = control temp within this window
<LI>
time_angle = angle time
<LI>
time_bond = bond time
<LI>
time_comm = communication time
<LI>
time_current = current time
<LI>
time_dihedral = dihedral time
<LI>
time_exch = exchange time
<LI>
time_improper = improper time
<LI>
time_io = i/o time
<LI>
time_loop = time for integration loop
<LI>
time_neigh1 = neighboring time in nonbond
<LI>
time_neigh2 = neighboring time in bonds
<LI>
time_nonbond = nonbond force time
<LI>
time_other = other miscellaneous time
<LI>
time_total = total run time of entire simulation
<LI>
x[yz]mc = box size minus force cutoff for PBC checks
<LI>
x[yz]ms box size minus neighbor list cutoff for PBC checks
<LI>
x[yz]boundlo = lower global box boundary in each dimension
<LI>
x[yz]boundhi = upper global box boundary in each dimension
<LI>
x[yz]prd = global box size in each dimension
</UL>
<HR>
<H3>
<A NAME="_cch3_930764969">Variables (integer): </A></H3>
<UL>
<LI>
atompnt = pointer to 1st atom in my list
<LI>
bondstyle = style of bond computation
<LI>
boxflag = flag if box has been remapped (non-PBC)
<LI>
coulstyle = style of Coulomb interaction
<LI>
creategroup = kind of atom group to create temp for
<LI>
createstyle = style of temp creation
<LI>
createtypehi = upper range of atom types to create temp for
<LI>
createtypelo = lower range of atom types to create temp for
<LI>
dumpfileflag = has dump file been opened or not (1/0)
<LI>
dumpflag = dump atoms to file every this many steps (0 = never)
<LI>
dumpforcefileflag = has dump force file been opened or not (1/0)
<LI>
dumpforceflag = dump forces to file every this many steps (0 = never)
<LI>
dumpvelfileflag = has dump velocity file been opened or not (1/0)
<LI>
dumpvelflag = dump vels to file every this many steps (0 = never)
<LI>
fixatom = assign atom/molecule with this tag to a constraint
<LI>
fixgroup = kind of atom group to assign to a constraint
<LI>
fixnum = total # of accumulated values for all constraints
<LI>
fixtype = assign group of atoms of this type to a constraint
<LI>
fixwhich = which constraint a atom group is to be assigned to
<LI>
freepnt = pointer to 1st free space in list (last one -&gt; 0)
<LI>
idimension = dimension of problem (2-d or 3-d)
<LI>
iseed = RNG seed for generating initial velocities
<LI>
itime = current timestep loop counter in integrator
<LI>
iversion = version number of restart files (for backward compat)
<LI>
max_angle = most angles I ever have to compute
<LI>
max_angleper = most angles ever attached to any atom
<LI>
max_bond = most bonds I ever have to compute
<LI>
max_bondper = most bonds ever attached to any atom
<LI>
max_dihed = most diheds I ever have to compute
<LI>
max_dihedper = most diheds ever attached to any atom
<LI>
max_exch = most atoms ever leaving my box (in one dimension)
<LI>
max_impro = most impros I ever have to compute
<LI>
max_improper = most impros ever attached to any atom
<LI>
max_nlocal = most atoms I ever owned
<LI>
max_neigh = most neighbors ever stored in neighbor list
<LI>
max_nother = most nearby atoms I ever stored
<LI>
max_slist = biggest size swap list ever reached
<LI>
max_swap = most atoms ever sent in one swap
<LI>
mbin[xyz] = # of bins in my box with nearby atoms included
<LI>
mbin[xyz]lo = global bin indices (offset) at corner of extended box
<LI>
me(3) = which box I am (0 - pgrid-1) in each dimension
<LI>
mixflag = whether mixing style has been set or not
<LI>
mixstyle = style of mixing for nonbond coeffs (arith,geom,sixth)
<LI>
mpart(2,3)= node # of neighbor processor in each dimension
<LI>
nanglelocal = local # of angless to compute
<LI>
nangles = total # of angles
<LI>
nangletypes = total # of angle types
<LI>
natoms = total # of atoms
<LI>
nbin[xyz] # of global neighbor bins in each dimension
<LI>
nbondlocal = local # of bonds to compute
<LI>
nbonds = total # of bonds
<LI>
nbondtypes = total # of bond types
<LI>
ndanger = # of neighbor rebuilds triggered by 1st check
<LI>
ndiags = # of user-specified diagnostic routines
<LI>
ndihedlocal = local # of dihedrals to compute
<LI>
ndihedrals = total # of diheds
<LI>
ndihedtypes = total # of dihedral types
<LI>
need(3) how many processors I need neighbors from in each dim
<LI>
neighago = how many timesteps ago neighboring was done
<LI>
neighdelay = delay neighbor list build for this many steps
<LI>
neighfreq = build neighbor list every this many steps
<LI>
neighstyle = neighboring by (0) N^2 or (1) binning method
<LI>
neightop = last used position in neighbor list (nlist)
<LI>
neightrigger = always (0) do neighbor list or trigger (1) on atom move
<LI>
newton = flag for kind of Newton's 3rd law used (0,1,2,3)
<LI>
newton_bond = Newton's 3rd is not used (0) or (1) used for bonds
<LI>
newton_nonbond = Newton's 3rd is not used (0) or (1) used for nonbonds
<LI>
nfixes = # of constraints
<LI>
nimprolocal = local # of impropers to compute
<LI>
nimpropers = total # of impros
<LI>
nimprotypes = total # of improper types
<LI>
nlocal = # of atoms I currently own
<LI>
nother = # of nearby atoms I currently store
<LI>
node = my node #
<LI>
nonstyle = style on nonbond computation
<LI>
nprocs = total # of processors
<LI>
nsteps = # of timesteps to simulate
<LI>
nswap = # of swaps at each timestep
<LI>
ntimestep = current global timestep
<LI>
ntypes = total # of atom types
<LI>
numneigh = number of times reneighboring is done
<LI>
offsetflag = whether to include energy offset in LJ energy calc
<LI>
peratom = # of values/atom not including bond info
<LI>
perflagx[yz] = flag for periodic (0) or non-periodic (1) BC
<LI>
pgrid(3) = # of processors in each dimension
<LI>
readflag = whether atom input file has been read or not (1/0)
<LI>
restartfileflag = which restart file to open next (0/1)
<LI>
restartflag = write restart file every this many steps (0=never)
<LI>
t_every = rescale/replace temp every this many steps
<LI>
tempflag = constant temperature style flag
<LI>
thermoflag = print thermo info every this many steps (0 = never)
<LI>
thermostyle = style of thermo output (0 = full, 1 = reduced)
<LI>
trueflag = whether to dump remapped or true atom positions
<LI>
units = flag for real vs reduced LJ units
</UL>
<HR>
<H3>
<A NAME="_cch3_930764974">Variables (character): </A></H3>
<UL>
<LI>
datafile = file to read atom and connectivity info from
<LI>
diagfile(maxdiag) = files to print user-specified diagnostics to
<LI>
diagname(maxdiag) = name of a user-specified diagnostic routine
<LI>
dumpfile = file to dump atom info to
<LI>
dumpforcefile = file to dump force info to
<LI>
dumpvelfile = file to dump velocity info to
<LI>
restart_in = file to read restart info from
<LI>
restart_out[12] = files to write restart info to
</UL>
<P>
</P>
</BODY>
</HTML>

View File

@ -1,239 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
LAMMPS Data Format</H2>
<P>
<A HREF="README.html">Return</A> to top-level of LAMMPS documentation</P>
<P>
This file describes the format of the data file read into LAMMPS with
the &quot;read data&quot; command. The data file contains basic
information about the size of the problem to be run, the initial atomic
coordinates, molecular topology, and (optionally) force-field
coefficients. It will be easiest to understand this file if you read it
while looking at a sample data file from the examples.</P>
<P>
This page has 2 sections:</P>
<UL>
<LI>
<A HREF="#_cch3_930958962">Rules for formatting the Data File</A>
<LI>
<A HREF="#_cch3_930958969">Sample file with Annotations</A>
</UL>
<HR>
<H3>
<A NAME="_cch3_930958962">Rules for formatting the Data File: </A></H3>
<P>
Blank lines are important. After the header section, new entries are
separated by blank lines. </P>
<P>
Indentation and space between words/numbers on one line is not
important except that entry keywords (e.g. Masses, Bond Coeffs) must be
left-justified and capitalized as shown. </P>
<P>
The header section (thru box bounds) must appear first in the file, the
remaining entries (Masses, various Coeffs, Atoms, Bonds, etc) can come
in any order. </P>
<P>
These entries must be in the file: header section, Masses, Atoms. </P>
<P>
These entries must be in the file if there are a non-zero number of
them: Bonds, Angles, Dihedrals, Impropers, Bond Coeffs, Angle Coeffs,
Dihedral Coeffs, Improper Coeffs. Cross-term coefficients for a
particular kind of interaction (e.g. BondAngle Coeffs for bonds) must
appear if class II force fields have been turned on in the input
command file via a &quot;style&quot; command. </P>
<P>
The Nonbond Coeffs entry contains one line for each atom type. These
are the coefficients for an interaction between 2 atoms of the same
type. The cross-type coeffs are computed by the appropriate class I or
class II mixing rules, or can be specified explicitly using the
&quot;nonbond coeff&quot; command in the input command script. See the <A
HREF="force_fields.html">force_fields</A> page for more information. </P>
<P>
The Nonbond Coeffs and Bond Coeffs entries are optional since they can
be specified from the input command script. This is not true if bond
style is set to class II since those coeffs can only be specified in
this data file. </P>
<P>
In the Atoms entry, the atoms can be in any order so long as there are
N entries. The 1st number on the line is the atom-tag (number from 1 to
N) which is used to identify the atom throughout the simulation. The
molecule-tag is a second identifier which is attached to the atom; it
can be 0, or a counter for the molecule the atom is part of, or any
other number you wish. The q value is the charge of the atom in
electron units (e.g. +1 for a proton). The xyz values are the initial
position of the atom. For 2-d simulations specify z as 0.0.</P>
<P>
The final 3 nx,ny,nz values on a line of the Atoms entry are optional.
LAMMPS only reads them if the &quot;true flag&quot; command is
specified in the input command script. Otherwise they are initialized
to 0 by LAMMPS. Their meaning, for each dimension, is that
&quot;n&quot; box-lengths are added to xyz to get the atom's
&quot;true&quot; un-remapped position. This can be useful in pre- or
post-processing to enable the unwrapping of long-chained molecules
which wrap thru the periodic box one or more times. The value of
&quot;n&quot; can be positive, negative, or zero. For 2-d simulations
specify nz as 0. </P>
<P>
For simulations with periodic boundary conditions, xyz are remapped
into the periodic box (from as far away as needed), so the initial
coordinates need not be inside the box. The nx,ny,nz values (as read in
or as set to zero by LAMMPS) are appropriately adjusted by this
remapping. </P>
<P>
The number of coefficients specified on each line of coefficient
entries (Nonbond Coeffs, Bond Coeffs, etc) depends on the
&quot;style&quot; of interaction. This is specified in the input
command script, unless the default is used. See the <A
HREF="input_commands.html">input_commands</A> page for a description
of the various style options. The <A HREF="input_commands.html">input_commands</A>
and <A HREF="force_fields.html">force_fields</A> pages explain the
meaning and valid ranges for each of the coefficients. </P>
<HR>
<H3>
<A NAME="_cch3_930958969">Sample file with Annotations</A></H3>
<P>
Here is a sample file with annotations in parenthesis and lengthy
sections replaced by dots (...). Note that the blank lines are
important in this example.</P>
<PRE>
LAMMPS Description (1st line of file)
100 atoms (this must be the 3rd line, 1st 2 lines are ignored)
95 bonds (# of bonds to be simulated)
50 angles (include these lines even if number = 0)
30 dihedrals
20 impropers
5 atom types (# of nonbond atom types)
10 bond types (# of bond types = sets of bond coefficients)
18 angle types
20 dihedral types (do not include a bond,angle,dihedral,improper type
2 improper types line if number of bonds,angles,etc is 0)
-0.5 0.5 xlo xhi (for periodic systems this is box size,
-0.5 0.5 ylo yhi for non-periodic it is min/max extent of atoms)
-0.5 0.5 zlo zhi (do not include this line for 2-d simulations)
Masses
1 mass
...
N mass (N = # of atom types)
Nonbond Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of atom types)
Bond Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of bond types)
Angle Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of angle types)
Dihedral Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
Improper Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of improper types)
BondBond Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of angle types)
BondAngle Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of angle types)
MiddleBondTorsion Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
EndBondTorsion Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
AngleTorsion Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
AngleAngleTorsion Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
BondBond13 Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
AngleAngle Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of improper types)
Atoms
1 molecule-tag atom-type q x y z nx ny nz (nx,ny,nz are optional -
... see &quot;true flag&quot; input command)
...
N molecule-tag atom-type q x y z nx ny nz (N = # of atoms)
Bonds
1 bond-type atom-1 atom-2
...
N bond-type atom-1 atom-2 (N = # of bonds)
Angles
1 angle-type atom-1 atom-2 atom-3 (atom-2 is the center atom in angle)
...
N angle-type atom-1 atom-2 atom-3 (N = # of angles)
Dihedrals
1 dihedral-type atom-1 atom-2 atom-3 atom-4 (atoms 2-3 form central bond)
...
N dihedral-type atom-1 atom-2 atom-3 atom-4 (N = # of dihedrals)
Impropers
1 improper-type atom-1 atom-2 atom-3 atom-4 (atom-1 is central atom)
...
N improper-type atom-1 atom-2 atom-3 atom-4 (N = # of impropers)
</PRE>
</BODY>
</HTML>

View File

@ -1,550 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
LAMMPS Force Fields</H2>
<P>
<A HREF="README.html">Return</A> to top-level of LAMMPS documentation</P>
<P>
This file outlines the force-field formulas used in LAMMPS. Read this
file in conjunction with the <A HREF="data_format.html">data_format</A>
and <A HREF="units.html">units</A> file.</P>
<P>
The sections of this page are as follows:</P>
<UL>
<LI>
<A HREF="#_cch3_930957465">Nonbond Coulomb</A>
<LI>
<A HREF="#_cch3_930957471">Nonbond Lennard-Jones</A>
<LI>
<A HREF="#_cch3_930957478">Mixing Rules for Lennard-Jones</A>
<LI>
<A HREF="#_cch3_930957482">Bonds</A>
<LI>
<A HREF="#_cch3_930957488">Angles</A>
<LI>
<A HREF="#_cch3_930957509">Dihedrals</A>
<LI>
<A HREF="#_cch3_930957513">Impropers</A>
<LI>
<A HREF="#_cch3_930957527">Class II Force Field</A>
</UL>
<HR>
<H3>
<A NAME="_cch3_930957465">Nonbond Coulomb</A></H3>
<P>
Whatever Coulomb style is specified in the input command file, the
short-range Coulombic interactions are computed by this formula,
modified by an appropriate smoother for the smooth, Ewald, and PPPM
styles.</P>
<PRE>
E = C q1 q2 / (epsilon * r)
r = distance (computed by LAMMPS)
C = hardwired constant to convert to energy units
q1,q2 = charge of each atom in electron units (proton = +1),
specified in &quot;Atoms&quot; entry in data file
epsilon = dielectric constant (vacuum = 1.0),
set by user in input command file
</PRE>
<HR>
<H3>
<A NAME="_cch3_930957471">Nonbond Lennard-Jones </A></H3>
<P>
The style of nonbond potential is specified in the input command file. </P>
<H4>
(1) lj/cutoff </H4>
<PRE>
E = 4 epsilon [ (sigma/r)^12 - (sigma/r)^6 ]
standard Lennard Jones potential
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = sigma (distance)
2 coeffs are listed in data file or set in input script
1 cutoff is set in input script
</PRE>
<H4>
(2) lj/switch </H4>
<PRE>
E = 4 epsilon [ (sigma/r)^12 - (sigma/r)^6 ] for r &lt; r_inner
= spline fit for r_inner &lt; r &lt; cutoff
= 0 for r &gt; cutoff
switching function (spline fit) is applied to standard LJ
within a switching region (from r_inner to cutoff) so that
energy and force go smoothly to zero
spline coefficients are computed by LAMMPS
so that at inner cutoff (r_inner) the potential, force,
and 1st-derivative of force are all continuous,
and at outer cutoff (cutoff) the potential and force
both go to zero
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = sigma (distance)
2 coeffs are listed in data file or set in input script
2 cutoffs (r_inner and cutoff) are set in input script
</PRE>
<H4>
(3) lj/shift </H4>
<PRE>
E = 4 epsilon [ (sigma/(r - delta))^12 - (sigma/(r - delta))^6 ]
same as lj/cutoff except that r is shifted by delta
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = sigma (distance)
coeff3 = delta (distance)
3 coeffs are listed in data file or set in input script
1 cutoff is set in input script
</PRE>
<H4>
(4) soft </H4>
<PRE>
E = A * [ 1 + cos( pi * r / cutoff ) ]
useful for pushing apart overlapping atoms by ramping A over time
r = distance (computed by LAMMPS)
coeff1 = prefactor A at start of run (energy)
coeff2 = prefactor A at end of run (energy)
2 coeffs are listed in data file or set in input script
1 cutoff is set in input script
</PRE>
<H4>
(5) class2/cutoff </H4>
<PRE>
E = epsilon [ 2 (sigma/r)^9 - 3 (sigma/r)^6 ]
used with class2 bonded force field
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = sigma (distance)
2 coeffs are listed in data file or set in input script
1 cutoff is set in input script
</PRE>
<HR>
<H3>
<A NAME="_cch3_930957478">Mixing Rules for Lennard-Jones</A></H3>
<P>
The coefficients for each nonbond style are input in either the data
file by the &quot;read data&quot; command or in the input script using
the &quot;nonbond coeff&quot; command. In the former case, only one set
of coefficients is input for each atom type. The cross-type coeffs are
computed using one of three possible mixing rules: </P>
<PRE>
geometric: epsilon_ij = sqrt(epsilon_i * epsilon_j)
sigma_ij = sqrt(sigma_i * sigma_j)
arithmetic: epsilon_ij = sqrt(epsilon_i * epsilon_j)
sigma_ij = (sigma_i + sigma_j) / 2
sixthpower: epsilon_ij =
(2 * sqrt(epsilon_i*epsilon_j) * sigma_i^3 * sigma_j^3) /
(sigma_i^6 + sigma_j^6)
sigma_ij= ((sigma_i**6 + sigma_j**6) / 2) ^ (1/6)
</PRE>
<P>
The default mixing rule for nonbond styles lj/cutoff, lj/switch,
lj/shift, and soft is &quot;geometric&quot;. The default for nonbond
style class2/cutoff is &quot;sixthpower&quot;. </P>
<P>
The default can be overridden using the &quot;mixing style&quot;
command. The one exception to this is for the nonbond style soft, for
which only an epsilon prefactor is input. This is always mixed
geometrically. </P>
<P>
Also, for nonbond style lj/shift, the delta coefficient is always mixed
using the rule </P>
<UL>
<LI>
delta_ij = (delta_i + delta_j) / 2
</UL>
<HR>
<H3>
<A NAME="_cch3_930957482">Bonds</A></H3>
<P>
The style of bond potential is specified in the input command file.</P>
<H4>
(1) harmonic </H4>
<PRE>
E = K (r - r0)^2
standard harmonic spring
r = distance (computed by LAMMPS)
coeff1 = K (energy/distance^2) (the usual 1/2 is included in the K)
coeff2 = r0 (distance)
2 coeffs are listed in data file or set in input script
</PRE>
<H4>
(2) FENE/standard </H4>
<PRE>
E = -0.5 K R0^2 * ln[1 - (r/R0)^2] +
4 epsilon [(sigma/r)^12 - (sigma/r)^6] + epsilon
finite extensible nonlinear elastic (FENE) potential for
polymer bead-spring models
see Kremer, Grest, J Chem Phys, 92, p 5057 (1990)
r = distance (computed by LAMMPS)
coeff1 = K (energy/distance^2)
coeff2 = R0 (distance)
coeff3 = epsilon (energy)
coeff4 = sigma (distance)
1st term is attraction, 2nd term is repulsion (shifted LJ)
1st term extends to R0
2nd term only extends to the minimum of the LJ potential,
a cutoff distance computed by LAMMPS (2^(1/6) * sigma)
4 coeffs are listed in data file or set in input script
</PRE>
<H4>
(3) FENE/shift </H4>
<PRE>
E = -0.5 K R0^2 * ln[1 - ((r - delta)/R0)^2] +
4 epsilon [(sigma/(r - delta))^12 - (sigma/(r - delta))^6] + epsilon
same as FENE/standard expect that r is shifted by delta
r = distance (computed by LAMMPS)
coeff1 = K (energy/distance^2)
coeff2 = R0 (distance)
coeff3 = epsilon (energy)
coeff4 = sigma (distance)
coeff5 = delta (distance)
1st term is attraction, 2nd term is repulsion (shifted LJ)
1st term extends to R0
2nd term only extends to the minimum of the LJ potential,
a cutoff distance computed by LAMMPS (2^(1/6) * sigma + delta)
5 coeffs are listed in data file or set in input script
</PRE>
<H4>
(4) nonlinear </H4>
<PRE>
E = epsilon (r - r0)^2 / [ lamda^2 - (r - r0)^2 ]
non-harmonic spring of equilibrium length r0
with finite extension of lamda
see Rector, Van Swol, Henderson, Molecular Physics, 82, p 1009 (1994)
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = r0 (distance)
coeff3 = lamda (distance)
3 coeffs are listed in data file or set in input script
</PRE>
<H4>
(5) class2 </H4>
<PRE>
E = K2 (r - r0)^2 + K3 (r - r0)^3 + K4 (r - r0)^4
r = distance (computed by LAMMPS)
coeff1 = r0 (distance)
coeff2 = K2 (energy/distance^2)
coeff3 = K3 (energy/distance^3)
coeff4 = K4 (energy/distance^4)
4 coeffs are listed in data file - cannot be set in input script
</PRE>
<HR>
<H3>
<A NAME="_cch3_930957488">Angles </A></H3>
<P>
The style of angle potential is specified in the input command file. </P>
<H4>
(1) harmonic </H4>
<PRE>
E = K (theta - theta0)^2
theta = radians (computed by LAMMPS)
coeff1 = K (energy/radian^2) (the usual 1/2 is included in the K)
coeff2 = theta0 (degrees) (converted to radians within LAMMPS)
2 coeffs are listed in data file
</PRE>
<H4>
(2) class2 </H4>
<PRE>
E = K2 (theta - theta0)^2 + K3 (theta - theta0)^3 +
K4 (theta - theta0)^4
theta = radians (computed by LAMMPS)
coeff1 = theta0 (degrees) (converted to radians within LAMMPS)
coeff2 = K2 (energy/radian^2)
coeff3 = K3 (energy/radian^3)
coeff4 = K4 (energy/radian^4)
4 coeffs are listed in data file
</PRE>
<HR>
<H3>
<A NAME="_cch3_930957509">Dihedrals </A></H3>
<P>
The style of dihedral potential is specified in the input command file. </P>
<H4>
(1) harmonic </H4>
<PRE>
E = K [1 + d * cos (n * phi) ]
phi = radians (computed by LAMMPS)
coeff1 = K (energy)
coeff2 = d (always +1 or -1)
coeff3 = n (1,2,3,4,6)
Cautions when comparing to other force fields:
some force fields reverse the sign convention on d so that
E = K [1 - d * cos(n*phi)]
some force fields divide/multiply K by the number of multiple
torsions that contain the j-k bond in an i-j-k-l torsion
some force fields let n be positive or negative which
corresponds to d = 1,-1
in the LAMMPS force field, the trans position = 180 degrees, while
in some force fields trans = 0 degrees
3 coeffs are listed in data file
</PRE>
<H4>
(2) class2 </H4>
<PRE>
E = SUM(n=1,3) { K_n [ 1 - cos( n*Phi - Phi0_n ) ] }
phi = radians (computed by LAMMPS)
coeff1 = K_1 (energy)
coeff2 = Phi0_1 (degrees) (converted to radians within LAMMPS)
coeff3 = K_2 (energy)
coeff4 = Phi0_2 (degrees) (converted to radians within LAMMPS)
coeff5 = K_3 (energy)
coeff6 = Phi0_3 (degrees) (converted to radians within LAMMPS)
6 coeffs are listed in data file
</PRE>
<HR>
<H3>
<A NAME="_cch3_930957513">Impropers</A></H3>
<P>
The style of improper potential is specified in the input command file. </P>
<H4>
(1) harmonic </H4>
<PRE>
E = K (chi - chi0)^2
chi = radians (computed by LAMMPS)
coeff1 = K (energy/radian^2) (the usual 1/2 is included in the K)
coeff2 = chi0 (degrees) (converted to radians within LAMMPS)
in data file, listing of 4 atoms requires atom-1 as central atom
some force fields (AMBER,Discover) have atom-2 as central atom - it is really
an out-of-plane torsion, may need to treat as dihedral in LAMMPS
2 coeffs are listed in data file
</PRE>
<H4>
(2) class2 </H4>
<PRE>
same formula, coeffs, and meaning as &quot;harmonic&quot; except that LAMMPS
averages all 3 angle-contributions to chi
in class II this is called a Wilson out-of-plane interaction
2 coeffs are listed in data file
</PRE>
<HR>
<H3>
<A NAME="_cch3_930957527">Class II Force Field</A></H3>
<P>
If class II force fields are selected in the input command file,
additional cross terms are computed as part of the force field.</P>
<H4>
Bond-Bond (computed within class II angles) </H4>
<PRE>
E = K (r - r0) * (r' - r0')
r,r' = distance (computed by LAMMPS)
coeff1 = K (energy/distance^2)
coeff2 = r0 (distance)
coeff3 = r0' (distance)
3 coeffs are input in data file
</PRE>
<H4>
Bond-Angle (computed within class II angles for each of 2 bonds) </H4>
<PRE>
E = K_n (r - r0_n) * (theta - theta0)
r = distance (computed by LAMMPS)
theta = radians (computed by LAMMPS)
coeff1 = K_1 (energy/distance-radians)
coeff2 = K_2 (energy/distance-radians)
coeff3 = r0_1 (distance)
coeff4 = r0_2 (distance)
Note: theta0 is known from angle coeffs so don't need it specified here
4 coeffs are listed in data file
</PRE>
<H4>
Middle-Bond-Torsion (computed within class II dihedral) </H4>
<PRE>
E = (r - r0) * [ F1*cos(phi) + F2*cos(2*phi) + F3*cos(3*phi) ]
r = distance (computed by LAMMPS)
phi = radians (computed by LAMMPS)
coeff1 = F1 (energy/distance)
coeff2 = F2 (energy/distance)
coeff3 = F3 (energy/distance)
coeff4 = r0 (distance)
4 coeffs are listed in data file
</PRE>
<H4>
End-Bond-Torsion (computed within class II dihedral for each of 2
bonds) </H4>
<PRE>
E = (r - r0_n) * [ F1_n*cos(phi) + F2_n*cos(2*phi) + F3_n*cos(3*phi) ]
r = distance (computed by LAMMPS)
phi = radians (computed by LAMMPS)
coeff1 = F1_1 (energy/distance)
coeff2 = F2_1 (energy/distance)
coeff3 = F3_1 (energy/distance)
coeff4 = F1_2 (energy/distance)
coeff5 = F2_3 (energy/distance)
coeff6 = F3_3 (energy/distance)
coeff7 = r0_1 (distance)
coeff8 = r0_2 (distance)
8 coeffs are listed in data file
</PRE>
<H4>
Angle-Torsion (computed within class II dihedral for each of 2 angles) </H4>
<PRE>
E = (theta - theta0) * [ F1_n*cos(phi) + F2_n*cos(2*phi) + F3_n*cos(3*phi) ]
theta = radians (computed by LAMMPS)
phi = radians (computed by LAMMPS)
coeff1 = F1_1 (energy/radians)
coeff2 = F2_1 (energy/radians)
coeff3 = F3_1 (energy/radians)
coeff4 = F1_2 (energy/radians)
coeff5 = F2_3 (energy/radians)
coeff6 = F3_3 (energy/radians)
coeff7 = theta0_1 (degrees) (converted to radians within LAMMPS)
coeff8 = theta0_2 (degrees) (converted to radians within LAMMPS)
8 coeffs are listed in data file
</PRE>
<H4>
Angle-Angle-Torsion (computed within class II dihedral) </H4>
<PRE>
E = K (theta - theta0) * (theta' - theta0') * (phi - phi0)
theta,theta' = radians (computed by LAMMPS)
phi = radians (computed by LAMMPS)
coeff1 = K (energy/radians^3)
coeff2 = theta0 (degrees) (converted to radians within LAMMPS)
coeff3 = theta0' (degrees) (converted to radians within LAMMPS)
Note: phi0 is known from dihedral coeffs so don't need it specified here
3 coeffs are listed in data file
</PRE>
<H4>
Bond-Bond-13-Torsion (computed within class II dihedral) </H4>
<PRE>
(undocumented)
</PRE>
<H4>
Angle-Angle (computed within class II improper for each of 3 pairs of
angles) </H4>
<PRE>
E = K_n (theta - theta0_n) * (theta' - theta0_n')
theta,theta' = radians (computed by LAMMPS)
coeff1 = K_1 (energy/radians^2)
coeff2 = K_2 (energy/radians^2)
coeff3 = K_3 (energy/radians^2)
coeff4 = theta0_1 (degrees) (converted to radians within LAMMPS)
coeff5 = theta0_2 (degrees) (converted to radians within LAMMPS)
coeff6 = theta0_3 (degrees) (converted to radians within LAMMPS)
6 coeffs are listed in data file
</PRE>
</BODY>
</HTML>

View File

@ -1,127 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
History of LAMMPS</H2>
<P>
<A HREF="README.html">Return</A> to top-level of LAMMPS documentation.</P>
<P>
This is a brief history of features added to each version of LAMMPS.</P>
<HR>
<H3>
LAMMPS 99 - June 99 </H3>
<UL>
<LI>
all-MPI version of code (F77 + C + MPI) for maximum portablility
<LI>
only one PPPM choice now, the better of the two earlier ones
<LI>
PPPM uses portable FFTs and data remapping routines, written in C w/
MPI, can now use non-power-of-2 processors and grid sizes
<LI>
auto-mapping of simulation box to processors
<LI>
removed a few unused/unneeded commands (bdump, log file, id string,
limit)
<LI>
changed syntax of some commands for simplicity &amp; consistency (see <A
HREF="input_commands.html">input commands</A>)
<LI>
changed method of calling/writing user diagnostic routines to be simpler
<LI>
documentation in HTML format
</UL>
<HR>
<H3>
Version 5.0 - Oct 1997 </H3>
<UL>
<LI>
final version of class II force fields
<LI>
new formulation of NVE, NVT, NPT and rRESPA integrators
<LI>
new version of msi2lmp pre-processing tool, does not require DISCOVER
to run, only DISCOVER force field files
<LI>
energy minimizer, Hessian-free truncated Newton method
<LI>
new pressure controllers and constraints
<LI>
replicate tool for generating new data files from old ones
</UL>
<HR ALIGN="LEFT">
<H3>
Version 4.0 - March 1997 </H3>
<UL>
<LI>
1st version of class II force fields
<LI>
new, faster PPPM solver (newpppm)
<LI>
rRESPA
<LI>
new data file format
<LI>
new constraints, diagnostics
<LI>
msi2lmp pre-processing tool
</UL>
<HR>
<H3>
Version 3.0 - March 1996 </H3>
<UL>
<LI>
more general force-field formulation
<LI>
atom/group constraints
<LI>
LJ units and bond potentials
<LI>
smoothed LJ potential option
<LI>
Langevin thermostat
<LI>
Newton's 3rd law option
<LI>
hook for user-supplied diagnostic routines
</UL>
<HR>
<H3>
Version 2.0 - October 1995 </H3>
<UL>
<LI>
bug fix of velocity initialization which caused drift
<LI>
PPPM for long-range Coulombic
<LI>
constant NPT
</UL>
<HR>
<H3>
Version 1.1 - February 1995 </H3>
<UL>
<LI>
Ewald for long-range Coulombic
<LI>
full Newton's 3rd law (doubled communication)
<LI>
dumping of atom positions and velocities
<LI>
restart files
</UL>
<HR>
<H3>
Version 1.0 - January 1995 </H3>
<UL>
<LI>
short-range bonded and non-bonded forces
<LI>
partial Newton's 3rd law
<LI>
velocity-Verlet integrator
</UL>
</BODY>
</HTML>

File diff suppressed because it is too large Load Diff

View File

@ -1,119 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
LAMMPS Units</H2>
<P>
<A HREF="README.html">Return</A> to top-level LAMMPS documentation.</P>
<P>
This file describes the units associated with many of the key variables
and equations used inside the LAMMPS code. Units used for input command
parameters are described in the input_commands file. The input command
&quot;units&quot; selects between conventional and Lennard-Jones units.
See the force_fields file for more information on units for the force
field parameters that are input from data files. </P>
<P>
Conventional units: </P>
<UL>
<LI>
distance = Angstroms
<LI>
time = femtoseconds
<LI>
mass = grams/mole
<LI>
temperature = degrees K
<LI>
pressure = atmospheres
<LI>
energy = Kcal/mole
<LI>
velocity = Angstroms/femtosecond
<LI>
force = grams/mole * Angstroms/femtosecond^2
<LI>
charge = +/- 1.0 is proton/electron
</UL>
<P>
LJ reduced units: </P>
<UL>
<LI>
distance = sigmas
<LI>
time = reduced LJ tau
<LI>
mass = ratio to unitless 1.0
<LI>
temperature = reduced LJ temp
<LI>
pressure = reduced LJ pressure
<LI>
energy = epsilons
<LI>
velocity = sigmas/tau
<LI>
force = reduced LJ force (sigmas/tau^2)
<LI>
charge = ratio to unitless 1.0
</UL>
<HR>
<P>
This listing of variables assumes conventional units; to convert to LJ
reduced units, simply substitute the appropriate term from the list
above. E.g. x is in sigmas in LJ units. Per-mole in any of the units
simply means for 6.023 x 10^23 atoms.</P>
<P>
</P>
<PRE>
Meaning Variable Units
positions x Angstroms
velocities v Angstroms / click (see below)
forces f Kcal / (mole - Angstrom)
masses mass gram / mole
charges q electron units (-1 for an electron)
(1 e.u. = 1.602 x 10^-19 coul)
time --- clicks (1 click = 48.88821 fmsec)
timestep dt clicks
input timestep dt_in fmsec
time convert dtfactor 48.88821 fmsec / click
temperature t_current degrees K
t_start
t_stop
input damping t_freq_in inverse fmsec
internal temp t_freq inverse clicks
damping
dielec const dielectric 1.0 (unitless)
Boltmann const boltz 0.001987191 Kcal / (mole - degree K)
virial virial[xyz] Kcal/mole = r dot F
pressure factor pfactor 68589.796 (convert internal to atmospheres)
internal p_current Kcal / (mole - Angs^3)
pressure p_start
p_stop
input press p_start_in atmospheres
p_stop_in
output press log file atmospheres
input damping p_freq_in inverse time
internal press p_freq inverse clicks
damping
pot eng e_potential Kcal/mole
kin eng e_kinetic Kcal/mole
eng convert efactor 332.0636 (Kcal - Ang) / (q^2 - mole)
(convert Coulomb eng to Kcal/mole)
LJ coeffs lja,ljb Kcal-Angs^(6,12)/mole
bond various see force_fields file
parameters 2,3,4-body
terms
</PRE>
</BODY>
</HTML>

View File

@ -1,426 +0,0 @@
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>LAMMPS Documentation &mdash; LAMMPS documentation</title>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/sphinxcontrib-images/LightBox2/lightbox2/css/lightbox.css" type="text/css" />
<link rel="top" title="LAMMPS documentation" href="index.html"/>
<link rel="next" title="1. Introduction" href="Section_intro.html"/>
<script src="_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-nav-search">
<a href="#" class="icon icon-home"> LAMMPS
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="Section_intro.html">1. Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_start.html">2. Getting Started</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_commands.html">3. Commands</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_packages.html">4. Packages</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_accelerate.html">5. Accelerating LAMMPS performance</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_howto.html">6. How-to discussions</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_example.html">7. Example problems</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_perf.html">8. Performance &amp; scalability</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_tools.html">9. Additional tools</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_modify.html">10. Modifying &amp; extending LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_python.html">11. Python interface to LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_errors.html">12. Errors</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_history.html">13. Future and history</a></li>
</ul>
</div>
&nbsp;
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="#">LAMMPS</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="#">Docs</a> &raquo;</li>
<li>LAMMPS Documentation</li>
<li class="wy-breadcrumbs-aside">
<a href="http://lammps.sandia.gov">Website</a>
<a href="Section_commands.html#comm">Commands</a>
</li>
</ul>
<hr/>
<div class="rst-footer-buttons" style="margin-bottom: 1em" role="navigation" aria-label="footer navigation">
<a href="Section_intro.html" class="btn btn-neutral float-right" title="1. Introduction" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
</div>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<H1></H1><div class="section" id="lammps-documentation">
<h1>LAMMPS Documentation</h1>
<div class="section" id="aug-2016-version">
<h2>20 Aug 2016 version</h2>
</div>
<div class="section" id="version-info">
<h2>Version info:</h2>
<p>The LAMMPS &#8220;version&#8221; is the date when it was released, such as 1 May
2010. LAMMPS is updated continuously. Whenever we fix a bug or add a
feature, we release it immediately, and post a notice on <a class="reference external" href="http://lammps.sandia.gov/bug.html">this page of the WWW site</a>. Each dated copy of LAMMPS contains all the
features and bug-fixes up to and including that version date. The
version date is printed to the screen and logfile every time you run
LAMMPS. It is also in the file src/version.h and in the LAMMPS
directory name created when you unpack a tarball, and at the top of
the first page of the manual (this page).</p>
<ul class="simple">
<li>If you browse the HTML doc pages on the LAMMPS WWW site, they always
describe the most current version of LAMMPS.</li>
<li>If you browse the HTML doc pages included in your tarball, they
describe the version you have.</li>
<li>The <a class="reference external" href="Manual.pdf">PDF file</a> on the WWW site or in the tarball is updated
about once per month. This is because it is large, and we don&#8217;t want
it to be part of every patch.</li>
<li>There is also a <a class="reference external" href="Developer.pdf">Developer.pdf</a> file in the doc
directory, which describes the internal structure and algorithms of
LAMMPS.</li>
</ul>
<p>LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel
Simulator.</p>
<p>LAMMPS is a classical molecular dynamics simulation code designed to
run efficiently on parallel computers. It was developed at Sandia
National Laboratories, a US Department of Energy facility, with
funding from the DOE. It is an open-source code, distributed freely
under the terms of the GNU Public License (GPL).</p>
<p>The primary developers of LAMMPS are <a class="reference external" href="http://www.sandia.gov/~sjplimp">Steve Plimpton</a>, Aidan
Thompson, and Paul Crozier who can be contacted at
sjplimp,athomps,pscrozi at sandia.gov. The <a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a> at
<a class="reference external" href="http://lammps.sandia.gov">http://lammps.sandia.gov</a> has more information about the code and its
uses.</p>
<hr class="docutils" />
<p>The LAMMPS documentation is organized into the following sections. If
you find errors or omissions in this manual or have suggestions for
useful information to add, please send an email to the developers so
we can improve the LAMMPS documentation.</p>
<p>Once you are familiar with LAMMPS, you may want to bookmark <a class="reference internal" href="Section_commands.html#comm"><span class="std std-ref">this page</span></a> at Section_commands.html#comm since
it gives quick access to documentation for all LAMMPS commands.</p>
<p><a class="reference external" href="Manual.pdf">PDF file</a> of the entire manual, generated by
<a class="reference external" href="http://freecode.com/projects/htmldoc">htmldoc</a></p>
<div class="toctree-wrapper compound">
<ul>
<li class="toctree-l1"><a class="reference internal" href="Section_intro.html">1. Introduction</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_intro.html#what-is-lammps">1.1. What is LAMMPS</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_intro.html#lammps-features">1.2. LAMMPS features</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_intro.html#lammps-non-features">1.3. LAMMPS non-features</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_intro.html#open-source-distribution">1.4. Open source distribution</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_intro.html#acknowledgments-and-citations">1.5. Acknowledgments and citations</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_start.html">2. Getting Started</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_start.html#what-s-in-the-lammps-distribution">2.1. What&#8217;s in the LAMMPS distribution</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_start.html#making-lammps">2.2. Making LAMMPS</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_start.html#making-lammps-with-optional-packages">2.3. Making LAMMPS with optional packages</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_start.html#building-lammps-via-the-make-py-tool">2.4. Building LAMMPS via the Make.py tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_start.html#building-lammps-as-a-library">2.5. Building LAMMPS as a library</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_start.html#running-lammps">2.6. Running LAMMPS</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_start.html#command-line-options">2.7. Command-line options</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_start.html#lammps-screen-output">2.8. LAMMPS screen output</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_start.html#tips-for-users-of-previous-lammps-versions">2.9. Tips for users of previous LAMMPS versions</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_commands.html">3. Commands</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#lammps-input-script">3.1. LAMMPS input script</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#parsing-rules">3.2. Parsing rules</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#input-script-structure">3.3. Input script structure</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#commands-listed-by-category">3.4. Commands listed by category</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#individual-commands">3.5. Individual commands</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#fix-styles">3.6. Fix styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#compute-styles">3.7. Compute styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#pair-style-potentials">3.8. Pair_style potentials</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#bond-style-potentials">3.9. Bond_style potentials</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#angle-style-potentials">3.10. Angle_style potentials</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#dihedral-style-potentials">3.11. Dihedral_style potentials</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#improper-style-potentials">3.12. Improper_style potentials</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#kspace-solvers">3.13. Kspace solvers</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_packages.html">4. Packages</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_packages.html#standard-packages">4.1. Standard packages</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_packages.html#user-packages">4.2. User packages</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_accelerate.html">5. Accelerating LAMMPS performance</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_accelerate.html#measuring-performance">5.1. Measuring performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_accelerate.html#general-strategies">5.2. General strategies</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_accelerate.html#packages-with-optimized-styles">5.3. Packages with optimized styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_accelerate.html#comparison-of-various-accelerator-packages">5.4. Comparison of various accelerator packages</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_howto.html">6. How-to discussions</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#restarting-a-simulation">6.1. Restarting a simulation</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#d-simulations">6.2. 2d simulations</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#charmm-amber-and-dreiding-force-fields">6.3. CHARMM, AMBER, and DREIDING force fields</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#running-multiple-simulations-from-one-input-script">6.4. Running multiple simulations from one input script</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#multi-replica-simulations">6.5. Multi-replica simulations</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#granular-models">6.6. Granular models</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#tip3p-water-model">6.7. TIP3P water model</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#tip4p-water-model">6.8. TIP4P water model</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#spc-water-model">6.9. SPC water model</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#coupling-lammps-to-other-codes">6.10. Coupling LAMMPS to other codes</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#visualizing-lammps-snapshots">6.11. Visualizing LAMMPS snapshots</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#triclinic-non-orthogonal-simulation-boxes">6.12. Triclinic (non-orthogonal) simulation boxes</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#nemd-simulations">6.13. NEMD simulations</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#finite-size-spherical-and-aspherical-particles">6.14. Finite-size spherical and aspherical particles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#output-from-lammps-thermo-dumps-computes-fixes-variables">6.15. Output from LAMMPS (thermo, dumps, computes, fixes, variables)</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#thermostatting-barostatting-and-computing-temperature">6.16. Thermostatting, barostatting, and computing temperature</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#walls">6.17. Walls</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#elastic-constants">6.18. Elastic constants</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#library-interface-to-lammps">6.19. Library interface to LAMMPS</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#calculating-thermal-conductivity">6.20. Calculating thermal conductivity</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#calculating-viscosity">6.21. Calculating viscosity</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#calculating-a-diffusion-coefficient">6.22. Calculating a diffusion coefficient</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#using-chunks-to-calculate-system-properties">6.23. Using chunks to calculate system properties</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#setting-parameters-for-the-kspace-style-pppm-disp-command">6.24. Setting parameters for the <code class="docutils literal"><span class="pre">kspace_style</span> <span class="pre">pppm/disp</span></code> command</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#polarizable-models">6.25. Polarizable models</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#adiabatic-core-shell-model">6.26. Adiabatic core/shell model</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#drude-induced-dipoles">6.27. Drude induced dipoles</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_example.html">7. Example problems</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_example.html#lowercase-directories">7.1. Lowercase directories</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_example.html#uppercase-directories">7.2. Uppercase directories</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_perf.html">8. Performance &amp; scalability</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_tools.html">9. Additional tools</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#amber2lmp-tool">9.1. amber2lmp tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#binary2txt-tool">9.2. binary2txt tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#ch2lmp-tool">9.3. ch2lmp tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#chain-tool">9.4. chain tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#colvars-tools">9.5. colvars tools</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#createatoms-tool">9.6. createatoms tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#data2xmovie-tool">9.7. data2xmovie tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#eam-database-tool">9.8. eam database tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#eam-generate-tool">9.9. eam generate tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#eff-tool">9.10. eff tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#emacs-tool">9.11. emacs tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#fep-tool">9.12. fep tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#i-pi-tool">9.13. i-pi tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#ipp-tool">9.14. ipp tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#kate-tool">9.15. kate tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#lmp2arc-tool">9.16. lmp2arc tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#lmp2cfg-tool">9.17. lmp2cfg tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#lmp2vmd-tool">9.18. lmp2vmd tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#matlab-tool">9.19. matlab tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#micelle2d-tool">9.20. micelle2d tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#moltemplate-tool">9.21. moltemplate tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#msi2lmp-tool">9.22. msi2lmp tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#phonon-tool">9.23. phonon tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#polymer-bonding-tool">9.24. polymer bonding tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#pymol-asphere-tool">9.25. pymol_asphere tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#python-tool">9.26. python tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#reax-tool">9.27. reax tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#restart2data-tool">9.28. restart2data tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#vim-tool">9.29. vim tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#xmgrace-tool">9.30. xmgrace tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#xmovie-tool">9.31. xmovie tool</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_modify.html">10. Modifying &amp; extending LAMMPS</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#atom-styles">10.1. Atom styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#bond-angle-dihedral-improper-potentials">10.2. Bond, angle, dihedral, improper potentials</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#compute-styles">10.3. Compute styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#dump-styles">10.4. Dump styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#dump-custom-output-options">10.5. Dump custom output options</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#fix-styles">10.6. Fix styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#input-script-commands">10.7. Input script commands</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#kspace-computations">10.8. Kspace computations</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#minimization-styles">10.9. Minimization styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#pairwise-potentials">10.10. Pairwise potentials</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#region-styles">10.11. Region styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#body-styles">10.12. Body styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#thermodynamic-output-options">10.13. Thermodynamic output options</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#variable-options">10.14. Variable options</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#submitting-new-features-for-inclusion-in-lammps">10.15. Submitting new features for inclusion in LAMMPS</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_python.html">11. Python interface to LAMMPS</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_python.html#overview-of-running-lammps-from-python">11.1. Overview of running LAMMPS from Python</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_python.html#overview-of-using-python-from-a-lammps-script">11.2. Overview of using Python from a LAMMPS script</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_python.html#building-lammps-as-a-shared-library">11.3. Building LAMMPS as a shared library</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_python.html#installing-the-python-wrapper-into-python">11.4. Installing the Python wrapper into Python</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_python.html#extending-python-with-mpi-to-run-in-parallel">11.5. Extending Python with MPI to run in parallel</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_python.html#testing-the-python-lammps-interface">11.6. Testing the Python-LAMMPS interface</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_python.html#using-lammps-from-python">11.7. Using LAMMPS from Python</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_python.html#example-python-scripts-that-use-lammps">11.8. Example Python scripts that use LAMMPS</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_errors.html">12. Errors</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_errors.html#common-problems">12.1. Common problems</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_errors.html#reporting-bugs">12.2. Reporting bugs</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_errors.html#error-warning-messages">12.3. Error &amp; warning messages</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_errors.html#error">12.4. Errors:</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_errors.html#warnings">12.5. Warnings:</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_history.html">13. Future and history</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_history.html#coming-attractions">13.1. Coming attractions</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_history.html#past-versions">13.2. Past versions</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
<div class="section" id="indices-and-tables">
<h1>Indices and tables</h1>
<ul class="simple">
<li><a class="reference internal" href="genindex.html"><span class="std std-ref">Index</span></a></li>
<li><a class="reference internal" href="search.html"><span class="std std-ref">Search Page</span></a></li>
</ul>
</BODY></div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="Section_intro.html" class="btn btn-neutral float-right" title="1. Introduction" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
</div>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2013 Sandia Corporation.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'./',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/jquery-1.11.0.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/lightbox.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2-customize/jquery-noconflict.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.StickyNav.enable();
});
</script>
</body>
</html>

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -1,167 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
\begin{center}
\large{Additional documentation for the Gay-Berne ellipsoidal potential \\
as implemented in LAMMPS}
\end{center}
\centerline{Mike Brown, Sandia National Labs, April 2007}
\vspace{0.3in}
The Gay-Berne anisotropic LJ interaction between pairs of dissimilar
ellipsoidal particles is given by
$$ U ( \mathbf{A}_1, \mathbf{A}_2, \mathbf{r}_{12} ) = U_r (
\mathbf{A}_1, \mathbf{A}_2, \mathbf{r}_{12}, \gamma ) \cdot \eta_{12} (
\mathbf{A}_1, \mathbf{A}_2, \upsilon ) \cdot \chi_{12} ( \mathbf{A}_1,
\mathbf{A}_2, \mathbf{r}_{12}, \mu ) $$
where $\mathbf{A}_1$ and $\mathbf{A}_2$ are the transformation
matrices from the simulation box frame to the body frame and
$\mathbf{r}_{12}$ is the center to center vector between the
particles. $U_r$ controls the shifted distance dependent interaction
based on the distance of closest approach of the two particles
($h_{12}$) and the user-specified shift parameter gamma:
$$ U_r = 4 \epsilon ( \varrho^{12} - \varrho^6) $$
$$ \varrho = \frac{\sigma}{ h_{12} + \gamma \sigma} $$
Let the shape matrices $\mathbf{S}_i=\mbox{diag}(a_i, b_i, c_i)$ be
given by the ellipsoid radii. The $\eta$ orientation-dependent energy
based on the user-specified exponent $\upsilon$ is given by
$$ \eta_{12} = [ \frac{ 2 s_1 s_2 }{\det ( \mathbf{G}_{12} )}]^{
\upsilon / 2 } , $$
$$ s_i = [a_i b_i + c_i c_i][a_i b_i]^{ 1 / 2 }, $$
and
$$ \mathbf{G}_{12} = \mathbf{A}_1^T \mathbf{S}_1^2 \mathbf{A}_1 +
\mathbf{A}_2^T \mathbf{S}_2^2 \mathbf{A}_2 = \mathbf{G}_1 +
\mathbf{G}_2. $$
Let the relative energy matrices $\mathbf{E}_i = \mbox{diag}
(\epsilon_{ia}, \epsilon_{ib}, \epsilon_{ic})$ be given by
the relative well depths (dimensionless energy scales
inversely proportional to the well-depths of the respective
orthogonal configurations of the interacting molecules). The
$\chi$ orientation-dependent energy based on the user-specified
exponent $\mu$ is given by
$$ \chi_{12} = [2 \hat{\mathbf{r}}_{12}^T \mathbf{B}_{12}^{-1}
\hat{\mathbf{r}}_{12}]^\mu, $$
$$ \hat{\mathbf{r}}_{12} = { \mathbf{r}_{12} } / |\mathbf{r}_{12}|, $$
and
$$ \mathbf{B}_{12} = \mathbf{A}_1^T \mathbf{E}_1^2 \mathbf{A}_1 +
\mathbf{A}_2^T \mathbf{E}_2^2 \mathbf{A}_2 = \mathbf{B}_1 +
\mathbf{B}_2. $$
Here, we use the distance of closest approach approximation given by the
Perram reference, namely
$$ h_{12} = r - \sigma_{12} ( \mathbf{A}_1, \mathbf{A}_2,
\mathbf{r}_{12} ), $$
$$ r = |\mathbf{r}_{12}|, $$
and
$$ \sigma_{12} = [ \frac{1}{2} \hat{\mathbf{r}}_{12}^T
\mathbf{G}_{12}^{-1} \hat{\mathbf{r}}_{12}.]^{ -1/2 } $$
Forces and Torques: Because the analytic forces and torques have not
been published for this potential, we list them here:
$$ \mathbf{f} = - \eta_{12} ( U_r \cdot { \frac{\partial \chi_{12}
}{\partial r} } + \chi_{12} \cdot { \frac{\partial U_r }{\partial r} }
) $$
where the derivative of $U_r$ is given by (see Allen reference)
$$ \frac{\partial U_r }{\partial r} = \frac{ \partial U_{SLJ} }{
\partial r } \hat{\mathbf{r}}_{12} + r^{-2} \frac{ \partial U_{SLJ} }{
\partial \varphi } [ \mathbf{\kappa} - ( \mathbf{\kappa}^T \cdot
\hat{\mathbf{r}}_{12}) \hat{\mathbf{r}}_{12} ], $$
$$ \frac{ \partial U_{SLJ} }{ \partial \varphi } = 24 \epsilon ( 2
\varrho^{13} - \varrho^7 ) \sigma_{12}^3 / 2 \sigma, $$
$$ \frac{ \partial U_{SLJ} }{ \partial r } = 24 \epsilon ( 2
\varrho^{13} - \varrho^7 ) / \sigma, $$
and
$$ \mathbf{\kappa} = \mathbf{G}_{12}^{-1} \cdot \mathbf{r}_{12}. $$
The derivate of the $\chi$ term is given by
$$ \frac{\partial \chi_{12} }{\partial r} = - r^{-2} \cdot 4.0 \cdot [
\mathbf{\iota} - ( \mathbf{\iota}^T \cdot \hat{\mathbf{r}}_{12} )
\hat{\mathbf{r}}_{12} ] \cdot \mu \cdot \chi_{12}^{ ( \mu -1 ) / \mu
}, $$
and
$$ \mathbf{\iota} = \mathbf{B}_{12}^{-1} \cdot \mathbf{r}_{12}. $$
The torque is given by:
$$ \mathbf{\tau}_i = U_r \eta_{12} \frac{ \partial \chi_{12} }{
\partial \mathbf{q}_i } + \chi_{12} ( U_r \frac{ \partial \eta_{12} }{
\partial \mathbf{q}_i } + \eta_{12} \frac{ \partial U_r }{ \partial
\mathbf{q}_i } ), $$
$$ \frac{ \partial U_r }{ \partial \mathbf{q}_i } = \mathbf{A}_i \cdot
(- \mathbf{\kappa}^T \cdot \mathbf{G}_i \times \mathbf{f}_k ), $$
$$ \mathbf{f}_k = - r^{-2} \frac{ \delta U_{SLJ} }{ \delta \varphi }
\mathbf{\kappa}, $$
and
$$ \frac{ \partial \chi_{12} }{ \partial \mathbf{q}_i } = 4.0 \cdot
r^{-2} \cdot \mathbf{A}_i (- \mathbf{\iota}^T \cdot \mathbf{B}_i
\times \mathbf{\iota} ). $$
For the derivative of the $\eta$ term, we were unable to find a matrix
expression due to the determinant. Let $a_{mi}$ be the mth row of the
rotation matrix $A_i$. Then,
$$ \frac{ \partial \eta_{12} }{ \partial \mathbf{q}_i } = \mathbf{A}_i
\cdot \sum_m \mathbf{a}_{mi} \times \frac{ \partial \eta_{12} }{
\partial \mathbf{a}_{mi} } = \mathbf{A}_i \cdot \sum_m \mathbf{a}_{mi}
\times \mathbf{d}_{mi}, $$
where $d_mi$ represents the mth row of a derivative matrix $D_i$,
$$ \mathbf{D}_i = - \frac{1}{2} \cdot ( \frac{2s1s2}{\det (
\mathbf{G}_{12} ) } )^{ \upsilon / 2 } \cdot {\frac{\upsilon}{\det (
\mathbf{G}_{12} ) }} \cdot \mathbf{E}, $$
where the matrix $E$ gives the derivate with respect to the rotation
matrix,
$$ \mathbf{E} = [ e_{my} ] = \frac{ \partial \eta_{12} }{ \partial
\mathbf{A}_i }, $$
and
$$ e_{my} = \det ( \mathbf{G}_{12} ) \cdot \mbox{trace} [
\mathbf{G}_{12}^{-1} \cdot ( \hat{\mathbf{p}}_y \otimes \mathbf{a}_m +
\mathbf{a}_m \otimes \hat{\mathbf{p}}_y ) \cdot s_{mm}^2 ]. $$
Here, $p_v$ is the unit vector for the axes in the lab frame $(p1=[1, 0,
0], p2=[0, 1, 0], and p3=[0, 0, 1])$ and $s_{mm}$ gives the mth radius of
the ellipsoid $i$.
\end{document}

View File

@ -1,113 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
\begin{center}
\large{Additional documentation for the RE-squared ellipsoidal potential \\
as implemented in LAMMPS}
\end{center}
\centerline{Mike Brown, Sandia National Labs, October 2007}
\vspace{0.3in}
Let the shape matrices $\mathbf{S}_i=\mbox{diag}(a_i, b_i, c_i)$ be
given by the ellipsoid radii. Let the relative energy matrices
$\mathbf{E}_i = \mbox{diag} (\epsilon_{ia}, \epsilon_{ib},
\epsilon_{ic})$ be given by the relative well depths
(dimensionless energy scales inversely proportional to the well-depths
of the respective orthogonal configurations of the interacting molecules).
Let $\mathbf{A}_1$ and $\mathbf{A}_2$ be the transformation matrices
from the simulation box frame to the body frame and $\mathbf{r}$
be the center to center vector between the particles. Let $A_{12}$ be
the Hamaker constant for the interaction given in LJ units by
$A_{12}=4\pi^2\epsilon_{\mathrm{LJ}}(\rho\sigma^3)^2$.
\vspace{0.3in}
The RE-squared anisotropic interaction between pairs of
ellipsoidal particles is given by
$$ U=U_A+U_R, $$
$$ U_\alpha=\frac{A_{12}}{m_\alpha}(\frac\sigma{h})^{n_\alpha}
(1+o_\alpha\eta\chi\frac\sigma{h}) \times \prod_i{
\frac{a_ib_ic_i}{(a_i+h/p_\alpha)(b_i+h/p_\alpha)(c_i+h/p_\alpha)}}, $$
$$ m_A=-36, n_A=0, o_A=3, p_A=2, $$
$$ m_R=2025, n_R=6, o_R=45/56, p_R=60^{1/3}, $$
$$ \chi = 2 \hat{\mathbf{r}}^T \mathbf{B}^{-1}
\hat{\mathbf{r}}, $$
$$ \hat{\mathbf{r}} = { \mathbf{r} } / |\mathbf{r}|, $$
$$ \mathbf{B} = \mathbf{A}_1^T \mathbf{E}_1 \mathbf{A}_1 +
\mathbf{A}_2^T \mathbf{E}_2 \mathbf{A}_2 $$
$$ \eta = \frac{ \det[\mathbf{S}_1]/\sigma_1^2+
det[\mathbf{S}_2]/\sigma_2^2}{[\det[\mathbf{H}]/
(\sigma_1+\sigma_2)]^{1/2}}, $$
$$ \sigma_i = (\hat{\mathbf{r}}^T\mathbf{A}_i^T\mathbf{S}_i^{-2}
\mathbf{A}_i\hat{\mathbf{r}})^{-1/2}, $$
$$ \mathbf{H} = \frac{1}{\sigma_1}\mathbf{A}_1^T \mathbf{S}_1^2 \mathbf{A}_1 +
\frac{1}{\sigma_2}\mathbf{A}_2^T \mathbf{S}_2^2 \mathbf{A}_2 $$
Here, we use the distance of closest approach approximation given by the
Perram reference, namely
$$ h = |r| - \sigma_{12}, $$
$$ \sigma_{12} = [ \frac{1}{2} \hat{\mathbf{r}}^T
\mathbf{G}^{-1} \hat{\mathbf{r}}]^{ -1/2 }, $$
and
$$ \mathbf{G} = \mathbf{A}_1^T \mathbf{S}_1^2 \mathbf{A}_1 +
\mathbf{A}_2^T \mathbf{S}_2^2 \mathbf{A}_2 $$
\vspace{0.3in}
The RE-squared anisotropic interaction between a
ellipsoidal particle and a Lennard-Jones sphere is defined
as the $\lim_{a_2->0}U$ under the constraints that
$a_2=b_2=c_2$ and $\frac{4}{3}\pi a_2^3\rho=1$:
$$ U_{\mathrm{elj}}=U_{A_{\mathrm{elj}}}+U_{R_{\mathrm{elj}}}, $$
$$ U_{\alpha_{\mathrm{elj}}}=(\frac{3\sigma^3c_\alpha^3}
{4\pi h_{\mathrm{elj}}^3})\frac{A_{12_{\mathrm{elj}}}}
{m_\alpha}(\frac\sigma{h_{\mathrm{elj}}})^{n_\alpha}
(1+o_\alpha\chi_{\mathrm{elj}}\frac\sigma{h_{\mathrm{elj}}}) \times
\frac{a_1b_1c_1}{(a_1+h_{\mathrm{elj}}/p_\alpha)
(b_1+h_{\mathrm{elj}}/p_\alpha)(c_1+h_{\mathrm{elj}}/p_\alpha)}, $$
$$ A_{12_{\mathrm{elj}}}=4\pi^2\epsilon_{\mathrm{LJ}}(\rho\sigma^3), $$
with $h_{\mathrm{elj}}$ and $\chi_{\mathrm{elj}}$ calculated as above
by replacing $B$ with $B_{\mathrm{elj}}$ and $G$ with $G_{\mathrm{elj}}$:
$$ \mathbf{B}_{\mathrm{elj}} = \mathbf{A}_1^T \mathbf{E}_1 \mathbf{A}_1 + I, $$
$$ \mathbf{G}_{\mathrm{elj}} = \mathbf{A}_1^T \mathbf{S}_1^2 \mathbf{A}_1.$$
\vspace{0.3in}
The interaction between two LJ spheres is calculated as:
$$
U_{\mathrm{lj}} = 4 \epsilon \left[ \left(\frac{\sigma}{|\mathbf{r}|}\right)^{12} -
\left(\frac{\sigma}{|\mathbf{r}|}\right)^6 \right]
$$
\vspace{0.3in}
The analytic derivatives are used for all force and torque calculation.
\end{document}

View File

@ -1,607 +0,0 @@
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>5. Accelerating LAMMPS performance &mdash; LAMMPS documentation</title>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/sphinxcontrib-images/LightBox2/lightbox2/css/lightbox.css" type="text/css" />
<link rel="top" title="LAMMPS documentation" href="index.html"/>
<link rel="next" title="6. How-to discussions" href="Section_howto.html"/>
<link rel="prev" title="4. Packages" href="Section_packages.html"/>
<script src="_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-nav-search">
<a href="Manual.html" class="icon icon-home"> LAMMPS
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="Section_intro.html">1. Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_start.html">2. Getting Started</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_commands.html">3. Commands</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_packages.html">4. Packages</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">5. Accelerating LAMMPS performance</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#measuring-performance">5.1. Measuring performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="#general-strategies">5.2. General strategies</a></li>
<li class="toctree-l2"><a class="reference internal" href="#packages-with-optimized-styles">5.3. Packages with optimized styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="#comparison-of-various-accelerator-packages">5.4. Comparison of various accelerator packages</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_howto.html">6. How-to discussions</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_example.html">7. Example problems</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_perf.html">8. Performance &amp; scalability</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_tools.html">9. Additional tools</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_modify.html">10. Modifying &amp; extending LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_python.html">11. Python interface to LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_errors.html">12. Errors</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_history.html">13. Future and history</a></li>
</ul>
</div>
&nbsp;
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="Manual.html">LAMMPS</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="Manual.html">Docs</a> &raquo;</li>
<li>5. Accelerating LAMMPS performance</li>
<li class="wy-breadcrumbs-aside">
<a href="http://lammps.sandia.gov">Website</a>
<a href="Section_commands.html#comm">Commands</a>
</li>
</ul>
<hr/>
<div class="rst-footer-buttons" style="margin-bottom: 1em" role="navigation" aria-label="footer navigation">
<a href="Section_howto.html" class="btn btn-neutral float-right" title="6. How-to discussions" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="Section_packages.html" class="btn btn-neutral" title="4. Packages" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="accelerating-lammps-performance">
<h1>5. Accelerating LAMMPS performance</h1>
<p>This section describes various methods for improving LAMMPS
performance for different classes of problems running on different
kinds of machines.</p>
<p>There are two thrusts to the discussion that follows. The
first is using code options that implement alternate algorithms
that can speed-up a simulation. The second is to use one
of the several accelerator packages provided with LAMMPS that
contain code optimized for certain kinds of hardware, including
multi-core CPUs, GPUs, and Intel Xeon Phi coprocessors.</p>
<ul class="simple">
<li>5.1 <a class="reference internal" href="#acc-1"><span class="std std-ref">Measuring performance</span></a></li>
<li>5.2 <a class="reference internal" href="#acc-2"><span class="std std-ref">Algorithms and code options to boost performace</span></a></li>
<li>5.3 <a class="reference internal" href="#acc-3"><span class="std std-ref">Accelerator packages with optimized styles</span></a></li>
<li>5.3.1 <a class="reference internal" href="accelerate_gpu.html"><span class="doc">GPU package</span></a></li>
<li>5.3.2 <a class="reference internal" href="accelerate_intel.html"><span class="doc">USER-INTEL package</span></a></li>
<li>5.3.3 <a class="reference internal" href="accelerate_kokkos.html"><span class="doc">KOKKOS package</span></a></li>
<li>5.3.4 <a class="reference internal" href="accelerate_omp.html"><span class="doc">USER-OMP package</span></a></li>
<li>5.3.5 <a class="reference internal" href="accelerate_opt.html"><span class="doc">OPT package</span></a></li>
<li>5.4 <a class="reference internal" href="#acc-4"><span class="std std-ref">Comparison of various accelerator packages</span></a></li>
</ul>
<p>The <a class="reference external" href="http://lammps.sandia.gov/bench.html">Benchmark page</a> of the LAMMPS
web site gives performance results for the various accelerator
packages discussed in Section 5.2, for several of the standard LAMMPS
benchmark problems, as a function of problem size and number of
compute nodes, on different hardware platforms.</p>
<div class="section" id="measuring-performance">
<span id="acc-1"></span><h2>5.1. Measuring performance</h2>
<p>Before trying to make your simulation run faster, you should
understand how it currently performs and where the bottlenecks are.</p>
<p>The best way to do this is run the your system (actual number of
atoms) for a modest number of timesteps (say 100 steps) on several
different processor counts, including a single processor if possible.
Do this for an equilibrium version of your system, so that the
100-step timings are representative of a much longer run. There is
typically no need to run for 1000s of timesteps to get accurate
timings; you can simply extrapolate from short runs.</p>
<p>For the set of runs, look at the timing data printed to the screen and
log file at the end of each LAMMPS run. <a class="reference internal" href="Section_start.html#start-8"><span class="std std-ref">This section</span></a> of the manual has an overview.</p>
<p>Running on one (or a few processors) should give a good estimate of
the serial performance and what portions of the timestep are taking
the most time. Running the same problem on a few different processor
counts should give an estimate of parallel scalability. I.e. if the
simulation runs 16x faster on 16 processors, its 100% parallel
efficient; if it runs 8x faster on 16 processors, it&#8217;s 50% efficient.</p>
<p>The most important data to look at in the timing info is the timing
breakdown and relative percentages. For example, trying different
options for speeding up the long-range solvers will have little impact
if they only consume 10% of the run time. If the pairwise time is
dominating, you may want to look at GPU or OMP versions of the pair
style, as discussed below. Comparing how the percentages change as
you increase the processor count gives you a sense of how different
operations within the timestep are scaling. Note that if you are
running with a Kspace solver, there is additional output on the
breakdown of the Kspace time. For PPPM, this includes the fraction
spent on FFTs, which can be communication intensive.</p>
<p>Another important detail in the timing info are the histograms of
atoms counts and neighbor counts. If these vary widely across
processors, you have a load-imbalance issue. This often results in
inaccurate relative timing data, because processors have to wait when
communication occurs for other processors to catch up. Thus the
reported times for &#8220;Communication&#8221; or &#8220;Other&#8221; may be higher than they
really are, due to load-imbalance. If this is an issue, you can
uncomment the MPI_Barrier() lines in src/timer.cpp, and recompile
LAMMPS, to obtain synchronized timings.</p>
<hr class="docutils" />
</div>
<div class="section" id="general-strategies">
<span id="acc-2"></span><h2>5.2. General strategies</h2>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">this section 5.2 is still a work in progress</p>
</div>
<p>Here is a list of general ideas for improving simulation performance.
Most of them are only applicable to certain models and certain
bottlenecks in the current performance, so let the timing data you
generate be your guide. It is hard, if not impossible, to predict how
much difference these options will make, since it is a function of
problem size, number of processors used, and your machine. There is
no substitute for identifying performance bottlenecks, and trying out
various options.</p>
<ul class="simple">
<li>rRESPA</li>
<li>2-FFT PPPM</li>
<li>Staggered PPPM</li>
<li>single vs double PPPM</li>
<li>partial charge PPPM</li>
<li>verlet/split run style</li>
<li>processor command for proc layout and numa layout</li>
<li>load-balancing: balance and fix balance</li>
</ul>
<p>2-FFT PPPM, also called <em>analytic differentiation</em> or <em>ad</em> PPPM, uses
2 FFTs instead of the 4 FFTs used by the default <em>ik differentiation</em>
PPPM. However, 2-FFT PPPM also requires a slightly larger mesh size to
achieve the same accuracy as 4-FFT PPPM. For problems where the FFT
cost is the performance bottleneck (typically large problems running
on many processors), 2-FFT PPPM may be faster than 4-FFT PPPM.</p>
<p>Staggered PPPM performs calculations using two different meshes, one
shifted slightly with respect to the other. This can reduce force
aliasing errors and increase the accuracy of the method, but also
doubles the amount of work required. For high relative accuracy, using
staggered PPPM allows one to half the mesh size in each dimension as
compared to regular PPPM, which can give around a 4x speedup in the
kspace time. However, for low relative accuracy, using staggered PPPM
gives little benefit and can be up to 2x slower in the kspace
time. For example, the rhodopsin benchmark was run on a single
processor, and results for kspace time vs. relative accuracy for the
different methods are shown in the figure below. For this system,
staggered PPPM (using ik differentiation) becomes useful when using a
relative accuracy of slightly greater than 1e-5 and above.</p>
<img alt="_images/rhodo_staggered.jpg" class="align-center" src="_images/rhodo_staggered.jpg" />
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">Using staggered PPPM may not give the same increase in accuracy
of energy and pressure as it does in forces, so some caution must be
used if energy and/or pressure are quantities of interest, such as
when using a barostat.</p>
</div>
<hr class="docutils" />
</div>
<div class="section" id="packages-with-optimized-styles">
<span id="acc-3"></span><h2>5.3. Packages with optimized styles</h2>
<p>Accelerated versions of various <a class="reference internal" href="pair_style.html"><span class="doc">pair_style</span></a>,
<a class="reference internal" href="fix.html"><span class="doc">fixes</span></a>, <a class="reference internal" href="compute.html"><span class="doc">computes</span></a>, and other commands have
been added to LAMMPS, which will typically run faster than the
standard non-accelerated versions. Some require appropriate hardware
to be present on your system, e.g. GPUs or Intel Xeon Phi
coprocessors.</p>
<p>All of these commands are in packages provided with LAMMPS. An
overview of packages is give in <a class="reference internal" href="Section_packages.html"><span class="doc">Section packages</span></a>.</p>
<p>These are the accelerator packages
currently in LAMMPS, either as standard or user packages:</p>
<table border="1" class="docutils">
<colgroup>
<col width="44%" />
<col width="56%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td><a class="reference internal" href="accelerate_gpu.html"><span class="doc">GPU</span></a></td>
<td>for NVIDIA GPUs as well as OpenCL support</td>
</tr>
<tr class="row-even"><td><a class="reference internal" href="accelerate_intel.html"><span class="doc">USER-INTEL</span></a></td>
<td>for Intel CPUs and Intel Xeon Phi</td>
</tr>
<tr class="row-odd"><td><a class="reference internal" href="accelerate_kokkos.html"><span class="doc">KOKKOS</span></a></td>
<td>for GPUs, Intel Xeon Phi, and OpenMP threading</td>
</tr>
<tr class="row-even"><td><a class="reference internal" href="accelerate_omp.html"><span class="doc">USER-OMP</span></a></td>
<td>for OpenMP threading</td>
</tr>
<tr class="row-odd"><td><a class="reference internal" href="accelerate_opt.html"><span class="doc">OPT</span></a></td>
<td>generic CPU optimizations</td>
</tr>
</tbody>
</table>
<p>Inverting this list, LAMMPS currently has acceleration support for
three kinds of hardware, via the listed packages:</p>
<table border="1" class="docutils">
<colgroup>
<col width="10%" />
<col width="90%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td>Many-core CPUs</td>
<td><a class="reference internal" href="accelerate_intel.html"><span class="doc">USER-INTEL</span></a>, <a class="reference internal" href="accelerate_kokkos.html"><span class="doc">KOKKOS</span></a>, <a class="reference internal" href="accelerate_omp.html"><span class="doc">USER-OMP</span></a>, <a class="reference internal" href="accelerate_opt.html"><span class="doc">OPT</span></a> packages</td>
</tr>
<tr class="row-even"><td>NVIDIA GPUs</td>
<td><a class="reference internal" href="accelerate_gpu.html"><span class="doc">GPU</span></a>, <a class="reference internal" href="accelerate_kokkos.html"><span class="doc">KOKKOS</span></a> packages</td>
</tr>
<tr class="row-odd"><td>Intel Phi</td>
<td><a class="reference internal" href="accelerate_intel.html"><span class="doc">USER-INTEL</span></a>, <a class="reference internal" href="accelerate_kokkos.html"><span class="doc">KOKKOS</span></a> packages</td>
</tr>
</tbody>
</table>
<p>Which package is fastest for your hardware may depend on the size
problem you are running and what commands (accelerated and
non-accelerated) are invoked by your input script. While these doc
pages include performance guidelines, there is no substitute for
trying out the different packages appropriate to your hardware.</p>
<p>Any accelerated style has the same name as the corresponding standard
style, except that a suffix is appended. Otherwise, the syntax for
the command that uses the style is identical, their functionality is
the same, and the numerical results it produces should also be the
same, except for precision and round-off effects.</p>
<p>For example, all of these styles are accelerated variants of the
Lennard-Jones <a class="reference internal" href="pair_lj.html"><span class="doc">pair_style lj/cut</span></a>:</p>
<ul class="simple">
<li><a class="reference internal" href="pair_lj.html"><span class="doc">pair_style lj/cut/gpu</span></a></li>
<li><a class="reference internal" href="pair_lj.html"><span class="doc">pair_style lj/cut/intel</span></a></li>
<li><a class="reference internal" href="pair_lj.html"><span class="doc">pair_style lj/cut/kk</span></a></li>
<li><a class="reference internal" href="pair_lj.html"><span class="doc">pair_style lj/cut/omp</span></a></li>
<li><a class="reference internal" href="pair_lj.html"><span class="doc">pair_style lj/cut/opt</span></a></li>
</ul>
<p>To see what accelerate styles are currently available, see
<a class="reference internal" href="Section_commands.html#cmd-5"><span class="std std-ref">Section_commands 5</span></a> of the manual. The
doc pages for individual commands (e.g. <a class="reference internal" href="pair_lj.html"><span class="doc">pair lj/cut</span></a> or
<a class="reference internal" href="fix_nve.html"><span class="doc">fix nve</span></a>) also list any accelerated variants available
for that style.</p>
<p>To use an accelerator package in LAMMPS, and one or more of the styles
it provides, follow these general steps. Details vary from package to
package and are explained in the individual accelerator doc pages,
listed above:</p>
<table border="1" class="docutils">
<colgroup>
<col width="26%" />
<col width="74%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td>build the accelerator library</td>
<td>only for GPU package</td>
</tr>
<tr class="row-even"><td>install the accelerator package</td>
<td>make yes-opt, make yes-user-intel, etc</td>
</tr>
</tbody>
</table>
<div class="line-block">
<div class="line">install the accelerator package | make yes-opt, make yes-user-intel, etc |</div>
</div>
<blockquote>
<div>only for USER-INTEL, KOKKOS, USER-OMP, OPT packages |</div></blockquote>
<table border="1" class="docutils">
<colgroup>
<col width="26%" />
<col width="74%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td>re-build LAMMPS</td>
<td>make machine</td>
</tr>
</tbody>
</table>
<div class="line-block">
<div class="line">re-build LAMMPS | make machine |</div>
</div>
<blockquote>
<div>mpirun -np 32 lmp_machine -in in.script |</div></blockquote>
<blockquote>
<div>only for KOKKOS package |</div></blockquote>
<blockquote>
<div><a class="reference internal" href="package.html"><span class="doc">package</span></a> command, &lt;br&gt;
only if defaults need to be changed |</div></blockquote>
<blockquote>
<div><a class="reference internal" href="suffix.html"><span class="doc">suffix</span></a> command |</div></blockquote>
<table border="1" class="docutils">
<colgroup>
</colgroup>
<tbody valign="top">
</tbody>
</table>
<p>Note that the first 4 steps can be done as a single command, using the
src/Make.py tool. This tool is discussed in <a class="reference internal" href="Section_start.html#start-4"><span class="std std-ref">Section 2.4</span></a> of the manual, and its use is
illustrated in the individual accelerator sections. Typically these
steps only need to be done once, to create an executable that uses one
or more accelerator packages.</p>
<p>The last 4 steps can all be done from the command-line when LAMMPS is
launched, without changing your input script, as illustrated in the
individual accelerator sections. Or you can add
<a class="reference internal" href="package.html"><span class="doc">package</span></a> and <a class="reference internal" href="suffix.html"><span class="doc">suffix</span></a> commands to your input
script.</p>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">With a few exceptions, you can build a single LAMMPS executable
with all its accelerator packages installed. Note however that the
USER-INTEL and KOKKOS packages require you to choose one of their
hardware options when building for a specific platform. I.e. CPU or
Phi option for the USER-INTEL package. Or the OpenMP, Cuda, or Phi
option for the KOKKOS package.</p>
</div>
<p>These are the exceptions. You cannot build a single executable with:</p>
<ul class="simple">
<li>both the USER-INTEL Phi and KOKKOS Phi options</li>
<li>the USER-INTEL Phi or Kokkos Phi option, and the GPU package</li>
</ul>
<p>See the examples/accelerate/README and make.list files for sample
Make.py commands that build LAMMPS with any or all of the accelerator
packages. As an example, here is a command that builds with all the
GPU related packages installed (GPU, KOKKOS with Cuda), including
settings to build the needed auxiliary GPU libraries for Kepler GPUs:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">Make</span><span class="o">.</span><span class="n">py</span> <span class="o">-</span><span class="n">j</span> <span class="mi">16</span> <span class="o">-</span><span class="n">p</span> <span class="n">omp</span> <span class="n">gpu</span> <span class="n">kokkos</span> <span class="o">-</span><span class="n">cc</span> <span class="n">nvcc</span> <span class="n">wrap</span><span class="o">=</span><span class="n">mpi</span> <span class="o">-</span><span class="n">gpu</span> <span class="n">mode</span><span class="o">=</span><span class="n">double</span> <span class="n">arch</span><span class="o">=</span><span class="mi">35</span> <span class="o">-</span><span class="n">kokkos</span> <span class="n">cuda</span> <span class="n">arch</span><span class="o">=</span><span class="mi">35</span> <span class="n">lib</span><span class="o">-</span><span class="nb">all</span> <span class="n">file</span> <span class="n">mpi</span>
</pre></div>
</div>
<p>The examples/accelerate directory also has input scripts that can be
used with all of the accelerator packages. See its README file for
details.</p>
<p>Likewise, the bench directory has FERMI and KEPLER and PHI
sub-directories with Make.py commands and input scripts for using all
the accelerator packages on various machines. See the README files in
those dirs.</p>
<p>As mentioned above, the <a class="reference external" href="http://lammps.sandia.gov/bench.html">Benchmark page</a> of the LAMMPS web site gives
performance results for the various accelerator packages for several
of the standard LAMMPS benchmark problems, as a function of problem
size and number of compute nodes, on different hardware platforms.</p>
<p>Here is a brief summary of what the various packages provide. Details
are in the individual accelerator sections.</p>
<ul class="simple">
<li>Styles with a &#8220;gpu&#8221; suffix are part of the GPU package, and can be run
on NVIDIA GPUs. The speed-up on a GPU depends on a variety of
factors, discussed in the accelerator sections.</li>
<li>Styles with an &#8220;intel&#8221; suffix are part of the USER-INTEL
package. These styles support vectorized single and mixed precision
calculations, in addition to full double precision. In extreme cases,
this can provide speedups over 3.5x on CPUs. The package also
supports acceleration in &#8220;offload&#8221; mode to Intel(R) Xeon Phi(TM)
coprocessors. This can result in additional speedup over 2x depending
on the hardware configuration.</li>
<li>Styles with a &#8220;kk&#8221; suffix are part of the KOKKOS package, and can be
run using OpenMP on multicore CPUs, on an NVIDIA GPU, or on an Intel
Xeon Phi in &#8220;native&#8221; mode. The speed-up depends on a variety of
factors, as discussed on the KOKKOS accelerator page.</li>
<li>Styles with an &#8220;omp&#8221; suffix are part of the USER-OMP package and allow
a pair-style to be run in multi-threaded mode using OpenMP. This can
be useful on nodes with high-core counts when using less MPI processes
than cores is advantageous, e.g. when running with PPPM so that FFTs
are run on fewer MPI processors or when the many MPI tasks would
overload the available bandwidth for communication.</li>
<li>Styles with an &#8220;opt&#8221; suffix are part of the OPT package and typically
speed-up the pairwise calculations of your simulation by 5-25% on a
CPU.</li>
</ul>
<p>The individual accelerator package doc pages explain:</p>
<ul class="simple">
<li>what hardware and software the accelerated package requires</li>
<li>how to build LAMMPS with the accelerated package</li>
<li>how to run with the accelerated package either via command-line switches or modifying the input script</li>
<li>speed-ups to expect</li>
<li>guidelines for best performance</li>
<li>restrictions</li>
</ul>
<hr class="docutils" />
</div>
<div class="section" id="comparison-of-various-accelerator-packages">
<span id="acc-4"></span><h2>5.4. Comparison of various accelerator packages</h2>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">this section still needs to be re-worked with additional KOKKOS
and USER-INTEL information.</p>
</div>
<p>The next section compares and contrasts the various accelerator
options, since there are multiple ways to perform OpenMP threading,
run on GPUs, and run on Intel Xeon Phi coprocessors.</p>
<p>All 3 of these packages accelerate a LAMMPS calculation using NVIDIA
hardware, but they do it in different ways.</p>
<p>As a consequence, for a particular simulation on specific hardware,
one package may be faster than the other. We give guidelines below,
but the best way to determine which package is faster for your input
script is to try both of them on your machine. See the benchmarking
section below for examples where this has been done.</p>
<p><strong>Guidelines for using each package optimally:</strong></p>
<ul class="simple">
<li>The GPU package allows you to assign multiple CPUs (cores) to a single
GPU (a common configuration for &#8220;hybrid&#8221; nodes that contain multicore
CPU(s) and GPU(s)) and works effectively in this mode.</li>
<li>The GPU package moves per-atom data (coordinates, forces)
back-and-forth between the CPU and GPU every timestep. The
KOKKOS/CUDA package only does this on timesteps when a CPU calculation
is required (e.g. to invoke a fix or compute that is non-GPU-ized).
Hence, if you can formulate your input script to only use GPU-ized
fixes and computes, and avoid doing I/O too often (thermo output, dump
file snapshots, restart files), then the data transfer cost of the
KOKKOS/CUDA package can be very low, causing it to run faster than the
GPU package.</li>
<li>The GPU package is often faster than the KOKKOS/CUDA package, if the
number of atoms per GPU is smaller. The crossover point, in terms of
atoms/GPU at which the KOKKOS/CUDA package becomes faster depends
strongly on the pair style. For example, for a simple Lennard Jones
system the crossover (in single precision) is often about 50K-100K
atoms per GPU. When performing double precision calculations the
crossover point can be significantly smaller.</li>
<li>Both packages compute bonded interactions (bonds, angles, etc) on the
CPU. If the GPU package is running with several MPI processes
assigned to one GPU, the cost of computing the bonded interactions is
spread across more CPUs and hence the GPU package can run faster.</li>
<li>When using the GPU package with multiple CPUs assigned to one GPU, its
performance depends to some extent on high bandwidth between the CPUs
and the GPU. Hence its performance is affected if full 16 PCIe lanes
are not available for each GPU. In HPC environments this can be the
case if S2050/70 servers are used, where two devices generally share
one PCIe 2.0 16x slot. Also many multi-GPU mainboards do not provide
full 16 lanes to each of the PCIe 2.0 16x slots.</li>
</ul>
<p><strong>Differences between the two packages:</strong></p>
<ul class="simple">
<li>The GPU package accelerates only pair force, neighbor list, and PPPM
calculations.</li>
<li>The GPU package requires neighbor lists to be built on the CPU when using
exclusion lists or a triclinic simulation box.</li>
</ul>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="Section_howto.html" class="btn btn-neutral float-right" title="6. How-to discussions" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="Section_packages.html" class="btn btn-neutral" title="4. Packages" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2013 Sandia Corporation.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'./',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/jquery-1.11.0.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/lightbox.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2-customize/jquery-noconflict.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.StickyNav.enable();
});
</script>
</body>
</html>

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,448 +0,0 @@
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>7. Example problems &mdash; LAMMPS documentation</title>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/sphinxcontrib-images/LightBox2/lightbox2/css/lightbox.css" type="text/css" />
<link rel="top" title="LAMMPS documentation" href="index.html"/>
<link rel="next" title="8. Performance &amp; scalability" href="Section_perf.html"/>
<link rel="prev" title="6. How-to discussions" href="Section_howto.html"/>
<script src="_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-nav-search">
<a href="Manual.html" class="icon icon-home"> LAMMPS
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="Section_intro.html">1. Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_start.html">2. Getting Started</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_commands.html">3. Commands</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_packages.html">4. Packages</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_accelerate.html">5. Accelerating LAMMPS performance</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_howto.html">6. How-to discussions</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">7. Example problems</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#lowercase-directories">7.1. Lowercase directories</a></li>
<li class="toctree-l2"><a class="reference internal" href="#uppercase-directories">7.2. Uppercase directories</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_perf.html">8. Performance &amp; scalability</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_tools.html">9. Additional tools</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_modify.html">10. Modifying &amp; extending LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_python.html">11. Python interface to LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_errors.html">12. Errors</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_history.html">13. Future and history</a></li>
</ul>
</div>
&nbsp;
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="Manual.html">LAMMPS</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="Manual.html">Docs</a> &raquo;</li>
<li>7. Example problems</li>
<li class="wy-breadcrumbs-aside">
<a href="http://lammps.sandia.gov">Website</a>
<a href="Section_commands.html#comm">Commands</a>
</li>
</ul>
<hr/>
<div class="rst-footer-buttons" style="margin-bottom: 1em" role="navigation" aria-label="footer navigation">
<a href="Section_perf.html" class="btn btn-neutral float-right" title="8. Performance &amp; scalability" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="Section_howto.html" class="btn btn-neutral" title="6. How-to discussions" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="example-problems">
<h1>7. Example problems</h1>
<p>The LAMMPS distribution includes an examples sub-directory with many
sample problems. Many are 2d models that run quickly are are
straightforward to visualize, requiring at most a couple of minutes to
run on a desktop machine. Each problem has an input script (in.*) and
produces a log file (log.*) when it runs. Some use a data file
(data.*) of initial coordinates as additional input. A few sample log
file run on different machines and different numbers of processors are
included in the directories to compare your answers to. E.g. a log
file like log.date.crack.foo.P means the &#8220;crack&#8221; example was run on P
processors of machine &#8220;foo&#8221; on that date (i.e. with that version of
LAMMPS).</p>
<p>Many of the input files have commented-out lines for creating dump
files and image files.</p>
<p>If you uncomment the <a class="reference internal" href="dump.html"><span class="doc">dump</span></a> command in the input script, a
text dump file will be produced, which can be animated by various
<a class="reference external" href="http://lammps.sandia.gov/viz.html">visualization programs</a>. It can
also be animated using the xmovie tool described in the <a class="reference internal" href="Section_tools.html"><span class="doc">Additional Tools</span></a> section of the LAMMPS documentation.</p>
<p>If you uncomment the <a class="reference internal" href="dump.html"><span class="doc">dump image</span></a> command in the input
script, and assuming you have built LAMMPS with a JPG library, JPG
snapshot images will be produced when the simulation runs. They can
be quickly post-processed into a movie using commands described on the
<a class="reference internal" href="dump_image.html"><span class="doc">dump image</span></a> doc page.</p>
<p>Animations of many of the examples can be viewed on the Movies section
of the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS web site</a>.</p>
<p>There are two kinds of sub-directories in the examples dir. Lowercase
dirs contain one or a few simple, quick-to-run problems. Uppercase
dirs contain up to several complex scripts that illustrate a
particular kind of simulation method or model. Some of these run for
longer times, e.g. to measure a particular quantity.</p>
<p>Lists of both kinds of directories are given below.</p>
<hr class="docutils" />
<div class="section" id="lowercase-directories">
<h2>7.1. Lowercase directories</h2>
<table border="1" class="docutils">
<colgroup>
<col width="16%" />
<col width="84%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td>accelerate</td>
<td>run with various acceleration options (OpenMP, GPU, Phi)</td>
</tr>
<tr class="row-even"><td>balance</td>
<td>dynamic load balancing, 2d system</td>
</tr>
<tr class="row-odd"><td>body</td>
<td>body particles, 2d system</td>
</tr>
<tr class="row-even"><td>colloid</td>
<td>big colloid particles in a small particle solvent, 2d system</td>
</tr>
<tr class="row-odd"><td>comb</td>
<td>models using the COMB potential</td>
</tr>
<tr class="row-even"><td>coreshell</td>
<td>core/shell model using CORESHELL package</td>
</tr>
<tr class="row-odd"><td>crack</td>
<td>crack propagation in a 2d solid</td>
</tr>
<tr class="row-even"><td>deposit</td>
<td>deposit atoms and molecules on a surface</td>
</tr>
<tr class="row-odd"><td>dipole</td>
<td>point dipolar particles, 2d system</td>
</tr>
<tr class="row-even"><td>dreiding</td>
<td>methanol via Dreiding FF</td>
</tr>
<tr class="row-odd"><td>eim</td>
<td>NaCl using the EIM potential</td>
</tr>
<tr class="row-even"><td>ellipse</td>
<td>ellipsoidal particles in spherical solvent, 2d system</td>
</tr>
<tr class="row-odd"><td>flow</td>
<td>Couette and Poiseuille flow in a 2d channel</td>
</tr>
<tr class="row-even"><td>friction</td>
<td>frictional contact of spherical asperities between 2d surfaces</td>
</tr>
<tr class="row-odd"><td>hugoniostat</td>
<td>Hugoniostat shock dynamics</td>
</tr>
<tr class="row-even"><td>indent</td>
<td>spherical indenter into a 2d solid</td>
</tr>
<tr class="row-odd"><td>kim</td>
<td>use of potentials in Knowledge Base for Interatomic Models (KIM)</td>
</tr>
<tr class="row-even"><td>meam</td>
<td>MEAM test for SiC and shear (same as shear examples)</td>
</tr>
<tr class="row-odd"><td>melt</td>
<td>rapid melt of 3d LJ system</td>
</tr>
<tr class="row-even"><td>micelle</td>
<td>self-assembly of small lipid-like molecules into 2d bilayers</td>
</tr>
<tr class="row-odd"><td>min</td>
<td>energy minimization of 2d LJ melt</td>
</tr>
<tr class="row-even"><td>msst</td>
<td>MSST shock dynamics</td>
</tr>
<tr class="row-odd"><td>nb3b</td>
<td>use of nonbonded 3-body harmonic pair style</td>
</tr>
<tr class="row-even"><td>neb</td>
<td>nudged elastic band (NEB) calculation for barrier finding</td>
</tr>
<tr class="row-odd"><td>nemd</td>
<td>non-equilibrium MD of 2d sheared system</td>
</tr>
<tr class="row-even"><td>obstacle</td>
<td>flow around two voids in a 2d channel</td>
</tr>
<tr class="row-odd"><td>peptide</td>
<td>dynamics of a small solvated peptide chain (5-mer)</td>
</tr>
<tr class="row-even"><td>peri</td>
<td>Peridynamic model of cylinder impacted by indenter</td>
</tr>
<tr class="row-odd"><td>pour</td>
<td>pouring of granular particles into a 3d box, then chute flow</td>
</tr>
<tr class="row-even"><td>prd</td>
<td>parallel replica dynamics of vacancy diffusion in bulk Si</td>
</tr>
<tr class="row-odd"><td>python</td>
<td>using embedded Python in a LAMMPS input script</td>
</tr>
<tr class="row-even"><td>qeq</td>
<td>use of the QEQ package for charge equilibration</td>
</tr>
<tr class="row-odd"><td>reax</td>
<td>RDX and TATB models using the ReaxFF</td>
</tr>
<tr class="row-even"><td>rigid</td>
<td>rigid bodies modeled as independent or coupled</td>
</tr>
<tr class="row-odd"><td>shear</td>
<td>sideways shear applied to 2d solid, with and without a void</td>
</tr>
<tr class="row-even"><td>snap</td>
<td>NVE dynamics for BCC tantalum crystal using SNAP potential</td>
</tr>
<tr class="row-odd"><td>srd</td>
<td>stochastic rotation dynamics (SRD) particles as solvent</td>
</tr>
<tr class="row-even"><td>streitz</td>
<td>use of Streitz/Mintmire potential with charge equilibration</td>
</tr>
<tr class="row-odd"><td>tad</td>
<td>temperature-accelerated dynamics of vacancy diffusion in bulk Si</td>
</tr>
<tr class="row-even"><td>vashishta</td>
<td>use of the Vashishta potential</td>
</tr>
</tbody>
</table>
<p>Here is how you can run and visualize one of the sample problems:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">cd</span> <span class="n">indent</span>
<span class="n">cp</span> <span class="o">../../</span><span class="n">src</span><span class="o">/</span><span class="n">lmp_linux</span> <span class="o">.</span> <span class="c1"># copy LAMMPS executable to this dir</span>
<span class="n">lmp_linux</span> <span class="o">-</span><span class="ow">in</span> <span class="ow">in</span><span class="o">.</span><span class="n">indent</span> <span class="c1"># run the problem</span>
</pre></div>
</div>
<p>Running the simulation produces the files <em>dump.indent</em> and
<em>log.lammps</em>. You can visualize the dump file of snapshots with a
variety of 3rd-party tools highlighted on the
<a class="reference external" href="http://lammps.sandia.gov/viz.html">Visualization</a> page of the LAMMPS
web site.</p>
<p>If you uncomment the <a class="reference internal" href="dump_image.html"><span class="doc">dump image</span></a> line(s) in the input
script a series of JPG images will be produced by the run (assuming
you built LAMMPS with JPG support; see <a class="reference internal" href="Section_start.html"><span class="doc">Section start 2.2</span></a> for details). These can be viewed
individually or turned into a movie or animated by tools like
ImageMagick or QuickTime or various Windows-based tools. See the
<a class="reference internal" href="dump_image.html"><span class="doc">dump image</span></a> doc page for more details. E.g. this
Imagemagick command would create a GIF file suitable for viewing in a
browser.</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="o">%</span> <span class="n">convert</span> <span class="o">-</span><span class="n">loop</span> <span class="mi">1</span> <span class="o">*.</span><span class="n">jpg</span> <span class="n">foo</span><span class="o">.</span><span class="n">gif</span>
</pre></div>
</div>
</div>
<hr class="docutils" />
<div class="section" id="uppercase-directories">
<h2>7.2. Uppercase directories</h2>
<table border="1" class="docutils">
<colgroup>
<col width="10%" />
<col width="90%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td>ASPHERE</td>
<td>various aspherical particle models, using ellipsoids, rigid bodies, line/triangle particles, etc</td>
</tr>
<tr class="row-even"><td>COUPLE</td>
<td>examples of how to use LAMMPS as a library</td>
</tr>
<tr class="row-odd"><td>DIFFUSE</td>
<td>compute diffusion coefficients via several methods</td>
</tr>
<tr class="row-even"><td>ELASTIC</td>
<td>compute elastic constants at zero temperature</td>
</tr>
<tr class="row-odd"><td>ELASTIC_T</td>
<td>compute elastic constants at finite temperature</td>
</tr>
<tr class="row-even"><td>KAPPA</td>
<td>compute thermal conductivity via several methods</td>
</tr>
<tr class="row-odd"><td>MC</td>
<td>using LAMMPS in a Monte Carlo mode to relax the energy of a system</td>
</tr>
<tr class="row-even"><td>USER</td>
<td>examples for USER packages and USER-contributed commands</td>
</tr>
<tr class="row-odd"><td>VISCOSITY</td>
<td>compute viscosity via several methods</td>
</tr>
</tbody>
</table>
<p>Nearly all of these directories have README files which give more
details on how to understand and use their contents.</p>
<p>The USER directory has a large number of sub-directories which
correspond by name to a USER package. They contain scripts that
illustrate how to use the command(s) provided in that package. Many
of the sub-directories have their own README files which give further
instructions. See the <a class="reference internal" href="Section_packages.html"><span class="doc">Section packages</span></a> doc
page for more info on specific USER packages.</p>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="Section_perf.html" class="btn btn-neutral float-right" title="8. Performance &amp; scalability" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="Section_howto.html" class="btn btn-neutral" title="6. How-to discussions" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2013 Sandia Corporation.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'./',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/jquery-1.11.0.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/lightbox.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2-customize/jquery-noconflict.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.StickyNav.enable();
});
</script>
</body>
</html>

View File

@ -1,313 +0,0 @@
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>13. Future and history &mdash; LAMMPS documentation</title>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/sphinxcontrib-images/LightBox2/lightbox2/css/lightbox.css" type="text/css" />
<link rel="top" title="LAMMPS documentation" href="index.html"/>
<link rel="prev" title="12. Errors" href="Section_errors.html"/>
<script src="_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-nav-search">
<a href="Manual.html" class="icon icon-home"> LAMMPS
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="Section_intro.html">1. Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_start.html">2. Getting Started</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_commands.html">3. Commands</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_packages.html">4. Packages</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_accelerate.html">5. Accelerating LAMMPS performance</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_howto.html">6. How-to discussions</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_example.html">7. Example problems</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_perf.html">8. Performance &amp; scalability</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_tools.html">9. Additional tools</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_modify.html">10. Modifying &amp; extending LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_python.html">11. Python interface to LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_errors.html">12. Errors</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">13. Future and history</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#coming-attractions">13.1. Coming attractions</a></li>
<li class="toctree-l2"><a class="reference internal" href="#past-versions">13.2. Past versions</a></li>
</ul>
</li>
</ul>
</div>
&nbsp;
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="Manual.html">LAMMPS</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="Manual.html">Docs</a> &raquo;</li>
<li>13. Future and history</li>
<li class="wy-breadcrumbs-aside">
<a href="http://lammps.sandia.gov">Website</a>
<a href="Section_commands.html#comm">Commands</a>
</li>
</ul>
<hr/>
<div class="rst-footer-buttons" style="margin-bottom: 1em" role="navigation" aria-label="footer navigation">
<a href="Section_errors.html" class="btn btn-neutral" title="12. Errors" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="future-and-history">
<h1>13. Future and history</h1>
<p>This section lists features we plan to add to LAMMPS, features of
previous versions of LAMMPS, and features of other parallel molecular
dynamics codes our group has distributed.</p>
<div class="line-block">
<div class="line">13.1 <a class="reference internal" href="#hist-1"><span class="std std-ref">Coming attractions</span></a></div>
<div class="line">13.2 <a class="reference internal" href="#hist-2"><span class="std std-ref">Past versions</span></a></div>
<div class="line"><br /></div>
</div>
<div class="section" id="coming-attractions">
<span id="hist-1"></span><h2>13.1. Coming attractions</h2>
<p>The <a class="reference external" href="http://lammps.sandia.gov/future.html">Wish list link</a> on the
LAMMPS WWW page gives a list of features we are hoping to add to
LAMMPS in the future, including contact names of individuals you can
email if you are interested in contributing to the developement or
would be a future user of that feature.</p>
<p>You can also send <a class="reference external" href="http://lammps.sandia.gov/authors.html">email to the developers</a> if you want to add
your wish to the list.</p>
<hr class="docutils" />
</div>
<div class="section" id="past-versions">
<span id="hist-2"></span><h2>13.2. Past versions</h2>
<p>LAMMPS development began in the mid 1990s under a cooperative research
&amp; development agreement (CRADA) between two DOE labs (Sandia and LLNL)
and 3 companies (Cray, Bristol Myers Squibb, and Dupont). The goal was
to develop a large-scale parallel classical MD code; the coding effort
was led by Steve Plimpton at Sandia.</p>
<p>After the CRADA ended, a final F77 version, LAMMPS 99, was
released. As development of LAMMPS continued at Sandia, its memory
management was converted to F90; a final F90 version was released as
LAMMPS 2001.</p>
<p>The current LAMMPS is a rewrite in C++ and was first publicly released
as an open source code in 2004. It includes many new features beyond
those in LAMMPS 99 or 2001. It also includes features from older
parallel MD codes written at Sandia, namely ParaDyn, Warp, and
GranFlow (see below).</p>
<p>In late 2006 we began merging new capabilities into LAMMPS that were
developed by Aidan Thompson at Sandia for his MD code GRASP, which has
a parallel framework similar to LAMMPS. Most notably, these have
included many-body potentials - Stillinger-Weber, Tersoff, ReaxFF -
and the associated charge-equilibration routines needed for ReaxFF.</p>
<p>The <a class="reference external" href="http://lammps.sandia.gov/history.html">History link</a> on the
LAMMPS WWW page gives a timeline of features added to the
C++ open-source version of LAMMPS over the last several years.</p>
<p>These older codes are available for download from the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW site</a>, except for Warp &amp; GranFlow which were primarily used
internally. A brief listing of their features is given here.</p>
<p>LAMMPS 2001</p>
<ul class="simple">
<li>F90 + MPI</li>
<li>dynamic memory</li>
<li>spatial-decomposition parallelism</li>
<li>NVE, NVT, NPT, NPH, rRESPA integrators</li>
<li>LJ and Coulombic pairwise force fields</li>
<li>all-atom, united-atom, bead-spring polymer force fields</li>
<li>CHARMM-compatible force fields</li>
<li>class 2 force fields</li>
<li>3d/2d Ewald &amp; PPPM</li>
<li>various force and temperature constraints</li>
<li>SHAKE</li>
<li>Hessian-free truncated-Newton minimizer</li>
<li>user-defined diagnostics</li>
</ul>
<p>LAMMPS 99</p>
<ul class="simple">
<li>F77 + MPI</li>
<li>static memory allocation</li>
<li>spatial-decomposition parallelism</li>
<li>most of the LAMMPS 2001 features with a few exceptions</li>
<li>no 2d Ewald &amp; PPPM</li>
<li>molecular force fields are missing a few CHARMM terms</li>
<li>no SHAKE</li>
</ul>
<p>Warp</p>
<ul class="simple">
<li>F90 + MPI</li>
<li>spatial-decomposition parallelism</li>
<li>embedded atom method (EAM) metal potentials + LJ</li>
<li>lattice and grain-boundary atom creation</li>
<li>NVE, NVT integrators</li>
<li>boundary conditions for applying shear stresses</li>
<li>temperature controls for actively sheared systems</li>
<li>per-atom energy and centro-symmetry computation and output</li>
</ul>
<p>ParaDyn</p>
<ul class="simple">
<li>F77 + MPI</li>
<li>atom- and force-decomposition parallelism</li>
<li>embedded atom method (EAM) metal potentials</li>
<li>lattice atom creation</li>
<li>NVE, NVT, NPT integrators</li>
<li>all serial DYNAMO features for controls and constraints</li>
</ul>
<p>GranFlow</p>
<ul class="simple">
<li>F90 + MPI</li>
<li>spatial-decomposition parallelism</li>
<li>frictional granular potentials</li>
<li>NVE integrator</li>
<li>boundary conditions for granular flow and packing and walls</li>
<li>particle insertion</li>
</ul>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="Section_errors.html" class="btn btn-neutral" title="12. Errors" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2013 Sandia Corporation.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'./',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/jquery-1.11.0.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/lightbox.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2-customize/jquery-noconflict.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.StickyNav.enable();
});
</script>
</body>
</html>

File diff suppressed because it is too large Load Diff

View File

@ -1,695 +0,0 @@
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>1. Introduction &mdash; LAMMPS documentation</title>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/sphinxcontrib-images/LightBox2/lightbox2/css/lightbox.css" type="text/css" />
<link rel="top" title="LAMMPS documentation" href="index.html"/>
<link rel="next" title="2. Getting Started" href="Section_start.html"/>
<link rel="prev" title="LAMMPS Documentation" href="Manual.html"/>
<script src="_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-nav-search">
<a href="Manual.html" class="icon icon-home"> LAMMPS
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul class="current">
<li class="toctree-l1 current"><a class="current reference internal" href="#">1. Introduction</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#what-is-lammps">1.1. What is LAMMPS</a></li>
<li class="toctree-l2"><a class="reference internal" href="#lammps-features">1.2. LAMMPS features</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#general-features">1.2.1. General features</a></li>
<li class="toctree-l3"><a class="reference internal" href="#particle-and-model-types">1.2.2. Particle and model types</a></li>
<li class="toctree-l3"><a class="reference internal" href="#force-fields">1.2.3. Force fields</a></li>
<li class="toctree-l3"><a class="reference internal" href="#atom-creation">1.2.4. Atom creation</a></li>
<li class="toctree-l3"><a class="reference internal" href="#ensembles-constraints-and-boundary-conditions">1.2.5. Ensembles, constraints, and boundary conditions</a></li>
<li class="toctree-l3"><a class="reference internal" href="#integrators">1.2.6. Integrators</a></li>
<li class="toctree-l3"><a class="reference internal" href="#diagnostics">1.2.7. Diagnostics</a></li>
<li class="toctree-l3"><a class="reference internal" href="#output">1.2.8. Output</a></li>
<li class="toctree-l3"><a class="reference internal" href="#multi-replica-models">1.2.9. Multi-replica models</a></li>
<li class="toctree-l3"><a class="reference internal" href="#pre-and-post-processing">1.2.10. Pre- and post-processing</a></li>
<li class="toctree-l3"><a class="reference internal" href="#specialized-features">1.2.11. Specialized features</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#lammps-non-features">1.3. LAMMPS non-features</a></li>
<li class="toctree-l2"><a class="reference internal" href="#open-source-distribution">1.4. Open source distribution</a></li>
<li class="toctree-l2"><a class="reference internal" href="#acknowledgments-and-citations">1.5. Acknowledgments and citations</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_start.html">2. Getting Started</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_commands.html">3. Commands</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_packages.html">4. Packages</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_accelerate.html">5. Accelerating LAMMPS performance</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_howto.html">6. How-to discussions</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_example.html">7. Example problems</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_perf.html">8. Performance &amp; scalability</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_tools.html">9. Additional tools</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_modify.html">10. Modifying &amp; extending LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_python.html">11. Python interface to LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_errors.html">12. Errors</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_history.html">13. Future and history</a></li>
</ul>
</div>
&nbsp;
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="Manual.html">LAMMPS</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="Manual.html">Docs</a> &raquo;</li>
<li>1. Introduction</li>
<li class="wy-breadcrumbs-aside">
<a href="http://lammps.sandia.gov">Website</a>
<a href="Section_commands.html#comm">Commands</a>
</li>
</ul>
<hr/>
<div class="rst-footer-buttons" style="margin-bottom: 1em" role="navigation" aria-label="footer navigation">
<a href="Section_start.html" class="btn btn-neutral float-right" title="2. Getting Started" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="Manual.html" class="btn btn-neutral" title="LAMMPS Documentation" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="introduction">
<h1>1. Introduction</h1>
<p>This section provides an overview of what LAMMPS can and can&#8217;t do,
describes what it means for LAMMPS to be an open-source code, and
acknowledges the funding and people who have contributed to LAMMPS
over the years.</p>
<div class="line-block">
<div class="line">1.1 <a class="reference internal" href="#intro-1"><span class="std std-ref">What is LAMMPS</span></a></div>
<div class="line">1.2 <a class="reference internal" href="#intro-2"><span class="std std-ref">LAMMPS features</span></a></div>
<div class="line">1.3 <a class="reference internal" href="#intro-3"><span class="std std-ref">LAMMPS non-features</span></a></div>
<div class="line">1.4 <a class="reference internal" href="#intro-4"><span class="std std-ref">Open source distribution</span></a></div>
<div class="line">1.5 <a class="reference internal" href="#intro-5"><span class="std std-ref">Acknowledgments and citations</span></a></div>
<div class="line"><br /></div>
</div>
<div class="section" id="what-is-lammps">
<span id="intro-1"></span><h2>1.1. What is LAMMPS</h2>
<p>LAMMPS is a classical molecular dynamics code that models an ensemble
of particles in a liquid, solid, or gaseous state. It can model
atomic, polymeric, biological, metallic, granular, and coarse-grained
systems using a variety of force fields and boundary conditions.</p>
<p>For examples of LAMMPS simulations, see the Publications page of the
<a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a>.</p>
<p>LAMMPS runs efficiently on single-processor desktop or laptop
machines, but is designed for parallel computers. It will run on any
parallel machine that compiles C++ and supports the <a class="reference external" href="http://www-unix.mcs.anl.gov/mpi">MPI</a>
message-passing library. This includes distributed- or shared-memory
parallel machines and Beowulf-style clusters.</p>
<p>LAMMPS can model systems with only a few particles up to millions or
billions. See <a class="reference internal" href="Section_perf.html"><span class="doc">Section_perf</span></a> for information on
LAMMPS performance and scalability, or the Benchmarks section of the
<a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a>.</p>
<p>LAMMPS is a freely-available open-source code, distributed under the
terms of the <a class="reference external" href="http://www.gnu.org/copyleft/gpl.html">GNU Public License</a>, which means you can use or
modify the code however you wish. See <a class="reference internal" href="#intro-4"><span class="std std-ref">this section</span></a> for a
brief discussion of the open-source philosophy.</p>
<p>LAMMPS is designed to be easy to modify or extend with new
capabilities, such as new force fields, atom types, boundary
conditions, or diagnostics. See <a class="reference internal" href="Section_modify.html"><span class="doc">Section_modify</span></a>
for more details.</p>
<p>The current version of LAMMPS is written in C++. Earlier versions
were written in F77 and F90. See
<a class="reference internal" href="Section_history.html"><span class="doc">Section_history</span></a> for more information on
different versions. All versions can be downloaded from the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a>.</p>
<p>LAMMPS was originally developed under a US Department of Energy CRADA
(Cooperative Research and Development Agreement) between two DOE labs
and 3 companies. It is distributed by <a class="reference external" href="http://www.sandia.gov">Sandia National Labs</a>.
See <a class="reference internal" href="#intro-5"><span class="std std-ref">this section</span></a> for more information on LAMMPS funding and
individuals who have contributed to LAMMPS.</p>
<p>In the most general sense, LAMMPS integrates Newton&#8217;s equations of
motion for collections of atoms, molecules, or macroscopic particles
that interact via short- or long-range forces with a variety of
initial and/or boundary conditions. For computational efficiency
LAMMPS uses neighbor lists to keep track of nearby particles. The
lists are optimized for systems with particles that are repulsive at
short distances, so that the local density of particles never becomes
too large. On parallel machines, LAMMPS uses spatial-decomposition
techniques to partition the simulation domain into small 3d
sub-domains, one of which is assigned to each processor. Processors
communicate and store &#8220;ghost&#8221; atom information for atoms that border
their sub-domain. LAMMPS is most efficient (in a parallel sense) for
systems whose particles fill a 3d rectangular box with roughly uniform
density. Papers with technical details of the algorithms used in
LAMMPS are listed in <a class="reference internal" href="#intro-5"><span class="std std-ref">this section</span></a>.</p>
<hr class="docutils" />
</div>
<div class="section" id="lammps-features">
<span id="intro-2"></span><h2>1.2. LAMMPS features</h2>
<p>This section highlights LAMMPS features, with pointers to specific
commands which give more details. If LAMMPS doesn&#8217;t have your
favorite interatomic potential, boundary condition, or atom type, see
<a class="reference internal" href="Section_modify.html"><span class="doc">Section_modify</span></a>, which describes how you can add
it to LAMMPS.</p>
<div class="section" id="general-features">
<h3>1.2.1. General features</h3>
<ul class="simple">
<li>runs on a single processor or in parallel</li>
<li>distributed-memory message-passing parallelism (MPI)</li>
<li>spatial-decomposition of simulation domain for parallelism</li>
<li>open-source distribution</li>
<li>highly portable C++</li>
<li>optional libraries used: MPI and single-processor FFT</li>
<li>GPU (CUDA and OpenCL), Intel(R) Xeon Phi(TM) coprocessors, and OpenMP support for many code features</li>
<li>easy to extend with new features and functionality</li>
<li>runs from an input script</li>
<li>syntax for defining and using variables and formulas</li>
<li>syntax for looping over runs and breaking out of loops</li>
<li>run one or multiple simulations simultaneously (in parallel) from one script</li>
<li>build as library, invoke LAMMPS thru library interface or provided Python wrapper</li>
<li>couple with other codes: LAMMPS calls other code, other code calls LAMMPS, umbrella code calls both</li>
</ul>
</div>
<div class="section" id="particle-and-model-types">
<h3>1.2.2. Particle and model types</h3>
<p>(<a class="reference internal" href="atom_style.html"><span class="doc">atom style</span></a> command)</p>
<ul class="simple">
<li>atoms</li>
<li>coarse-grained particles (e.g. bead-spring polymers)</li>
<li>united-atom polymers or organic molecules</li>
<li>all-atom polymers, organic molecules, proteins, DNA</li>
<li>metals</li>
<li>granular materials</li>
<li>coarse-grained mesoscale models</li>
<li>finite-size spherical and ellipsoidal particles</li>
<li>finite-size line segment (2d) and triangle (3d) particles</li>
<li>point dipole particles</li>
<li>rigid collections of particles</li>
<li>hybrid combinations of these</li>
</ul>
</div>
<div class="section" id="force-fields">
<h3>1.2.3. Force fields</h3>
<p>(<a class="reference internal" href="pair_style.html"><span class="doc">pair style</span></a>, <a class="reference internal" href="bond_style.html"><span class="doc">bond style</span></a>,
<a class="reference internal" href="angle_style.html"><span class="doc">angle style</span></a>, <a class="reference internal" href="dihedral_style.html"><span class="doc">dihedral style</span></a>,
<a class="reference internal" href="improper_style.html"><span class="doc">improper style</span></a>, <a class="reference internal" href="kspace_style.html"><span class="doc">kspace style</span></a>
commands)</p>
<ul class="simple">
<li>pairwise potentials: Lennard-Jones, Buckingham, Morse, Born-Mayer-Huggins, Yukawa, soft, class 2 (COMPASS), hydrogen bond, tabulated</li>
<li>charged pairwise potentials: Coulombic, point-dipole</li>
<li>manybody potentials: EAM, Finnis/Sinclair EAM, modified EAM (MEAM), embedded ion method (EIM), EDIP, ADP, Stillinger-Weber, Tersoff, REBO, AIREBO, ReaxFF, COMB, SNAP, Streitz-Mintmire, 3-body polymorphic</li>
<li>long-range interactions for charge, point-dipoles, and LJ dispersion: Ewald, Wolf, PPPM (similar to particle-mesh Ewald)</li>
<li>polarization models: <a class="reference internal" href="fix_qeq.html"><span class="doc">QEq</span></a>, <a class="reference internal" href="Section_howto.html#howto-26"><span class="std std-ref">core/shell model</span></a>, <a class="reference internal" href="Section_howto.html#howto-27"><span class="std std-ref">Drude dipole model</span></a></li>
<li>charge equilibration (QEq via dynamic, point, shielded, Slater methods)</li>
<li>coarse-grained potentials: DPD, GayBerne, REsquared, colloidal, DLVO</li>
<li>mesoscopic potentials: granular, Peridynamics, SPH</li>
<li>electron force field (eFF, AWPMD)</li>
<li>bond potentials: harmonic, FENE, Morse, nonlinear, class 2, quartic (breakable)</li>
<li>angle potentials: harmonic, CHARMM, cosine, cosine/squared, cosine/periodic, class 2 (COMPASS)</li>
<li>dihedral potentials: harmonic, CHARMM, multi-harmonic, helix, class 2 (COMPASS), OPLS</li>
<li>improper potentials: harmonic, cvff, umbrella, class 2 (COMPASS)</li>
<li>polymer potentials: all-atom, united-atom, bead-spring, breakable</li>
<li>water potentials: TIP3P, TIP4P, SPC</li>
<li>implicit solvent potentials: hydrodynamic lubrication, Debye</li>
<li>force-field compatibility with common CHARMM, AMBER, DREIDING, OPLS, GROMACS, COMPASS options</li>
<li>access to <a class="reference external" href="http://openkim.org">KIM archive</a> of potentials via <a class="reference internal" href="pair_kim.html"><span class="doc">pair kim</span></a></li>
<li>hybrid potentials: multiple pair, bond, angle, dihedral, improper potentials can be used in one simulation</li>
<li>overlaid potentials: superposition of multiple pair potentials</li>
</ul>
</div>
<div class="section" id="atom-creation">
<h3>1.2.4. Atom creation</h3>
<p>(<a class="reference internal" href="read_data.html"><span class="doc">read_data</span></a>, <a class="reference internal" href="lattice.html"><span class="doc">lattice</span></a>,
<a class="reference internal" href="create_atoms.html"><span class="doc">create_atoms</span></a>, <a class="reference internal" href="delete_atoms.html"><span class="doc">delete_atoms</span></a>,
<a class="reference internal" href="displace_atoms.html"><span class="doc">displace_atoms</span></a>, <a class="reference internal" href="replicate.html"><span class="doc">replicate</span></a> commands)</p>
<ul class="simple">
<li>read in atom coords from files</li>
<li>create atoms on one or more lattices (e.g. grain boundaries)</li>
<li>delete geometric or logical groups of atoms (e.g. voids)</li>
<li>replicate existing atoms multiple times</li>
<li>displace atoms</li>
</ul>
</div>
<div class="section" id="ensembles-constraints-and-boundary-conditions">
<h3>1.2.5. Ensembles, constraints, and boundary conditions</h3>
<p>(<a class="reference internal" href="fix.html"><span class="doc">fix</span></a> command)</p>
<ul class="simple">
<li>2d or 3d systems</li>
<li>orthogonal or non-orthogonal (triclinic symmetry) simulation domains</li>
<li>constant NVE, NVT, NPT, NPH, Parinello/Rahman integrators</li>
<li>thermostatting options for groups and geometric regions of atoms</li>
<li>pressure control via Nose/Hoover or Berendsen barostatting in 1 to 3 dimensions</li>
<li>simulation box deformation (tensile and shear)</li>
<li>harmonic (umbrella) constraint forces</li>
<li>rigid body constraints</li>
<li>SHAKE bond and angle constraints</li>
<li>Monte Carlo bond breaking, formation, swapping</li>
<li>atom/molecule insertion and deletion</li>
<li>walls of various kinds</li>
<li>non-equilibrium molecular dynamics (NEMD)</li>
<li>variety of additional boundary conditions and constraints</li>
</ul>
</div>
<div class="section" id="integrators">
<h3>1.2.6. Integrators</h3>
<p>(<a class="reference internal" href="run.html"><span class="doc">run</span></a>, <a class="reference internal" href="run_style.html"><span class="doc">run_style</span></a>, <a class="reference internal" href="minimize.html"><span class="doc">minimize</span></a> commands)</p>
<ul class="simple">
<li>velocity-Verlet integrator</li>
<li>Brownian dynamics</li>
<li>rigid body integration</li>
<li>energy minimization via conjugate gradient or steepest descent relaxation</li>
<li>rRESPA hierarchical timestepping</li>
<li>rerun command for post-processing of dump files</li>
</ul>
</div>
<div class="section" id="diagnostics">
<h3>1.2.7. Diagnostics</h3>
<ul class="simple">
<li>see the various flavors of the <a class="reference internal" href="fix.html"><span class="doc">fix</span></a> and <a class="reference internal" href="compute.html"><span class="doc">compute</span></a> commands</li>
</ul>
</div>
<div class="section" id="output">
<h3>1.2.8. Output</h3>
<p>(<a class="reference internal" href="dump.html"><span class="doc">dump</span></a>, <a class="reference internal" href="restart.html"><span class="doc">restart</span></a> commands)</p>
<ul class="simple">
<li>log file of thermodynamic info</li>
<li>text dump files of atom coords, velocities, other per-atom quantities</li>
<li>binary restart files</li>
<li>parallel I/O of dump and restart files</li>
<li>per-atom quantities (energy, stress, centro-symmetry parameter, CNA, etc)</li>
<li>user-defined system-wide (log file) or per-atom (dump file) calculations</li>
<li>spatial and time averaging of per-atom quantities</li>
<li>time averaging of system-wide quantities</li>
<li>atom snapshots in native, XYZ, XTC, DCD, CFG formats</li>
</ul>
</div>
<div class="section" id="multi-replica-models">
<h3>1.2.9. Multi-replica models</h3>
<p><a class="reference internal" href="neb.html"><span class="doc">nudged elastic band</span></a>
<a class="reference internal" href="prd.html"><span class="doc">parallel replica dynamics</span></a>
<a class="reference internal" href="tad.html"><span class="doc">temperature accelerated dynamics</span></a>
<a class="reference internal" href="temper.html"><span class="doc">parallel tempering</span></a></p>
</div>
<div class="section" id="pre-and-post-processing">
<h3>1.2.10. Pre- and post-processing</h3>
<ul class="simple">
<li>Various pre- and post-processing serial tools are packaged
with LAMMPS; see these <a class="reference internal" href="Section_tools.html"><span class="doc">doc pages</span></a>.</li>
<li>Our group has also written and released a separate toolkit called
<a class="reference external" href="http://www.sandia.gov/~sjplimp/pizza.html">Pizza.py</a> which provides tools for doing setup, analysis,
plotting, and visualization for LAMMPS simulations. Pizza.py is
written in <a class="reference external" href="http://www.python.org">Python</a> and is available for download from <a class="reference external" href="http://www.sandia.gov/~sjplimp/pizza.html">the Pizza.py WWW site</a>.</li>
</ul>
</div>
<div class="section" id="specialized-features">
<h3>1.2.11. Specialized features</h3>
<p>These are LAMMPS capabilities which you may not think of as typical
molecular dynamics options:</p>
<ul class="simple">
<li><a class="reference internal" href="balance.html"><span class="doc">static</span></a> and <a class="reference internal" href="fix_balance.html"><span class="doc">dynamic load-balancing</span></a></li>
<li><a class="reference internal" href="body.html"><span class="doc">generalized aspherical particles</span></a></li>
<li><a class="reference internal" href="fix_srd.html"><span class="doc">stochastic rotation dynamics (SRD)</span></a></li>
<li><a class="reference internal" href="fix_imd.html"><span class="doc">real-time visualization and interactive MD</span></a></li>
<li>calculate <a class="reference internal" href="compute_xrd.html"><span class="doc">virtual diffraction patterns</span></a></li>
<li><a class="reference internal" href="fix_atc.html"><span class="doc">atom-to-continuum coupling</span></a> with finite elements</li>
<li>coupled rigid body integration via the <a class="reference internal" href="fix_poems.html"><span class="doc">POEMS</span></a> library</li>
<li><a class="reference internal" href="fix_qmmm.html"><span class="doc">QM/MM coupling</span></a></li>
<li><a class="reference internal" href="fix_ipi.html"><span class="doc">path-integral molecular dynamics (PIMD)</span></a> and <a class="reference internal" href="fix_pimd.html"><span class="doc">this as well</span></a></li>
<li>Monte Carlo via <a class="reference internal" href="fix_gcmc.html"><span class="doc">GCMC</span></a> and <a class="reference internal" href="fix_tfmc.html"><span class="doc">tfMC</span></a> and <span class="xref doc">atom swapping</span></li>
<li><a class="reference internal" href="pair_dsmc.html"><span class="doc">Direct Simulation Monte Carlo</span></a> for low-density fluids</li>
<li><a class="reference internal" href="pair_peri.html"><span class="doc">Peridynamics mesoscale modeling</span></a></li>
<li><a class="reference internal" href="fix_lb_fluid.html"><span class="doc">Lattice Boltzmann fluid</span></a></li>
<li><a class="reference internal" href="fix_tmd.html"><span class="doc">targeted</span></a> and <a class="reference internal" href="fix_smd.html"><span class="doc">steered</span></a> molecular dynamics</li>
<li><a class="reference internal" href="fix_ttm.html"><span class="doc">two-temperature electron model</span></a></li>
</ul>
<hr class="docutils" />
</div>
</div>
<div class="section" id="lammps-non-features">
<span id="intro-3"></span><h2>1.3. LAMMPS non-features</h2>
<p>LAMMPS is designed to efficiently compute Newton&#8217;s equations of motion
for a system of interacting particles. Many of the tools needed to
pre- and post-process the data for such simulations are not included
in the LAMMPS kernel for several reasons:</p>
<ul class="simple">
<li>the desire to keep LAMMPS simple</li>
<li>they are not parallel operations</li>
<li>other codes already do them</li>
<li>limited development resources</li>
</ul>
<p>Specifically, LAMMPS itself does not:</p>
<ul class="simple">
<li>run thru a GUI</li>
<li>build molecular systems</li>
<li>assign force-field coefficients automagically</li>
<li>perform sophisticated analyses of your MD simulation</li>
<li>visualize your MD simulation</li>
<li>plot your output data</li>
</ul>
<p>A few tools for pre- and post-processing tasks are provided as part of
the LAMMPS package; they are described in <a class="reference internal" href="Section_tools.html"><span class="doc">this section</span></a>. However, many people use other codes or
write their own tools for these tasks.</p>
<p>As noted above, our group has also written and released a separate
toolkit called <a class="reference external" href="http://www.sandia.gov/~sjplimp/pizza.html">Pizza.py</a> which addresses some of the listed
bullets. It provides tools for doing setup, analysis, plotting, and
visualization for LAMMPS simulations. Pizza.py is written in
<a class="reference external" href="http://www.python.org">Python</a> and is available for download from <a class="reference external" href="http://www.sandia.gov/~sjplimp/pizza.html">the Pizza.py WWW site</a>.</p>
<p>LAMMPS requires as input a list of initial atom coordinates and types,
molecular topology information, and force-field coefficients assigned
to all atoms and bonds. LAMMPS will not build molecular systems and
assign force-field parameters for you.</p>
<p>For atomic systems LAMMPS provides a <a class="reference internal" href="create_atoms.html"><span class="doc">create_atoms</span></a>
command which places atoms on solid-state lattices (fcc, bcc,
user-defined, etc). Assigning small numbers of force field
coefficients can be done via the <a class="reference internal" href="pair_coeff.html"><span class="doc">pair coeff</span></a>, <a class="reference internal" href="bond_coeff.html"><span class="doc">bond coeff</span></a>, <a class="reference internal" href="angle_coeff.html"><span class="doc">angle coeff</span></a>, etc commands.
For molecular systems or more complicated simulation geometries, users
typically use another code as a builder and convert its output to
LAMMPS input format, or write their own code to generate atom
coordinate and molecular topology for LAMMPS to read in.</p>
<p>For complicated molecular systems (e.g. a protein), a multitude of
topology information and hundreds of force-field coefficients must
typically be specified. We suggest you use a program like
<a class="reference external" href="http://www.scripps.edu/brooks">CHARMM</a> or <a class="reference external" href="http://amber.scripps.edu">AMBER</a> or other molecular builders to setup
such problems and dump its information to a file. You can then
reformat the file as LAMMPS input. Some of the tools in <a class="reference internal" href="Section_tools.html"><span class="doc">this section</span></a> can assist in this process.</p>
<p>Similarly, LAMMPS creates output files in a simple format. Most users
post-process these files with their own analysis tools or re-format
them for input into other programs, including visualization packages.
If you are convinced you need to compute something on-the-fly as
LAMMPS runs, see <a class="reference internal" href="Section_modify.html"><span class="doc">Section_modify</span></a> for a discussion
of how you can use the <a class="reference internal" href="dump.html"><span class="doc">dump</span></a> and <a class="reference internal" href="compute.html"><span class="doc">compute</span></a> and
<a class="reference internal" href="fix.html"><span class="doc">fix</span></a> commands to print out data of your choosing. Keep in
mind that complicated computations can slow down the molecular
dynamics timestepping, particularly if the computations are not
parallel, so it is often better to leave such analysis to
post-processing codes.</p>
<p>A very simple (yet fast) visualizer is provided with the LAMMPS
package - see the <a class="reference internal" href="Section_tools.html#xmovie"><span class="std std-ref">xmovie</span></a> tool in <a class="reference internal" href="Section_tools.html"><span class="doc">this section</span></a>. It creates xyz projection views of
atomic coordinates and animates them. We find it very useful for
debugging purposes. For high-quality visualization we recommend the
following packages:</p>
<ul class="simple">
<li><a class="reference external" href="http://www.ks.uiuc.edu/Research/vmd">VMD</a></li>
<li><a class="reference external" href="http://mt.seas.upenn.edu/Archive/Graphics/A">AtomEye</a></li>
<li><a class="reference external" href="http://pymol.sourceforge.net">PyMol</a></li>
<li><a class="reference external" href="http://www.bmsc.washington.edu/raster3d/raster3d.html">Raster3d</a></li>
<li><a class="reference external" href="http://www.openrasmol.org">RasMol</a></li>
</ul>
<p>Other features that LAMMPS does not yet (and may never) support are
discussed in <a class="reference internal" href="Section_history.html"><span class="doc">Section_history</span></a>.</p>
<p>Finally, these are freely-available molecular dynamics codes, most of
them parallel, which may be well-suited to the problems you want to
model. They can also be used in conjunction with LAMMPS to perform
complementary modeling tasks.</p>
<ul class="simple">
<li><a class="reference external" href="http://www.scripps.edu/brooks">CHARMM</a></li>
<li><a class="reference external" href="http://amber.scripps.edu">AMBER</a></li>
<li><a class="reference external" href="http://www.ks.uiuc.edu/Research/namd/">NAMD</a></li>
<li><a class="reference external" href="http://www.emsl.pnl.gov/docs/nwchem/nwchem.html">NWCHEM</a></li>
<li><a class="reference external" href="http://www.cse.clrc.ac.uk/msi/software/DL_POLY">DL_POLY</a></li>
<li><a class="reference external" href="http://dasher.wustl.edu/tinker">Tinker</a></li>
</ul>
<p>CHARMM, AMBER, NAMD, NWCHEM, and Tinker are designed primarily for
modeling biological molecules. CHARMM and AMBER use
atom-decomposition (replicated-data) strategies for parallelism; NAMD
and NWCHEM use spatial-decomposition approaches, similar to LAMMPS.
Tinker is a serial code. DL_POLY includes potentials for a variety of
biological and non-biological materials; both a replicated-data and
spatial-decomposition version exist.</p>
<hr class="docutils" />
</div>
<div class="section" id="open-source-distribution">
<span id="intro-4"></span><h2>1.4. Open source distribution</h2>
<p>LAMMPS comes with no warranty of any kind. As each source file states
in its header, it is a copyrighted code that is distributed free-of-
charge, under the terms of the <a class="reference external" href="http://www.gnu.org/copyleft/gpl.html">GNU Public License</a> (GPL). This
is often referred to as open-source distribution - see
<a class="reference external" href="http://www.gnu.org">www.gnu.org</a> or <a class="reference external" href="http://www.opensource.org">www.opensource.org</a> for more
details. The legal text of the GPL is in the LICENSE file that is
included in the LAMMPS distribution.</p>
<p>Here is a summary of what the GPL means for LAMMPS users:</p>
<p>(1) Anyone is free to use, modify, or extend LAMMPS in any way they
choose, including for commercial purposes.</p>
<p>(2) If you distribute a modified version of LAMMPS, it must remain
open-source, meaning you distribute it under the terms of the GPL.
You should clearly annotate such a code as a derivative version of
LAMMPS.</p>
<p>(3) If you release any code that includes LAMMPS source code, then it
must also be open-sourced, meaning you distribute it under the terms
of the GPL.</p>
<p>(4) If you give LAMMPS files to someone else, the GPL LICENSE file and
source file headers (including the copyright and GPL notices) should
remain part of the code.</p>
<p>In the spirit of an open-source code, these are various ways you can
contribute to making LAMMPS better. You can send email to the
<a class="reference external" href="http://lammps.sandia.gov/authors.html">developers</a> on any of these
items.</p>
<ul class="simple">
<li>Point prospective users to the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a>. Mention it in
talks or link to it from your WWW site.</li>
<li>If you find an error or omission in this manual or on the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a>, or have a suggestion for something to clarify or include,
send an email to the
<a class="reference external" href="http://lammps.sandia.gov/authors.html">developers</a>.</li>
<li>If you find a bug, <a class="reference internal" href="Section_errors.html#err-2"><span class="std std-ref">Section_errors 2</span></a>
describes how to report it.</li>
<li>If you publish a paper using LAMMPS results, send the citation (and
any cool pictures or movies if you like) to add to the Publications,
Pictures, and Movies pages of the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a>, with links
and attributions back to you.</li>
<li>Create a new Makefile.machine that can be added to the src/MAKE
directory.</li>
<li>The tools sub-directory of the LAMMPS distribution has various
stand-alone codes for pre- and post-processing of LAMMPS data. More
details are given in <a class="reference internal" href="Section_tools.html"><span class="doc">Section_tools</span></a>. If you write
a new tool that users will find useful, it can be added to the LAMMPS
distribution.</li>
<li>LAMMPS is designed to be easy to extend with new code for features
like potentials, boundary conditions, diagnostic computations, etc.
<a class="reference internal" href="Section_modify.html"><span class="doc">This section</span></a> gives details. If you add a
feature of general interest, it can be added to the LAMMPS
distribution.</li>
<li>The Benchmark page of the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a> lists LAMMPS
performance on various platforms. The files needed to run the
benchmarks are part of the LAMMPS distribution. If your machine is
sufficiently different from those listed, your timing data can be
added to the page.</li>
<li>You can send feedback for the User Comments page of the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a>. It might be added to the page. No promises.</li>
<li>Cash. Small denominations, unmarked bills preferred. Paper sack OK.
Leave on desk. VISA also accepted. Chocolate chip cookies
encouraged.</li>
</ul>
<hr class="docutils" />
</div>
<div class="section" id="acknowledgments-and-citations">
<span id="intro-5"></span><h2>1.5. Acknowledgments and citations</h2>
<p>LAMMPS development has been funded by the <a class="reference external" href="http://www.doe.gov">US Department of Energy</a> (DOE), through its CRADA, LDRD, ASCI, and Genomes-to-Life
programs and its <a class="reference external" href="http://www.sc.doe.gov/ascr/home.html">OASCR</a> and <a class="reference external" href="http://www.er.doe.gov/production/ober/ober_top.html">OBER</a> offices.</p>
<p>Specifically, work on the latest version was funded in part by the US
Department of Energy&#8217;s Genomics:GTL program
(<a class="reference external" href="http://www.doegenomestolife.org">www.doegenomestolife.org</a>) under the <a class="reference external" href="http://www.genomes2life.org">project</a>, &#8220;Carbon
Sequestration in Synechococcus Sp.: From Molecular Machines to
Hierarchical Modeling&#8221;.</p>
<p>The following paper describe the basic parallel algorithms used in
LAMMPS. If you use LAMMPS results in your published work, please cite
this paper and include a pointer to the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a>
(<a class="reference external" href="http://lammps.sandia.gov">http://lammps.sandia.gov</a>):</p>
<p>S. Plimpton, <strong>Fast Parallel Algorithms for Short-Range Molecular
Dynamics</strong>, J Comp Phys, 117, 1-19 (1995).</p>
<p>Other papers describing specific algorithms used in LAMMPS are listed
under the <a class="reference external" href="http://lammps.sandia.gov/cite.html">Citing LAMMPS link</a> of
the LAMMPS WWW page.</p>
<p>The <a class="reference external" href="http://lammps.sandia.gov/papers.html">Publications link</a> on the
LAMMPS WWW page lists papers that have cited LAMMPS. If your paper is
not listed there for some reason, feel free to send us the info. If
the simulations in your paper produced cool pictures or animations,
we&#8217;ll be pleased to add them to the
<a class="reference external" href="http://lammps.sandia.gov/pictures.html">Pictures</a> or
<a class="reference external" href="http://lammps.sandia.gov/movies.html">Movies</a> pages of the LAMMPS WWW
site.</p>
<p>The core group of LAMMPS developers is at Sandia National Labs:</p>
<ul class="simple">
<li>Steve Plimpton, sjplimp at sandia.gov</li>
<li>Aidan Thompson, athomps at sandia.gov</li>
<li>Paul Crozier, pscrozi at sandia.gov</li>
</ul>
<p>The following folks are responsible for significant contributions to
the code, or other aspects of the LAMMPS development effort. Many of
the packages they have written are somewhat unique to LAMMPS and the
code would not be as general-purpose as it is without their expertise
and efforts.</p>
<ul class="simple">
<li>Axel Kohlmeyer (Temple U), akohlmey at gmail.com, SVN and Git repositories, indefatigable mail list responder, USER-CG-CMM and USER-OMP packages</li>
<li>Roy Pollock (LLNL), Ewald and PPPM solvers</li>
<li>Mike Brown (ORNL), brownw at ornl.gov, GPU package</li>
<li>Greg Wagner (Sandia), gjwagne at sandia.gov, MEAM package for MEAM potential</li>
<li>Mike Parks (Sandia), mlparks at sandia.gov, PERI package for Peridynamics</li>
<li>Rudra Mukherjee (JPL), Rudranarayan.M.Mukherjee at jpl.nasa.gov, POEMS package for articulated rigid body motion</li>
<li>Reese Jones (Sandia) and collaborators, rjones at sandia.gov, USER-ATC package for atom/continuum coupling</li>
<li>Ilya Valuev (JIHT), valuev at physik.hu-berlin.de, USER-AWPMD package for wave-packet MD</li>
<li>Christian Trott (U Tech Ilmenau), christian.trott at tu-ilmenau.de, USER-CUDA package</li>
<li>Andres Jaramillo-Botero (Caltech), ajaramil at wag.caltech.edu, USER-EFF package for electron force field</li>
<li>Christoph Kloss (JKU), Christoph.Kloss at jku.at, USER-LIGGGHTS package for granular models and granular/fluid coupling</li>
<li>Metin Aktulga (LBL), hmaktulga at lbl.gov, USER-REAXC package for C version of ReaxFF</li>
<li>Georg Gunzenmuller (EMI), georg.ganzenmueller at emi.fhg.de, USER-SPH package</li>
</ul>
<p>As discussed in <a class="reference internal" href="Section_history.html"><span class="doc">Section_history</span></a>, LAMMPS
originated as a cooperative project between DOE labs and industrial
partners. Folks involved in the design and testing of the original
version of LAMMPS were the following:</p>
<ul class="simple">
<li>John Carpenter (Mayo Clinic, formerly at Cray Research)</li>
<li>Terry Stouch (Lexicon Pharmaceuticals, formerly at Bristol Myers Squibb)</li>
<li>Steve Lustig (Dupont)</li>
<li>Jim Belak (LLNL)</li>
</ul>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="Section_start.html" class="btn btn-neutral float-right" title="2. Getting Started" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="Manual.html" class="btn btn-neutral" title="LAMMPS Documentation" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2013 Sandia Corporation.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'./',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/jquery-1.11.0.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/lightbox.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2-customize/jquery-noconflict.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.StickyNav.enable();
});
</script>
</body>
</html>

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,279 +0,0 @@
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>8. Performance &amp; scalability &mdash; LAMMPS documentation</title>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/sphinxcontrib-images/LightBox2/lightbox2/css/lightbox.css" type="text/css" />
<link rel="top" title="LAMMPS documentation" href="index.html"/>
<link rel="next" title="9. Additional tools" href="Section_tools.html"/>
<link rel="prev" title="7. Example problems" href="Section_example.html"/>
<script src="_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-nav-search">
<a href="Manual.html" class="icon icon-home"> LAMMPS
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="Section_intro.html">1. Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_start.html">2. Getting Started</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_commands.html">3. Commands</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_packages.html">4. Packages</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_accelerate.html">5. Accelerating LAMMPS performance</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_howto.html">6. How-to discussions</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_example.html">7. Example problems</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">8. Performance &amp; scalability</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_tools.html">9. Additional tools</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_modify.html">10. Modifying &amp; extending LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_python.html">11. Python interface to LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_errors.html">12. Errors</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_history.html">13. Future and history</a></li>
</ul>
</div>
&nbsp;
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="Manual.html">LAMMPS</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="Manual.html">Docs</a> &raquo;</li>
<li>8. Performance &amp; scalability</li>
<li class="wy-breadcrumbs-aside">
<a href="http://lammps.sandia.gov">Website</a>
<a href="Section_commands.html#comm">Commands</a>
</li>
</ul>
<hr/>
<div class="rst-footer-buttons" style="margin-bottom: 1em" role="navigation" aria-label="footer navigation">
<a href="Section_tools.html" class="btn btn-neutral float-right" title="9. Additional tools" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="Section_example.html" class="btn btn-neutral" title="7. Example problems" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="performance-scalability">
<h1>8. Performance &amp; scalability</h1>
<p>Current LAMMPS performance is discussed on the Benchmarks page of the
<a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a> where CPU timings and parallel efficiencies are
listed. The page has several sections, which are briefly described
below:</p>
<ul class="simple">
<li>CPU performance on 5 standard problems, strong and weak scaling</li>
<li>GPU and Xeon Phi performance on same and related problems</li>
<li>Comparison of cost of interatomic potentials</li>
<li>Performance of huge, billion-atom problems</li>
</ul>
<p>The 5 standard problems are as follow:</p>
<ol class="arabic simple">
<li>LJ = atomic fluid, Lennard-Jones potential with 2.5 sigma cutoff (55
neighbors per atom), NVE integration</li>
<li>Chain = bead-spring polymer melt of 100-mer chains, FENE bonds and LJ
pairwise interactions with a 2^(1/6) sigma cutoff (5 neighbors per
atom), NVE integration</li>
<li>EAM = metallic solid, Cu EAM potential with 4.95 Angstrom cutoff (45
neighbors per atom), NVE integration</li>
<li>Chute = granular chute flow, frictional history potential with 1.1
sigma cutoff (7 neighbors per atom), NVE integration</li>
<li>Rhodo = rhodopsin protein in solvated lipid bilayer, CHARMM force
field with a 10 Angstrom LJ cutoff (440 neighbors per atom),
particle-particle particle-mesh (PPPM) for long-range Coulombics, NPT
integration</li>
</ol>
<p>Input files for these 5 problems are provided in the bench directory
of the LAMMPS distribution. Each has 32,000 atoms and runs for 100
timesteps. The size of the problem (number of atoms) can be varied
using command-line switches as described in the bench/README file.
This is an easy way to test performance and either strong or weak
scalability on your machine.</p>
<p>The bench directory includes a few log.* files that show performance
of these 5 problems on 1 or 4 cores of Linux desktop. The bench/FERMI
and bench/KEPLER dirs have input files and scripts and instructions
for running the same (or similar) problems using OpenMP or GPU or Xeon
Phi acceleration options. See the README files in those dirs and the
<a class="reference internal" href="Section_accelerate.html"><span class="doc">Section accelerate</span></a> doc pages for
instructions on how to build LAMMPS and run on that kind of hardware.</p>
<p>The bench/POTENTIALS directory has input files which correspond to the
table of results on the
<span class="xref std std-ref">Potentials</span> section of
the Benchmarks web page. So you can also run those test problems on
your machine.</p>
<p>The <span class="xref std std-ref">billion-atom</span> section
of the Benchmarks web page has performance data for very large
benchmark runs of simple Lennard-Jones (LJ) models, which use the
bench/in.lj input script.</p>
<hr class="docutils" />
<p>For all the benchmarks, a useful metric is the CPU cost per atom per
timestep. Since performance scales roughly linearly with problem size
and timesteps for all LAMMPS models (i.e. inteatomic or coarse-grained
potentials), the run time of any problem using the same model (atom
style, force field, cutoff, etc) can then be estimated.</p>
<p>Performance on a parallel machine can also be predicted from one-core
or one-node timings if the parallel efficiency can be estimated. The
communication bandwidth and latency of a particular parallel machine
affects the efficiency. On most machines LAMMPS will give parallel
efficiencies on these benchmarks above 50% so long as the number of
atoms/core is a few 100 or greater, and closer to 100% for large
numbers of atoms/core. This is for all-MPI mode with one MPI task per
core. For nodes with accelerator options or hardware (OpenMP, GPU,
Phi), you should first measure single node performance. Then you can
estimate parallel performance for multi-node runs using the same logic
as for all-MPI mode, except that now you will typically need many more
atoms/node to achieve good scalability.</p>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="Section_tools.html" class="btn btn-neutral float-right" title="9. Additional tools" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="Section_example.html" class="btn btn-neutral" title="7. Example problems" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2013 Sandia Corporation.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'./',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/jquery-1.11.0.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/lightbox.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2-customize/jquery-noconflict.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.StickyNav.enable();
});
</script>
</body>
</html>

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,707 +0,0 @@
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>9. Additional tools &mdash; LAMMPS documentation</title>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/sphinxcontrib-images/LightBox2/lightbox2/css/lightbox.css" type="text/css" />
<link rel="top" title="LAMMPS documentation" href="index.html"/>
<link rel="next" title="10. Modifying &amp; extending LAMMPS" href="Section_modify.html"/>
<link rel="prev" title="8. Performance &amp; scalability" href="Section_perf.html"/>
<script src="_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-nav-search">
<a href="Manual.html" class="icon icon-home"> LAMMPS
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="Section_intro.html">1. Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_start.html">2. Getting Started</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_commands.html">3. Commands</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_packages.html">4. Packages</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_accelerate.html">5. Accelerating LAMMPS performance</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_howto.html">6. How-to discussions</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_example.html">7. Example problems</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_perf.html">8. Performance &amp; scalability</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">9. Additional tools</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#amber2lmp-tool">9.1. amber2lmp tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#binary2txt-tool">9.2. binary2txt tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#ch2lmp-tool">9.3. ch2lmp tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#chain-tool">9.4. chain tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#colvars-tools">9.5. colvars tools</a></li>
<li class="toctree-l2"><a class="reference internal" href="#createatoms-tool">9.6. createatoms tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#data2xmovie-tool">9.7. data2xmovie tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#eam-database-tool">9.8. eam database tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#eam-generate-tool">9.9. eam generate tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#eff-tool">9.10. eff tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#emacs-tool">9.11. emacs tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#fep-tool">9.12. fep tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#i-pi-tool">9.13. i-pi tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#ipp-tool">9.14. ipp tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#kate-tool">9.15. kate tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#lmp2arc-tool">9.16. lmp2arc tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#lmp2cfg-tool">9.17. lmp2cfg tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#lmp2vmd-tool">9.18. lmp2vmd tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#matlab-tool">9.19. matlab tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#micelle2d-tool">9.20. micelle2d tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#moltemplate-tool">9.21. moltemplate tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#msi2lmp-tool">9.22. msi2lmp tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#phonon-tool">9.23. phonon tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#polymer-bonding-tool">9.24. polymer bonding tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#pymol-asphere-tool">9.25. pymol_asphere tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#python-tool">9.26. python tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#reax-tool">9.27. reax tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#restart2data-tool">9.28. restart2data tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#vim-tool">9.29. vim tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#xmgrace-tool">9.30. xmgrace tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#xmovie-tool">9.31. xmovie tool</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_modify.html">10. Modifying &amp; extending LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_python.html">11. Python interface to LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_errors.html">12. Errors</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_history.html">13. Future and history</a></li>
</ul>
</div>
&nbsp;
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="Manual.html">LAMMPS</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="Manual.html">Docs</a> &raquo;</li>
<li>9. Additional tools</li>
<li class="wy-breadcrumbs-aside">
<a href="http://lammps.sandia.gov">Website</a>
<a href="Section_commands.html#comm">Commands</a>
</li>
</ul>
<hr/>
<div class="rst-footer-buttons" style="margin-bottom: 1em" role="navigation" aria-label="footer navigation">
<a href="Section_modify.html" class="btn btn-neutral float-right" title="10. Modifying &amp; extending LAMMPS" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="Section_perf.html" class="btn btn-neutral" title="8. Performance &amp; scalability" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="additional-tools">
<h1>9. Additional tools</h1>
<p>LAMMPS is designed to be a computational kernel for performing
molecular dynamics computations. Additional pre- and post-processing
steps are often necessary to setup and analyze a simulation. A few
additional tools are provided with the LAMMPS distribution and are
described in this section.</p>
<p>Our group has also written and released a separate toolkit called
<a class="reference external" href="http://www.sandia.gov/~sjplimp/pizza.html">Pizza.py</a> which provides tools for doing setup, analysis,
plotting, and visualization for LAMMPS simulations. Pizza.py is
written in <a class="reference external" href="http://www.python.org">Python</a> and is available for download from <a class="reference external" href="http://www.sandia.gov/~sjplimp/pizza.html">the Pizza.py WWW site</a>.</p>
<p>Note that many users write their own setup or analysis tools or use
other existing codes and convert their output to a LAMMPS input format
or vice versa. The tools listed here are included in the LAMMPS
distribution as examples of auxiliary tools. Some of them are not
actively supported by Sandia, as they were contributed by LAMMPS
users. If you have problems using them, we can direct you to the
authors.</p>
<p>The source code for each of these codes is in the tools sub-directory
of the LAMMPS distribution. There is a Makefile (which you may need
to edit for your platform) which will build several of the tools which
reside in that directory. Some of them are larger packages in their
own sub-directories with their own Makefiles.</p>
<ul class="simple">
<li><a class="reference internal" href="#amber"><span class="std std-ref">amber2lmp</span></a></li>
<li><a class="reference internal" href="#binary"><span class="std std-ref">binary2txt</span></a></li>
<li><a class="reference internal" href="#charmm"><span class="std std-ref">ch2lmp</span></a></li>
<li><a class="reference internal" href="#chain"><span class="std std-ref">chain</span></a></li>
<li><a class="reference internal" href="#colvars"><span class="std std-ref">colvars</span></a></li>
<li><a class="reference internal" href="#create"><span class="std std-ref">createatoms</span></a></li>
<li><a class="reference internal" href="#data"><span class="std std-ref">data2xmovie</span></a></li>
<li><a class="reference internal" href="#eamdb"><span class="std std-ref">eam database</span></a></li>
<li><a class="reference internal" href="#eamgn"><span class="std std-ref">eam generate</span></a></li>
<li><a class="reference internal" href="#eff"><span class="std std-ref">eff</span></a></li>
<li><a class="reference internal" href="#emacs"><span class="std std-ref">emacs</span></a></li>
<li><a class="reference internal" href="#fep"><span class="std std-ref">fep</span></a></li>
<li><a class="reference internal" href="fix_ipi.html#ipi"><span class="std std-ref">i-pi</span></a></li>
<li><a class="reference internal" href="#ipp"><span class="std std-ref">ipp</span></a></li>
<li><a class="reference internal" href="#kate"><span class="std std-ref">kate</span></a></li>
<li><a class="reference internal" href="#arc"><span class="std std-ref">lmp2arc</span></a></li>
<li><a class="reference internal" href="#cfg"><span class="std std-ref">lmp2cfg</span></a></li>
<li><a class="reference internal" href="#vmd"><span class="std std-ref">lmp2vmd</span></a></li>
<li><span class="xref std std-ref">matlab</span></li>
<li><a class="reference internal" href="#micelle"><span class="std std-ref">micelle2d</span></a></li>
<li><a class="reference internal" href="#moltemplate"><span class="std std-ref">moltemplate</span></a></li>
<li><a class="reference internal" href="#msi"><span class="std std-ref">msi2lmp</span></a></li>
<li><a class="reference internal" href="#phonon"><span class="std std-ref">phonon</span></a></li>
<li><a class="reference internal" href="#polybond"><span class="std std-ref">polymer bonding</span></a></li>
<li><span class="xref std std-ref">pymol_asphere</span></li>
<li><a class="reference internal" href="#pythontools"><span class="std std-ref">python</span></a></li>
<li><a class="reference internal" href="#reax"><span class="std std-ref">reax</span></a></li>
<li><a class="reference internal" href="#restart"><span class="std std-ref">restart2data</span></a></li>
<li><a class="reference internal" href="#vim"><span class="std std-ref">vim</span></a></li>
<li><a class="reference internal" href="#xmgrace"><span class="std std-ref">xmgrace</span></a></li>
<li><a class="reference internal" href="#xmovie"><span class="std std-ref">xmovie</span></a></li>
</ul>
<hr class="docutils" />
<div class="section" id="amber2lmp-tool">
<span id="amber"></span><h2>9.1. amber2lmp tool</h2>
<p>The amber2lmp sub-directory contains two Python scripts for converting
files back-and-forth between the AMBER MD code and LAMMPS. See the
README file in amber2lmp for more information.</p>
<p>These tools were written by Keir Novik while he was at Queen Mary
University of London. Keir is no longer there and cannot support
these tools which are out-of-date with respect to the current LAMMPS
version (and maybe with respect to AMBER as well). Since we don&#8217;t use
these tools at Sandia, you&#8217;ll need to experiment with them and make
necessary modifications yourself.</p>
<hr class="docutils" />
</div>
<div class="section" id="binary2txt-tool">
<span id="binary"></span><h2>9.2. binary2txt tool</h2>
<p>The file binary2txt.cpp converts one or more binary LAMMPS dump file
into ASCII text files. The syntax for running the tool is</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">binary2txt</span> <span class="n">file1</span> <span class="n">file2</span> <span class="o">...</span>
</pre></div>
</div>
<p>which creates file1.txt, file2.txt, etc. This tool must be compiled
on a platform that can read the binary file created by a LAMMPS run,
since binary files are not compatible across all platforms.</p>
<hr class="docutils" />
</div>
<div class="section" id="ch2lmp-tool">
<span id="charmm"></span><h2>9.3. ch2lmp tool</h2>
<p>The ch2lmp sub-directory contains tools for converting files
back-and-forth between the CHARMM MD code and LAMMPS.</p>
<p>They are intended to make it easy to use CHARMM as a builder and as a
post-processor for LAMMPS. Using charmm2lammps.pl, you can convert an
ensemble built in CHARMM into its LAMMPS equivalent. Using
lammps2pdb.pl you can convert LAMMPS atom dumps into pdb files.</p>
<p>See the README file in the ch2lmp sub-directory for more information.</p>
<p>These tools were created by Pieter in&#8217;t Veld (pjintve at sandia.gov)
and Paul Crozier (pscrozi at sandia.gov) at Sandia.</p>
<hr class="docutils" />
</div>
<div class="section" id="chain-tool">
<span id="chain"></span><h2>9.4. chain tool</h2>
<p>The file chain.f creates a LAMMPS data file containing bead-spring
polymer chains and/or monomer solvent atoms. It uses a text file
containing chain definition parameters as an input. The created
chains and solvent atoms can strongly overlap, so LAMMPS needs to run
the system initially with a &#8220;soft&#8221; pair potential to un-overlap it.
The syntax for running the tool is</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">chain</span> <span class="o">&lt;</span> <span class="n">def</span><span class="o">.</span><span class="n">chain</span> <span class="o">&gt;</span> <span class="n">data</span><span class="o">.</span><span class="n">file</span>
</pre></div>
</div>
<p>See the def.chain or def.chain.ab files in the tools directory for
examples of definition files. This tool was used to create the
system for the <a class="reference internal" href="Section_perf.html"><span class="doc">chain benchmark</span></a>.</p>
<hr class="docutils" />
</div>
<div class="section" id="colvars-tools">
<span id="colvars"></span><h2>9.5. colvars tools</h2>
<p>The colvars directory contains a collection of tools for postprocessing
data produced by the colvars collective variable library.
To compile the tools, edit the makefile for your system and run &#8220;make&#8221;.</p>
<p>Please report problems and issues the colvars library and its tools
at: <a class="reference external" href="https://github.com/colvars/colvars/issues">https://github.com/colvars/colvars/issues</a></p>
<p>abf_integrate:</p>
<p>MC-based integration of multidimensional free energy gradient
Version 20110511</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">Syntax</span><span class="p">:</span> <span class="o">./</span><span class="n">abf_integrate</span> <span class="o">&lt;</span> <span class="n">filename</span> <span class="o">&gt;</span> <span class="p">[</span><span class="o">-</span><span class="n">n</span> <span class="o">&lt;</span> <span class="n">nsteps</span> <span class="o">&gt;</span><span class="p">]</span> <span class="p">[</span><span class="o">-</span><span class="n">t</span> <span class="o">&lt;</span> <span class="n">temp</span> <span class="o">&gt;</span><span class="p">]</span> <span class="p">[</span><span class="o">-</span><span class="n">m</span> <span class="p">[</span><span class="mi">0</span><span class="o">|</span><span class="mi">1</span><span class="p">]</span> <span class="p">(</span><span class="n">metadynamics</span><span class="p">)]</span> <span class="p">[</span><span class="o">-</span><span class="n">h</span> <span class="o">&lt;</span> <span class="n">hill_height</span> <span class="o">&gt;</span><span class="p">]</span> <span class="p">[</span><span class="o">-</span><span class="n">f</span> <span class="o">&lt;</span> <span class="n">variable_hill_factor</span> <span class="o">&gt;</span><span class="p">]</span>
</pre></div>
</div>
<p>The LAMMPS interface to the colvars collective variable library, as
well as these tools, were created by Axel Kohlmeyer (akohlmey at
gmail.com) at ICTP, Italy.</p>
<hr class="docutils" />
</div>
<div class="section" id="createatoms-tool">
<span id="create"></span><h2>9.6. createatoms tool</h2>
<p>The tools/createatoms directory contains a Fortran program called
createAtoms.f which can generate a variety of interesting crystal
structures and geometries and output the resulting list of atom
coordinates in LAMMPS or other formats.</p>
<p>See the included Manual.pdf for details.</p>
<p>The tool is authored by Xiaowang Zhou (Sandia), xzhou at sandia.gov.</p>
<hr class="docutils" />
</div>
<div class="section" id="data2xmovie-tool">
<span id="data"></span><h2>9.7. data2xmovie tool</h2>
<p>The file data2xmovie.c converts a LAMMPS data file into a snapshot
suitable for visualizing with the <a class="reference internal" href="#xmovie"><span class="std std-ref">xmovie</span></a> tool, as if it had
been output with a dump command from LAMMPS itself. The syntax for
running the tool is</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">data2xmovie</span> <span class="p">[</span><span class="n">options</span><span class="p">]</span> <span class="o">&lt;</span> <span class="n">infile</span> <span class="o">&gt;</span> <span class="n">outfile</span>
</pre></div>
</div>
<p>See the top of the data2xmovie.c file for a discussion of the options.</p>
<hr class="docutils" />
</div>
<div class="section" id="eam-database-tool">
<span id="eamdb"></span><h2>9.8. eam database tool</h2>
<p>The tools/eam_database directory contains a Fortran program that will
generate EAM alloy setfl potential files for any combination of 16
elements: Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti,
Zr. The files can then be used with the <a class="reference internal" href="pair_eam.html"><span class="doc">pair_style eam/alloy</span></a> command.</p>
<p>The tool is authored by Xiaowang Zhou (Sandia), xzhou at sandia.gov,
and is based on his paper:</p>
<p>X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, Phys. Rev. B, 69,
144113 (2004).</p>
<hr class="docutils" />
</div>
<div class="section" id="eam-generate-tool">
<span id="eamgn"></span><h2>9.9. eam generate tool</h2>
<p>The tools/eam_generate directory contains several one-file C programs
that convert an analytic formula into a tabulated <a class="reference internal" href="pair_eam.html"><span class="doc">embedded atom method (EAM)</span></a> setfl potential file. The potentials they
produce are in the potentials directory, and can be used with the
<a class="reference internal" href="pair_eam.html"><span class="doc">pair_style eam/alloy</span></a> command.</p>
<p>The source files and potentials were provided by Gerolf Ziegenhain
(gerolf at ziegenhain.com).</p>
<hr class="docutils" />
</div>
<div class="section" id="eff-tool">
<span id="eff"></span><h2>9.10. eff tool</h2>
<p>The tools/eff directory contains various scripts for generating
structures and post-processing output for simulations using the
electron force field (eFF).</p>
<p>These tools were provided by Andres Jaramillo-Botero at CalTech
(ajaramil at wag.caltech.edu).</p>
<hr class="docutils" />
</div>
<div class="section" id="emacs-tool">
<span id="emacs"></span><h2>9.11. emacs tool</h2>
<p>The tools/emacs directory contains a Lips add-on file for Emacs that
enables a lammps-mode for editing of input scripts when using Emacs,
with various highlighting options setup.</p>
<p>These tools were provided by Aidan Thompson at Sandia
(athomps at sandia.gov).</p>
<hr class="docutils" />
</div>
<div class="section" id="fep-tool">
<span id="fep"></span><h2>9.12. fep tool</h2>
<p>The tools/fep directory contains Python scripts useful for
post-processing results from performing free-energy perturbation
simulations using the USER-FEP package.</p>
<p>The scripts were contributed by Agilio Padua (Universite Blaise
Pascal Clermont-Ferrand), agilio.padua at univ-bpclermont.fr.</p>
<p>See README file in the tools/fep directory.</p>
<hr class="docutils" />
</div>
<div class="section" id="i-pi-tool">
<span id="ipi"></span><h2>9.13. i-pi tool</h2>
<p>The tools/i-pi directory contains a version of the i-PI package, with
all the LAMMPS-unrelated files removed. It is provided so that it can
be used with the <a class="reference internal" href="fix_ipi.html"><span class="doc">fix ipi</span></a> command to perform
path-integral molecular dynamics (PIMD).</p>
<p>The i-PI package was created and is maintained by Michele Ceriotti,
michele.ceriotti at gmail.com, to interface to a variety of molecular
dynamics codes.</p>
<p>See the tools/i-pi/manual.pdf file for an overview of i-PI, and the
<a class="reference internal" href="fix_ipi.html"><span class="doc">fix ipi</span></a> doc page for further details on running PIMD
calculations with LAMMPS.</p>
<hr class="docutils" />
</div>
<div class="section" id="ipp-tool">
<span id="ipp"></span><h2>9.14. ipp tool</h2>
<p>The tools/ipp directory contains a Perl script ipp which can be used
to facilitate the creation of a complicated file (say, a lammps input
script or tools/createatoms input file) using a template file.</p>
<p>ipp was created and is maintained by Reese Jones (Sandia), rjones at
sandia.gov.</p>
<p>See two examples in the tools/ipp directory. One of them is for the
tools/createatoms tool&#8217;s input file.</p>
<hr class="docutils" />
</div>
<div class="section" id="kate-tool">
<span id="kate"></span><h2>9.15. kate tool</h2>
<p>The file in the tools/kate directory is an add-on to the Kate editor
in the KDE suite that allow syntax highlighting of LAMMPS input
scripts. See the README.txt file for details.</p>
<p>The file was provided by Alessandro Luigi Sellerio
(alessandro.sellerio at ieni.cnr.it).</p>
<hr class="docutils" />
</div>
<div class="section" id="lmp2arc-tool">
<span id="arc"></span><h2>9.16. lmp2arc tool</h2>
<p>The lmp2arc sub-directory contains a tool for converting LAMMPS output
files to the format for Accelrys&#8217; Insight MD code (formerly
MSI/Biosym and its Discover MD code). See the README file for more
information.</p>
<p>This tool was written by John Carpenter (Cray), Michael Peachey
(Cray), and Steve Lustig (Dupont). John is now at the Mayo Clinic
(jec at mayo.edu), but still fields questions about the tool.</p>
<p>This tool was updated for the current LAMMPS C++ version by Jeff
Greathouse at Sandia (jagreat at sandia.gov).</p>
<hr class="docutils" />
</div>
<div class="section" id="lmp2cfg-tool">
<span id="cfg"></span><h2>9.17. lmp2cfg tool</h2>
<p>The lmp2cfg sub-directory contains a tool for converting LAMMPS output
files into a series of <a href="#id1"><span class="problematic" id="id2">*</span></a>.cfg files which can be read into the
<a class="reference external" href="http://mt.seas.upenn.edu/Archive/Graphics/A">AtomEye</a> visualizer. See
the README file for more information.</p>
<p>This tool was written by Ara Kooser at Sandia (askoose at sandia.gov).</p>
<hr class="docutils" />
</div>
<div class="section" id="lmp2vmd-tool">
<span id="vmd"></span><h2>9.18. lmp2vmd tool</h2>
<p>The lmp2vmd sub-directory contains a README.txt file that describes
details of scripts and plugin support within the <a class="reference external" href="http://www.ks.uiuc.edu/Research/vmd">VMD package</a> for visualizing LAMMPS
dump files.</p>
<p>The VMD plugins and other supporting scripts were written by Axel
Kohlmeyer (akohlmey at cmm.chem.upenn.edu) at U Penn.</p>
<hr class="docutils" />
</div>
<div class="section" id="matlab-tool">
<span id="matlab"></span><h2>9.19. matlab tool</h2>
<p>The matlab sub-directory contains several <span class="xref std std-ref">MATLAB</span> scripts for
post-processing LAMMPS output. The scripts include readers for log
and dump files, a reader for EAM potential files, and a converter that
reads LAMMPS dump files and produces CFG files that can be visualized
with the <a class="reference external" href="http://mt.seas.upenn.edu/Archive/Graphics/A">AtomEye</a>
visualizer.</p>
<p>See the README.pdf file for more information.</p>
<p>These scripts were written by Arun Subramaniyan at Purdue Univ
(asubrama at purdue.edu).</p>
<hr class="docutils" />
</div>
<div class="section" id="micelle2d-tool">
<span id="micelle"></span><h2>9.20. micelle2d tool</h2>
<p>The file micelle2d.f creates a LAMMPS data file containing short lipid
chains in a monomer solution. It uses a text file containing lipid
definition parameters as an input. The created molecules and solvent
atoms can strongly overlap, so LAMMPS needs to run the system
initially with a &#8220;soft&#8221; pair potential to un-overlap it. The syntax
for running the tool is</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">micelle2d</span> <span class="o">&lt;</span> <span class="n">def</span><span class="o">.</span><span class="n">micelle2d</span> <span class="o">&gt;</span> <span class="n">data</span><span class="o">.</span><span class="n">file</span>
</pre></div>
</div>
<p>See the def.micelle2d file in the tools directory for an example of a
definition file. This tool was used to create the system for the
<a class="reference internal" href="Section_example.html"><span class="doc">micelle example</span></a>.</p>
<hr class="docutils" />
</div>
<div class="section" id="moltemplate-tool">
<span id="moltemplate"></span><h2>9.21. moltemplate tool</h2>
<p>The moltemplate sub-directory contains a Python-based tool for
building molecular systems based on a text-file description, and
creating LAMMPS data files that encode their molecular topology as
lists of bonds, angles, dihedrals, etc. See the README.TXT file for
more information.</p>
<p>This tool was written by Andrew Jewett (jewett.aij at gmail.com), who
supports it. It has its own WWW page at
<a class="reference external" href="http://moltemplate.org">http://moltemplate.org</a>.</p>
<hr class="docutils" />
</div>
<div class="section" id="msi2lmp-tool">
<span id="msi"></span><h2>9.22. msi2lmp tool</h2>
<p>The msi2lmp sub-directory contains a tool for creating LAMMPS input
data files from Accelrys&#8217; Insight MD code (formerly MSI/Biosym and
its Discover MD code). See the README file for more information.</p>
<p>This tool was written by John Carpenter (Cray), Michael Peachey
(Cray), and Steve Lustig (Dupont). John is now at the Mayo Clinic
(jec at mayo.edu), but still fields questions about the tool.</p>
<p>This tool may be out-of-date with respect to the current LAMMPS and
Insight versions. Since we don&#8217;t use it at Sandia, you&#8217;ll need to
experiment with it yourself.</p>
<hr class="docutils" />
</div>
<div class="section" id="phonon-tool">
<span id="phonon"></span><h2>9.23. phonon tool</h2>
<p>The phonon sub-directory contains a post-processing tool useful for
analyzing the output of the <a class="reference internal" href="fix_phonon.html"><span class="doc">fix phonon</span></a> command in
the USER-PHONON package.</p>
<p>See the README file for instruction on building the tool and what
library it needs. And see the examples/USER/phonon directory
for example problems that can be post-processed with this tool.</p>
<p>This tool was written by Ling-Ti Kong at Shanghai Jiao Tong
University.</p>
<hr class="docutils" />
</div>
<div class="section" id="polymer-bonding-tool">
<span id="polybond"></span><h2>9.24. polymer bonding tool</h2>
<p>The polybond sub-directory contains a Python-based tool useful for
performing &#8220;programmable polymer bonding&#8221;. The Python file
lmpsdata.py provides a &#8220;Lmpsdata&#8221; class with various methods which can
be invoked by a user-written Python script to create data files with
complex bonding topologies.</p>
<p>See the Manual.pdf for details and example scripts.</p>
<p>This tool was written by Zachary Kraus at Georgia Tech.</p>
<hr class="docutils" />
</div>
<div class="section" id="pymol-asphere-tool">
<span id="pymol"></span><h2>9.25. pymol_asphere tool</h2>
<p>The pymol_asphere sub-directory contains a tool for converting a
LAMMPS dump file that contains orientation info for ellipsoidal
particles into an input file for the <span class="xref std std-ref">PyMol visualization package</span>.</p>
<p>Specifically, the tool triangulates the ellipsoids so they can be
viewed as true ellipsoidal particles within PyMol. See the README and
examples directory within pymol_asphere for more information.</p>
<p>This tool was written by Mike Brown at Sandia.</p>
<hr class="docutils" />
</div>
<div class="section" id="python-tool">
<span id="pythontools"></span><h2>9.26. python tool</h2>
<p>The python sub-directory contains several Python scripts
that perform common LAMMPS post-processing tasks, such as:</p>
<ul class="simple">
<li>extract thermodynamic info from a log file as columns of numbers</li>
<li>plot two columns of thermodynamic info from a log file using GnuPlot</li>
<li>sort the snapshots in a dump file by atom ID</li>
<li>convert multiple <a class="reference internal" href="neb.html"><span class="doc">NEB</span></a> dump files into one dump file for viz</li>
<li>convert dump files into XYZ, CFG, or PDB format for viz by other packages</li>
</ul>
<p>These are simple scripts built on <a class="reference external" href="http://www.sandia.gov/~sjplimp/pizza.html">Pizza.py</a> modules. See the
README for more info on Pizza.py and how to use these scripts.</p>
<hr class="docutils" />
</div>
<div class="section" id="reax-tool">
<span id="reax"></span><h2>9.27. reax tool</h2>
<p>The reax sub-directory contains stand-alond codes that can
post-process the output of the <a class="reference internal" href="fix_reax_bonds.html"><span class="doc">fix reax/bonds</span></a>
command from a LAMMPS simulation using <a class="reference internal" href="pair_reax.html"><span class="doc">ReaxFF</span></a>. See
the README.txt file for more info.</p>
<p>These tools were written by Aidan Thompson at Sandia.</p>
<hr class="docutils" />
</div>
<div class="section" id="restart2data-tool">
<span id="restart"></span><h2>9.28. restart2data tool</h2>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">This tool is now obsolete and is not included in the current
LAMMPS distribution. This is becaues there is now a
<a class="reference internal" href="write_data.html"><span class="doc">write_data</span></a> command, which can create a data file
from within an input script. Running LAMMPS with the &#8220;-r&#8221;
<a class="reference internal" href="Section_start.html#start-7"><span class="std std-ref">command-line switch</span></a> as follows:</p>
</div>
<p>lmp_g++ -r restartfile datafile</p>
<p>is the same as running a 2-line input script:</p>
<p>read_restart restartfile
write_data datafile</p>
<p>which will produce the same data file that the restart2data tool used
to create. The following information is included in case you have an
older version of LAMMPS which still includes the restart2data tool.</p>
<p>The file restart2data.cpp converts a binary LAMMPS restart file into
an ASCII data file. The syntax for running the tool is</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">restart2data</span> <span class="n">restart</span><span class="o">-</span><span class="n">file</span> <span class="n">data</span><span class="o">-</span><span class="n">file</span> <span class="p">(</span><span class="nb">input</span><span class="o">-</span><span class="n">file</span><span class="p">)</span>
</pre></div>
</div>
<p>Input-file is optional and if specified will contain LAMMPS input
commands for the masses and force field parameters, instead of putting
those in the data-file. Only a few force field styles currently
support this option.</p>
<p>This tool must be compiled on a platform that can read the binary file
created by a LAMMPS run, since binary files are not compatible across
all platforms.</p>
<p>Note that a text data file has less precision than a binary restart
file. Hence, continuing a run from a converted data file will
typically not conform as closely to a previous run as will restarting
from a binary restart file.</p>
<p>If a &#8220;%&#8221; appears in the specified restart-file, the tool expects a set
of multiple files to exist. See the <a class="reference internal" href="restart.html"><span class="doc">restart</span></a> and
<a class="reference internal" href="write_restart.html"><span class="doc">write_restart</span></a> commands for info on how such sets
of files are written by LAMMPS, and how the files are named.</p>
<hr class="docutils" />
</div>
<div class="section" id="vim-tool">
<span id="vim"></span><h2>9.29. vim tool</h2>
<p>The files in the tools/vim directory are add-ons to the VIM editor
that allow easier editing of LAMMPS input scripts. See the README.txt
file for details.</p>
<p>These files were provided by Gerolf Ziegenhain (gerolf at
ziegenhain.com)</p>
<hr class="docutils" />
</div>
<div class="section" id="xmgrace-tool">
<span id="xmgrace"></span><h2>9.30. xmgrace tool</h2>
<p>The files in the tools/xmgrace directory can be used to plot the
thermodynamic data in LAMMPS log files via the xmgrace plotting
package. There are several tools in the directory that can be used in
post-processing mode. The lammpsplot.cpp file can be compiled and
used to create plots from the current state of a running LAMMPS
simulation.</p>
<p>See the README file for details.</p>
<p>These files were provided by Vikas Varshney (vv0210 at gmail.com)</p>
<hr class="docutils" />
</div>
<div class="section" id="xmovie-tool">
<span id="xmovie"></span><h2>9.31. xmovie tool</h2>
<p>The xmovie tool is an X-based visualization package that can read
LAMMPS dump files and animate them. It is in its own sub-directory
with the tools directory. You may need to modify its Makefile so that
it can find the appropriate X libraries to link against.</p>
<p>The syntax for running xmovie is</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">xmovie</span> <span class="p">[</span><span class="n">options</span><span class="p">]</span> <span class="n">dump</span><span class="o">.</span><span class="n">file1</span> <span class="n">dump</span><span class="o">.</span><span class="n">file2</span> <span class="o">...</span>
</pre></div>
</div>
<p>If you just type &#8220;xmovie&#8221; you will see a list of options. Note that
by default, LAMMPS dump files are in scaled coordinates, so you
typically need to use the -scale option with xmovie. When xmovie runs
it opens a visualization window and a control window. The control
options are straightforward to use.</p>
<p>Xmovie was mostly written by Mike Uttormark (U Wisconsin) while he
spent a summer at Sandia. It displays 2d projections of a 3d domain.
While simple in design, it is an amazingly fast program that can
render large numbers of atoms very quickly. It&#8217;s a useful tool for
debugging LAMMPS input and output and making sure your simulation is
doing what you think it should. The animations on the Examples page
of the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW site</a> were created with xmovie.</p>
<p>I&#8217;ve lost contact with Mike, so I hope he&#8217;s comfortable with us
distributing his great tool!</p>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="Section_modify.html" class="btn btn-neutral float-right" title="10. Modifying &amp; extending LAMMPS" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="Section_perf.html" class="btn btn-neutral" title="8. Performance &amp; scalability" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2013 Sandia Corporation.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'./',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/jquery-1.11.0.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/lightbox.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2-customize/jquery-noconflict.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.StickyNav.enable();
});
</script>
</body>
</html>

View File

@ -1,59 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC add_molecule</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_add_molecule">fix_modify AtC add_molecule </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify_AtC add_molecule &lt;small|large&gt; &lt;TAG&gt; &lt;GROUP_NAME&gt; <br/>
</p>
<ul>
<li>small|large = can be small if molecule size &lt; cutoff radius, must be large otherwise <br/>
</li>
<li>&lt;TAG&gt; = tag for tracking a species <br/>
</li>
<li>&lt;GROUP_NAME&gt; = name of group that tracking will be applied to <br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> group WATERGROUP type 1 2 </code> <br/>
<code> fix_modify AtC add_molecule small water WATERGROUP </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Associates a tag with all molecules corresponding to a specified group. <br/>
</p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>No defaults for this command. </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,59 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC add_species</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_add_species">fix_modify AtC add_species </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify_AtC add_species &lt;TAG&gt; &lt;group|type&gt; &lt;ID&gt; <br/>
</p>
<ul>
<li>&lt;TAG&gt; = tag for tracking a species <br/>
</li>
<li>group|type = LAMMPS defined group or type of atoms <br/>
</li>
<li>&lt;ID&gt; = name of group or type number <br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC add_species gold type 1 </code> <br/>
<code> group GOLDGROUP type 1 </code> <br/>
<code> fix_modify AtC add_species gold group GOLDGROUP </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Associates a tag with all atoms of a specified type or within a specified group. <br/>
</p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>No defaults for this command. </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,52 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC atom_element_map</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_atom_element_map">fix_modify AtC atom_element_map </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC atom_element_map &lt;eulerian|lagrangian&gt; &lt;frequency&gt; <br/>
</p>
<ul>
<li>frequency (int) : frequency of updating atom-to-continuum maps based on the current configuration - only for eulerian </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify atc atom_element_map eulerian 100 </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Changes frame of reference from eulerian to lagrangian and sets the frequency for which the map from atoms to elements is reformed and all the attendant data is recalculated. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Cannot change map type after initialization. </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>lagrangian </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,61 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC atom_weight</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_atom_weight">fix_modify AtC atom_weight </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC atom_weight &lt;method&gt; &lt;arguments&gt;</p>
<ul>
<li>&lt;method&gt; = <br/>
value: atoms in specified group assigned constant value given <br/>
lattice: volume per atom for specified lattice type (e.g. fcc) and parameter <br/>
element: element volume divided among atoms within element <br/>
region: volume per atom determined based on the atom count in the MD regions and their volumes. Note: meaningful only if atoms completely fill all the regions. <br/>
group: volume per atom determined based on the atom count in a group and its volume<br/>
read_in: list of values for atoms are read-in from specified file <br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify atc atom_weight constant myatoms 11.8 </code> <br/>
<code> fix_modify atc atom_weight lattice </code> <br/>
<code> fix_modify atc atom_weight read-in atm_wt_file.txt </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Command for assigning the value of atomic weights used for atomic integration in atom-continuum coupled simulations. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Use of lattice option requires a lattice type and parameter is already specified. </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>lattice </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,51 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC atomic_charge</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_atomic_charge">fix_modify AtC atomic_charge </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC &lt;include | omit&gt; atomic_charge</p>
<ul>
<li>&lt;include | omit&gt; = switch to activiate/deactiviate inclusion of intrinsic atomic charge in <a class="el" href="namespaceATC.html" title="owned field/s: MASS_DENSITY">ATC</a> </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify atc compute include atomic_charge </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Determines whether AtC tracks the total charge as a finite element field </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Required for: electrostatics </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>if the atom charge is defined, default is on, otherwise default is off </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,48 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC boundary</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_boundary">fix_modify AtC boundary </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC boundary type &lt;atom-type-id&gt;</p>
<ul>
<li>&lt;atom-type-id&gt; = type id for atoms that represent a ficticious boundary internal to the FE mesh </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC boundary type ghost_atoms </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Command to define the atoms that represent the ficticious boundary internal to the FE mesh. For fully overlapped MD/FE domains with periodic boundary conditions no boundary atoms should be defined. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>none </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,46 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC boundary_dynamics</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_boundary_dynamics">fix_modify AtC boundary_dynamics </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC boundary_dynamics &lt; on | damped_harmonic | prescribed | coupled | none &gt; [args] <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Sets different schemes for controlling boundary atoms. On will integrate the boundary atoms using the velocity-verlet algorithm. Damped harmonic uses a mass/spring/dashpot for the boundary atoms with added arguments of the damping and spring constants followed by the ratio of the boundary type mass to the desired mass. Prescribed forces the boundary atoms to follow the finite element displacement. Coupled does the same. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Boundary atoms must be specified. When using swaps between internal and boundary atoms, the initial configuration must have already correctly partitioned the two. </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>prescribed on </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,47 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC boundary_faceset</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_boundary_faceset">fix_modify AtC boundary_faceset </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC boundary_faceset &lt;is | add&gt; [args] </p>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p>fix_modify AtC boundary_faceset is obndy </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>This command species the faceset name when using a faceset to compute the MD/FE boundary fluxes. The faceset must already exist. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>This is only valid when fe_md_boundary is set to faceset. </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,53 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC output boundary_integral</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_boundary_integral">fix_modify AtC output boundary_integral </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC output boundary_integral [field] faceset [name]</p>
<ul>
<li>field (string) : name of hardy field</li>
<li>name (string) : name of faceset </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC output boundary_integral stress faceset loop1 </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Calculates a surface integral of the given field dotted with the outward normal of the faces and puts output in the "GLOBALS" file </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Must be used with the hardy/field type of AtC fix ( see <a class="el" href="man_fix_atc.html">fix atc command</a> ) </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>none </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,51 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC consistent_fe_initialization</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_consistent_fe_initialization">fix_modify AtC consistent_fe_initialization </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC consistent_fe_initialization &lt;on | off&gt;</p>
<ul>
<li>&lt;on|off&gt; = switch to activiate/deactiviate the intial setting of FE intrinsic field to match the projected MD field </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify atc consistent_fe_initialization on </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Determines whether AtC initializes FE intrinsic fields (e.g., temperature) to match the projected MD values. This is particularly useful for fully overlapping simulations. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Can be used with: thermal, two_temperature. Cannot be used with time filtering on. Does not include boundary nodes. </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>Default is off </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,54 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC output contour_integral</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_contour_integral">fix_modify AtC output contour_integral </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC output contour_integral [field] faceset [name] &lt;axis [x | y | z ]&gt;</p>
<ul>
<li>field (string) : name of hardy field</li>
<li>name (string) : name of faceset</li>
<li>axis (string) : x or y or z </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC output contour_integral stress faceset loop1 </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Calculates a surface integral of the given field dotted with the outward normal of the faces and puts output in the "GLOBALS" file </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Must be used with the hardy/field type of AtC fix ( see <a class="el" href="man_fix_atc.html">fix atc command</a> ) </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>none </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,72 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC control</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_control">fix_modify AtC control </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC control &lt;physics_type&gt; &lt;solution_parameter&gt; </p>
<p><br/>
</p>
<ul>
<li>physics_type (string) = thermal | momentum<br/>
</li>
<li>solution_parameter (string) = max_iterations | tolerance<br/>
</li>
</ul>
<p>fix_modify AtC transfer &lt;physics_type&gt; control max_iterations &lt;max_iterations&gt;<br/>
</p>
<ul>
<li>max_iterations (int) = maximum number of iterations that will be used by iterative matrix solvers<br/>
</li>
</ul>
<p>fix_modify AtC transfer &lt;physics_type&gt; control tolerance &lt;tolerance&gt; <br/>
</p>
<ul>
<li>tolerance (float) = relative tolerance to which matrix equations will be solved<br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC control thermal max_iterations 10 </code> <br/>
<code> fix_modify AtC control momentum tolerance 1.e-5 </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Sets the numerical parameters for the matrix solvers used in the specified control algorithm. Many solution approaches require iterative solvers, and these methods enable users to provide the maximum number of iterations and the relative tolerance. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>only for be used with specific controllers : thermal, momentum <br/>
They are ignored if a lumped solution is requested </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>max_iterations is the number of rows in the matrix<br/>
tolerance is 1.e-10 </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,68 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC control momentum</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_control_momentum">fix_modify AtC control momentum </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC control momentum none <br/>
</p>
<p>fix_modify AtC control momentum rescale &lt;frequency&gt;<br/>
</p>
<ul>
<li>frequency (int) = time step frequency for applying displacement and velocity rescaling <br/>
</li>
</ul>
<p>fix_modify AtC control momentum glc_displacement <br/>
</p>
<p>fix_modify AtC control momentum glc_velocity <br/>
</p>
<p>fix_modify AtC control momentum hoover <br/>
</p>
<p>fix_modify AtC control momentum flux [faceset face_set_id, interpolate]</p>
<ul>
<li>face_set_id (string) = id of boundary face set, if not specified (or not possible when the atomic domain does not line up with mesh boundaries) defaults to an atomic-quadrature approximate evaulation<br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p>fix_modify AtC control momentum glc_velocity <br/>
fix_modify AtC control momentum flux faceset bndy_faces <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>only to be used with specific transfers : elastic <br/>
rescale not valid with time filtering activated </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>none </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,76 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC control thermal</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_control_thermal">fix_modify AtC control thermal </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC control thermal &lt;control_type&gt; &lt;optional_args&gt;</p>
<ul>
<li>control_type (string) = none | rescale | hoover | flux<br/>
</li>
</ul>
<p>fix_modify AtC control thermal rescale &lt;frequency&gt; <br/>
</p>
<ul>
<li>frequency (int) = time step frequency for applying velocity rescaling <br/>
</li>
</ul>
<p>fix_modify AtC control thermal hoover <br/>
</p>
<p>fix_modify AtC control thermal flux &lt;boundary_integration_type(optional)&gt; &lt;face_set_id(optional)&gt;<br/>
</p>
<ul>
<li>boundary_integration_type (string) = faceset | interpolate<br/>
</li>
<li>face_set_id (string), optional = id of boundary face set, if not specified (or not possible when the atomic domain does not line up with mesh boundaries) defaults to an atomic-quadrature approximate evaulation, does not work with interpolate<br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC control thermal none </code> <br/>
<code> fix_modify AtC control thermal rescale 10 </code> <br/>
<code> fix_modify AtC control thermal hoover </code> <br/>
<code> fix_modify AtC control thermal flux </code> <br/>
<code> fix_modify AtC control thermal flux faceset bndy_faces </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Sets the energy exchange mechansim from the finite elements to the atoms, managed through a control algorithm. Rescale computes a scale factor for each atom to match the finite element temperature. Hoover is a Gaussian least-constraint isokinetic thermostat enforces that the nodal restricted atomic temperature matches the finite element temperature. Flux is a similar mode, but rather adds energy to the atoms based on conservation of energy. Hoover and flux allows the prescription of sources or fixed temperatures on the atoms. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>only for be used with specific transfers : thermal (rescale, hoover, flux), two_temperature (flux) <br/>
rescale not valid with time filtering activated </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>none<br/>
rescale frequency is 1<br/>
flux boundary_integration_type is interpolate </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,53 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC control thermal correction_max_iterations</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_control_thermal_correction_max_iterations">fix_modify AtC control thermal correction_max_iterations </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC control thermal correction_max_iterations &lt;max_iterations&gt;</p>
<ul>
<li>max_iterations (int) = maximum number of iterations that will be used by iterative matrix solvers<br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC control thermal correction_max_iterations 10 </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Sets the maximum number of iterations to compute the 2nd order in time correction term for lambda with the fractional step method. The method uses the same tolerance as the controller's matrix solver. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>only for use with thermal physics using the fractional step method. </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>correction_max_iterations is 20 </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,55 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC decomposition</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_decomposition">fix_modify AtC decomposition </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC decomposition &lt;type&gt;</p>
<ul>
<li>&lt;type&gt; = <br/>
replicated_memory: nodal information replicated on each processor <br/>
distributed_memory: only owned nodal information on processor <br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify atc decomposition distributed_memory </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Command for assigning the distribution of work and memory for parallel runs. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>replicated_memory is appropriate for simulations were the number of nodes &lt;&lt; number of atoms </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>replicated_memory </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,56 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC extrinsic electron_integration</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_electron_integration">fix_modify AtC extrinsic electron_integration </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC extrinsic electron_integration &lt;integration_type&gt; &lt;num_subcyle_steps(optional)&gt; <br/>
</p>
<ul>
<li>integration_type (string) = explicit | implicit | steady <br/>
</li>
<li>num_subcycle_steps (int), optional = number of subcycle steps for the electron time integration</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC extrinsic electron_integration implicit </code> <br/>
<code> fix_modify AtC extrinsic electron_integration explicit 100 </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Switches between integration scheme for the electron temperature. The number of subcyling steps used to integrate the electron temperature 1 LAMMPS timestep can be manually adjusted to capture fast electron dynamics.</p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>For use only with two_temperature type of AtC fix ( see <a class="el" href="man_fix_atc.html">fix atc command</a> ) <br/>
</p>
<h2><a class="anchor" id="default">
default</a></h2>
<p>implicit<br/>
subcycle_steps = 1 </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,50 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC equilibrium_start</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_equilibrium_start">fix_modify AtC equilibrium_start </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC equilibrium_start &lt;on|off&gt;</p>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify atc equilibrium_start on </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Starts filtered calculations assuming they start in equilibrium, i.e. perfect finite element force balance.</p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>only needed before filtering is begun</p>
<h2><a class="anchor" id="related">
related</a></h2>
<p>see <a class="el" href="man_time_filter.html">fix_modify AtC filter</a></p>
<h2><a class="anchor" id="default">
default</a></h2>
<p>on </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,50 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC extrinsic exchange</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_extrinsic_exchange">fix_modify AtC extrinsic exchange </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC extrinsic exchange &lt;on|off&gt;</p>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC extrinsic exchange on </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Switches energy exchange between the MD system and electron system on and off</p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Only valid for use with two_temperature type of AtC fix.</p>
<h2><a class="anchor" id="related">
related</a></h2>
<p>see <a class="el" href="man_fix_atc.html">fix atc command</a></p>
<h2><a class="anchor" id="default">
default</a></h2>
<p>on </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,50 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC fe_md_boundary</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_fe_md_boundary">fix_modify AtC fe_md_boundary </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC fe_md_boundary &lt;faceset | interpolate | no_boundary&gt; [args] </p>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify atc fe_md_boundary interpolate </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Specifies different methods for computing fluxes between between the MD and FE integration regions. Faceset defines a faceset separating the MD and FE regions and uses finite element face quadrature to compute the flux. Interpolate uses a reconstruction scheme to approximate the flux, which is more robust but less accurate if the MD/FE boundary does correspond to a faceset. No boundary results in no fluxes between the systems being computed. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>If faceset is used, all the AtC non-boundary atoms must lie within and completely fill the domain enclosed by the faceset. </p>
<h2><a class="anchor" id="related">
related</a></h2>
<p>see for how to specify the faceset name. </p>
<h2><a class="anchor" id="default">
default</a></h2>
<p>Interpolate. </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,25 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1">
<title>ATC: fix_modify AtC fem create mesh</title>
<link href="doxygen.css" rel="stylesheet" type="text/css">
</head><body>
<!-- Generated by Doxygen 1.3.9.1 -->
<h1><a class="anchor" name="man_fem_mesh">fix_modify AtC fem create mesh</a></h1><h2><a class="anchor" name="syntax">
syntax</a></h2>
fix_modify AtC fem create mesh &lt;nx&gt; &lt;ny&gt; &lt;nz&gt; &lt;region-id&gt; &lt;f|p&gt; &lt;f|p&gt; &lt;f|p&gt;<ul>
<li>nx ny nz = number of elements in x, y, z</li><li>region-id = id of region that is to be meshed</li><li>f p p = perioidicity flags for x, y, z </li></ul>
<h2><a class="anchor" name="examples">
examples</a></h2>
<code> fix_modify AtC fem create mesh 10 1 1 feRegion p p p </code> <h2><a class="anchor" name="description">
description</a></h2>
Creates a uniform mesh in a rectangular region <h2><a class="anchor" name="restrictions">
restrictions</a></h2>
creates only uniform rectangular grids in a rectangular region <h2><a class="anchor" name="related">
related</a></h2>
<h2><a class="anchor" name="default">
default</a></h2>
none <hr size="1"><address style="align: right;"><small>Generated on Mon Aug 17 09:35:16 2009 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.3.9.1 </small></address>
</body>
</html>

View File

@ -1,55 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC filter scale</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_filter_scale">fix_modify AtC filter scale </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC filter scale &lt;scale&gt; <br/>
</p>
<ul>
<li>scale (real) = characteristic time scale of the filter <br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC filter scale 10.0 </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Filters the MD dynamics to construct a more appropriate continuous field. Equilibrating first filters the time derivatives without changing the dynamics to provide a better initial condition to the filtered dynamics </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>only for be used with specific transfers: thermal, two_temperature</p>
<h2><a class="anchor" id="related">
related</a></h2>
<p><a class="el" href="man_time_filter.html">fix_modify AtC filter</a> <a class="el" href="man_filter_type.html">fix_modify AtC filter type</a></p>
<h2><a class="anchor" id="default">
default</a></h2>
<p>0. </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,51 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC filter type</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_filter_type">fix_modify AtC filter type </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC filter type &lt;exponential | step | no_filter&gt; <br/>
</p>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC filter type exponential </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Specifies the type of time filter used. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>only for be used with specific transfers: thermal, two_temperature</p>
<h2><a class="anchor" id="related">
related</a></h2>
<p><a class="el" href="man_time_filter.html">fix_modify AtC filter</a> <a class="el" href="man_filter_scale.html">fix_modify AtC filter scale</a></p>
<h2><a class="anchor" id="default">
default</a></h2>
<p>No default. </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

Some files were not shown because too many files have changed in this diff Show More