/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories LAMMPS development team: developers@lammps.org Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "atom_vec.h" #include "atom.h" #include "comm.h" #include "domain.h" #include "error.h" #include "fix.h" #include "force.h" #include "label_map.h" #include "memory.h" #include "modify.h" using namespace LAMMPS_NS; // peratom variables that are auto-included in corresponding child style field lists // these fields cannot be specified in the fields strings const std::vector AtomVec::default_grow = {"id", "type", "mask", "image", "x", "v", "f"}; const std::vector AtomVec::default_copy = {"id", "type", "mask", "image", "x", "v"}; const std::vector AtomVec::default_comm = {"x"}; const std::vector AtomVec::default_comm_vel = {"x", "v"}; const std::vector AtomVec::default_reverse = {"f"}; const std::vector AtomVec::default_border = {"id", "type", "mask", "x"}; const std::vector AtomVec::default_border_vel = {"id", "type", "mask", "x", "v"}; const std::vector AtomVec::default_exchange = {"id", "type", "mask", "image", "x", "v"}; const std::vector AtomVec::default_restart = {"id", "type", "mask", "image", "x", "v"}; const std::vector AtomVec::default_create = {"id", "type", "mask", "image", "x", "v"}; const std::vector AtomVec::default_data_atom = {}; const std::vector AtomVec::default_data_vel = {}; /* ---------------------------------------------------------------------- */ AtomVec::AtomVec(LAMMPS *lmp) : Pointers(lmp) { nmax = 0; ngrow = 0; molecular = Atom::ATOMIC; bonds_allow = angles_allow = dihedrals_allow = impropers_allow = 0; mass_type = dipole_type = PER_ATOM; forceclearflag = 0; maxexchange = 0; bonus_flag = 0; size_forward_bonus = size_border_bonus = 0; kokkosable = 0; nargcopy = 0; argcopy = nullptr; tag = nullptr; type = mask = nullptr; image = nullptr; x = v = f = nullptr; x_hold = nullptr; v_hold = omega_hold = angmom_hold = nullptr; threads = nullptr; } /* ---------------------------------------------------------------------- */ AtomVec::~AtomVec() { int datatype, cols; void *pdata; for (int i = 0; i < nargcopy; i++) delete[] argcopy[i]; delete[] argcopy; for (int i = 0; i < ngrow; i++) { pdata = mgrow.pdata[i]; datatype = mgrow.datatype[i]; cols = mgrow.cols[i]; if (datatype == Atom::DOUBLE) { if (cols == 0) memory->destroy(*((double **) pdata)); else if (cols > 0) memory->destroy(*((double ***) pdata)); else { memory->destroy(*((double ***) pdata)); } } else if (datatype == Atom::INT) { if (cols == 0) memory->destroy(*((int **) pdata)); else if (cols > 0) memory->destroy(*((int ***) pdata)); else { memory->destroy(*((int ***) pdata)); } } else if (datatype == Atom::BIGINT) { if (cols == 0) memory->destroy(*((bigint **) pdata)); else if (cols > 0) memory->destroy(*((bigint ***) pdata)); else { memory->destroy(*((bigint ***) pdata)); } } } delete[] threads; } /* ---------------------------------------------------------------------- make copy of args for use by restart & replicate ------------------------------------------------------------------------- */ void AtomVec::store_args(int narg, char **arg) { nargcopy = narg; if (nargcopy) argcopy = new char *[nargcopy]; else argcopy = nullptr; for (int i = 0; i < nargcopy; i++) argcopy[i] = utils::strdup(arg[i]); } /* ---------------------------------------------------------------------- no additional args by default ------------------------------------------------------------------------- */ void AtomVec::process_args(int narg, char ** /*arg*/) { if (narg) error->all(FLERR, "Invalid atom_style command"); } /* ---------------------------------------------------------------------- pull settings from Domain needed for pack_comm_vel and pack_border_vel child classes may override this method, but should also invoke it ------------------------------------------------------------------------- */ void AtomVec::init() { deform_vremap = domain->deform_vremap; deform_groupbit = domain->deform_groupbit; h_rate = domain->h_rate; if (lmp->kokkos != nullptr && !kokkosable) error->all(FLERR, "KOKKOS package requires a kokkos enabled atom_style"); } static constexpr bigint DELTA = 16384; /* ---------------------------------------------------------------------- roundup N so it is a multiple of DELTA error if N exceeds 32-bit int, since will be used as arg to grow() ------------------------------------------------------------------------- */ bigint AtomVec::roundup(bigint n) { if (n % DELTA) n = n / DELTA * DELTA + DELTA; if (n > MAXSMALLINT) error->one(FLERR, "Too many atoms created on one or more procs"); return n; } /* ---------------------------------------------------------------------- grow nmax so it is a multiple of DELTA ------------------------------------------------------------------------- */ void AtomVec::grow_nmax() { nmax = nmax / DELTA * DELTA; nmax += DELTA; } static constexpr bigint DELTA_BONUS = 8192; /* ---------------------------------------------------------------------- grow nmax_bonus so it is a multiple of DELTA_BONUS ------------------------------------------------------------------------- */ int AtomVec::grow_nmax_bonus(int nmax_bonus) { nmax_bonus = nmax_bonus / DELTA_BONUS * DELTA_BONUS; nmax_bonus += DELTA_BONUS; return nmax_bonus; } /* ---------------------------------------------------------------------- grow atom arrays n = 0 grows arrays by a chunk n > 0 allocates arrays to size n ------------------------------------------------------------------------- */ void AtomVec::grow(int n) { int datatype, cols, maxcols; void *pdata; if (n == 0) grow_nmax(); else nmax = MAX(n, nmax); atom->nmax = nmax; if (nmax < 0 || nmax > MAXSMALLINT) error->one(FLERR, "Per-processor system is too big"); tag = memory->grow(atom->tag, nmax, "atom:tag"); type = memory->grow(atom->type, nmax, "atom:type"); mask = memory->grow(atom->mask, nmax, "atom:mask"); image = memory->grow(atom->image, nmax, "atom:image"); x = memory->grow(atom->x, nmax, 3, "atom:x"); v = memory->grow(atom->v, nmax, 3, "atom:v"); f = memory->grow(atom->f, nmax * comm->nthreads, 3, "atom:f"); for (int i = 0; i < ngrow; i++) { pdata = mgrow.pdata[i]; datatype = mgrow.datatype[i]; cols = mgrow.cols[i]; const int nthreads = threads[i] ? comm->nthreads : 1; if (datatype == Atom::DOUBLE) { if (cols == 0) memory->grow(*((double **) pdata), nmax * nthreads, "atom:dvec"); else if (cols > 0) memory->grow(*((double ***) pdata), nmax * nthreads, cols, "atom:darray"); else { maxcols = *(mgrow.maxcols[i]); memory->grow(*((double ***) pdata), nmax * nthreads, maxcols, "atom:darray"); } } else if (datatype == Atom::INT) { if (cols == 0) memory->grow(*((int **) pdata), nmax * nthreads, "atom:ivec"); else if (cols > 0) memory->grow(*((int ***) pdata), nmax * nthreads, cols, "atom:iarray"); else { maxcols = *(mgrow.maxcols[i]); memory->grow(*((int ***) pdata), nmax * nthreads, maxcols, "atom:iarray"); } } else if (datatype == Atom::BIGINT) { if (cols == 0) memory->grow(*((bigint **) pdata), nmax * nthreads, "atom:bvec"); else if (cols > 0) memory->grow(*((bigint ***) pdata), nmax * nthreads, cols, "atom:barray"); else { maxcols = *(mgrow.maxcols[i]); memory->grow(*((bigint ***) pdata), nmax * nthreads, maxcols, "atom:barray"); } } } for (int iextra = 0; iextra < atom->nextra_grow; iextra++) modify->fix[atom->extra_grow[iextra]]->grow_arrays(nmax); grow_pointers(); } /* ---------------------------------------------------------------------- copy atom I info to atom J ------------------------------------------------------------------------- */ void AtomVec::copy(int i, int j, int delflag) { int m, n, datatype, cols, collength, ncols; void *pdata, *plength; tag[j] = tag[i]; type[j] = type[i]; mask[j] = mask[i]; image[j] = image[i]; x[j][0] = x[i][0]; x[j][1] = x[i][1]; x[j][2] = x[i][2]; v[j][0] = v[i][0]; v[j][1] = v[i][1]; v[j][2] = v[i][2]; if (ncopy) { for (n = 0; n < ncopy; n++) { pdata = mcopy.pdata[n]; datatype = mcopy.datatype[n]; cols = mcopy.cols[n]; if (datatype == Atom::DOUBLE) { if (cols == 0) { double *vec = *((double **) pdata); vec[j] = vec[i]; } else if (cols > 0) { double **array = *((double ***) pdata); for (m = 0; m < cols; m++) array[j][m] = array[i][m]; } else { double **array = *((double ***) pdata); collength = mcopy.collength[n]; plength = mcopy.plength[n]; if (collength) ncols = (*((int ***) plength))[i][collength - 1]; else ncols = (*((int **) plength))[i]; for (m = 0; m < ncols; m++) array[j][m] = array[i][m]; } } else if (datatype == Atom::INT) { if (cols == 0) { int *vec = *((int **) pdata); vec[j] = vec[i]; } else if (cols > 0) { int **array = *((int ***) pdata); for (m = 0; m < cols; m++) array[j][m] = array[i][m]; } else { int **array = *((int ***) pdata); collength = mcopy.collength[n]; plength = mcopy.plength[n]; if (collength) ncols = (*((int ***) plength))[i][collength - 1]; else ncols = (*((int **) plength))[i]; for (m = 0; m < ncols; m++) array[j][m] = array[i][m]; } } else if (datatype == Atom::BIGINT) { if (cols == 0) { bigint *vec = *((bigint **) pdata); vec[j] = vec[i]; } else if (cols > 0) { bigint **array = *((bigint ***) pdata); for (m = 0; m < cols; m++) array[j][m] = array[i][m]; } else { bigint **array = *((bigint ***) pdata); collength = mcopy.collength[n]; plength = mcopy.plength[n]; if (collength) ncols = (*((int ***) plength))[i][collength - 1]; else ncols = (*((int **) plength))[i]; for (m = 0; m < ncols; m++) array[j][m] = array[i][m]; } } } } if (bonus_flag) copy_bonus(i, j, delflag); if (atom->nextra_grow) for (int iextra = 0; iextra < atom->nextra_grow; iextra++) modify->fix[atom->extra_grow[iextra]]->copy_arrays(i, j, delflag); } /* ---------------------------------------------------------------------- */ int AtomVec::pack_comm(int n, int *list, double *buf, int pbc_flag, int *pbc) { int i, j, m, mm, nn, datatype, cols; double dx, dy, dz; void *pdata; m = 0; if (pbc_flag == 0) { for (i = 0; i < n; i++) { j = list[i]; buf[m++] = x[j][0]; buf[m++] = x[j][1]; buf[m++] = x[j][2]; } } else { if (domain->triclinic == 0) { dx = pbc[0] * domain->xprd; dy = pbc[1] * domain->yprd; dz = pbc[2] * domain->zprd; } else { dx = pbc[0] * domain->xprd + pbc[5] * domain->xy + pbc[4] * domain->xz; dy = pbc[1] * domain->yprd + pbc[3] * domain->yz; dz = pbc[2] * domain->zprd; } for (i = 0; i < n; i++) { j = list[i]; buf[m++] = x[j][0] + dx; buf[m++] = x[j][1] + dy; buf[m++] = x[j][2] + dz; } } if (ncomm) { for (nn = 0; nn < ncomm; nn++) { pdata = mcomm.pdata[nn]; datatype = mcomm.datatype[nn]; cols = mcomm.cols[nn]; if (datatype == Atom::DOUBLE) { if (cols == 0) { double *vec = *((double **) pdata); for (i = 0; i < n; i++) { j = list[i]; buf[m++] = vec[j]; } } else { double **array = *((double ***) pdata); for (i = 0; i < n; i++) { j = list[i]; for (mm = 0; mm < cols; mm++) buf[m++] = array[j][mm]; } } } else if (datatype == Atom::INT) { if (cols == 0) { int *vec = *((int **) pdata); for (i = 0; i < n; i++) { j = list[i]; buf[m++] = ubuf(vec[j]).d; } } else { int **array = *((int ***) pdata); for (i = 0; i < n; i++) { j = list[i]; for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[j][mm]).d; } } } else if (datatype == Atom::BIGINT) { if (cols == 0) { bigint *vec = *((bigint **) pdata); for (i = 0; i < n; i++) { j = list[i]; buf[m++] = ubuf(vec[j]).d; } } else { bigint **array = *((bigint ***) pdata); for (i = 0; i < n; i++) { j = list[i]; for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[j][mm]).d; } } } } } if (bonus_flag) m += pack_comm_bonus(n, list, &buf[m]); return m; } /* ---------------------------------------------------------------------- */ int AtomVec::pack_comm_vel(int n, int *list, double *buf, int pbc_flag, int *pbc) { int i, j, m, mm, nn, datatype, cols; double dx, dy, dz, dvx, dvy, dvz; void *pdata; m = 0; if (pbc_flag == 0) { for (i = 0; i < n; i++) { j = list[i]; buf[m++] = x[j][0]; buf[m++] = x[j][1]; buf[m++] = x[j][2]; buf[m++] = v[j][0]; buf[m++] = v[j][1]; buf[m++] = v[j][2]; } } else { if (domain->triclinic == 0) { dx = pbc[0] * domain->xprd; dy = pbc[1] * domain->yprd; dz = pbc[2] * domain->zprd; } else { dx = pbc[0] * domain->xprd + pbc[5] * domain->xy + pbc[4] * domain->xz; dy = pbc[1] * domain->yprd + pbc[3] * domain->yz; dz = pbc[2] * domain->zprd; } if (!deform_vremap) { for (i = 0; i < n; i++) { j = list[i]; buf[m++] = x[j][0] + dx; buf[m++] = x[j][1] + dy; buf[m++] = x[j][2] + dz; buf[m++] = v[j][0]; buf[m++] = v[j][1]; buf[m++] = v[j][2]; } } else { dvx = pbc[0] * h_rate[0] + pbc[5] * h_rate[5] + pbc[4] * h_rate[4]; dvy = pbc[1] * h_rate[1] + pbc[3] * h_rate[3]; dvz = pbc[2] * h_rate[2]; for (i = 0; i < n; i++) { j = list[i]; buf[m++] = x[j][0] + dx; buf[m++] = x[j][1] + dy; buf[m++] = x[j][2] + dz; if (mask[i] & deform_groupbit) { buf[m++] = v[j][0] + dvx; buf[m++] = v[j][1] + dvy; buf[m++] = v[j][2] + dvz; } else { buf[m++] = v[j][0]; buf[m++] = v[j][1]; buf[m++] = v[j][2]; } } } } if (ncomm_vel) { for (nn = 0; nn < ncomm_vel; nn++) { pdata = mcomm_vel.pdata[nn]; datatype = mcomm_vel.datatype[nn]; cols = mcomm_vel.cols[nn]; if (datatype == Atom::DOUBLE) { if (cols == 0) { double *vec = *((double **) pdata); for (i = 0; i < n; i++) { j = list[i]; buf[m++] = vec[j]; } } else { double **array = *((double ***) pdata); for (i = 0; i < n; i++) { j = list[i]; for (mm = 0; mm < cols; mm++) buf[m++] = array[j][mm]; } } } else if (datatype == Atom::INT) { if (cols == 0) { int *vec = *((int **) pdata); for (i = 0; i < n; i++) { j = list[i]; buf[m++] = ubuf(vec[j]).d; } } else { int **array = *((int ***) pdata); for (i = 0; i < n; i++) { j = list[i]; for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[j][mm]).d; } } } else if (datatype == Atom::BIGINT) { if (cols == 0) { bigint *vec = *((bigint **) pdata); for (i = 0; i < n; i++) { j = list[i]; buf[m++] = ubuf(vec[j]).d; } } else { bigint **array = *((bigint ***) pdata); for (i = 0; i < n; i++) { j = list[i]; for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[j][mm]).d; } } } } } if (bonus_flag) m += pack_comm_bonus(n, list, &buf[m]); return m; } /* ---------------------------------------------------------------------- */ void AtomVec::unpack_comm(int n, int first, double *buf) { int i, m, last, mm, nn, datatype, cols; void *pdata; m = 0; last = first + n; for (i = first; i < last; i++) { x[i][0] = buf[m++]; x[i][1] = buf[m++]; x[i][2] = buf[m++]; } if (ncomm) { for (nn = 0; nn < ncomm; nn++) { pdata = mcomm.pdata[nn]; datatype = mcomm.datatype[nn]; cols = mcomm.cols[nn]; if (datatype == Atom::DOUBLE) { if (cols == 0) { double *vec = *((double **) pdata); for (i = first; i < last; i++) vec[i] = buf[m++]; } else { double **array = *((double ***) pdata); for (i = first; i < last; i++) for (mm = 0; mm < cols; mm++) array[i][mm] = buf[m++]; } } else if (datatype == Atom::INT) { if (cols == 0) { int *vec = *((int **) pdata); for (i = first; i < last; i++) vec[i] = (int) ubuf(buf[m++]).i; } else { int **array = *((int ***) pdata); for (i = first; i < last; i++) for (mm = 0; mm < cols; mm++) array[i][mm] = (int) ubuf(buf[m++]).i; } } else if (datatype == Atom::BIGINT) { if (cols == 0) { bigint *vec = *((bigint **) pdata); for (i = first; i < last; i++) vec[i] = (bigint) ubuf(buf[m++]).i; } else { bigint **array = *((bigint ***) pdata); for (i = first; i < last; i++) for (mm = 0; mm < cols; mm++) array[i][mm] = (bigint) ubuf(buf[m++]).i; } } } } if (bonus_flag) unpack_comm_bonus(n, first, &buf[m]); } /* ---------------------------------------------------------------------- */ void AtomVec::unpack_comm_vel(int n, int first, double *buf) { int i, m, last, mm, nn, datatype, cols; void *pdata; m = 0; last = first + n; for (i = first; i < last; i++) { x[i][0] = buf[m++]; x[i][1] = buf[m++]; x[i][2] = buf[m++]; v[i][0] = buf[m++]; v[i][1] = buf[m++]; v[i][2] = buf[m++]; } if (ncomm_vel) { for (nn = 0; nn < ncomm_vel; nn++) { pdata = mcomm_vel.pdata[nn]; datatype = mcomm_vel.datatype[nn]; cols = mcomm_vel.cols[nn]; if (datatype == Atom::DOUBLE) { if (cols == 0) { double *vec = *((double **) pdata); for (i = first; i < last; i++) vec[i] = buf[m++]; } else { double **array = *((double ***) pdata); for (i = first; i < last; i++) for (mm = 0; mm < cols; mm++) array[i][mm] = buf[m++]; } } else if (datatype == Atom::INT) { if (cols == 0) { int *vec = *((int **) pdata); for (i = first; i < last; i++) vec[i] = (int) ubuf(buf[m++]).i; } else { int **array = *((int ***) pdata); for (i = first; i < last; i++) for (mm = 0; mm < cols; mm++) array[i][mm] = (int) ubuf(buf[m++]).i; } } else if (datatype == Atom::BIGINT) { if (cols == 0) { bigint *vec = *((bigint **) pdata); for (i = first; i < last; i++) vec[i] = (bigint) ubuf(buf[m++]).i; } else { bigint **array = *((bigint ***) pdata); for (i = first; i < last; i++) for (mm = 0; mm < cols; mm++) array[i][mm] = (bigint) ubuf(buf[m++]).i; } } } } if (bonus_flag) unpack_comm_bonus(n, first, &buf[m]); } /* ---------------------------------------------------------------------- */ int AtomVec::pack_reverse(int n, int first, double *buf) { int i, m, last, mm, nn, datatype, cols; void *pdata; m = 0; last = first + n; for (i = first; i < last; i++) { buf[m++] = f[i][0]; buf[m++] = f[i][1]; buf[m++] = f[i][2]; } if (nreverse) { for (nn = 0; nn < nreverse; nn++) { pdata = mreverse.pdata[nn]; datatype = mreverse.datatype[nn]; cols = mreverse.cols[nn]; if (datatype == Atom::DOUBLE) { if (cols == 0) { double *vec = *((double **) pdata); for (i = first; i < last; i++) { buf[m++] = vec[i]; } } else { double **array = *((double ***) pdata); for (i = first; i < last; i++) { for (mm = 0; mm < cols; mm++) buf[m++] = array[i][mm]; } } } else if (datatype == Atom::INT) { if (cols == 0) { int *vec = *((int **) pdata); for (i = first; i < last; i++) { buf[m++] = ubuf(vec[i]).d; } } else { int **array = *((int ***) pdata); for (i = first; i < last; i++) { for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[i][mm]).d; } } } else if (datatype == Atom::BIGINT) { if (cols == 0) { bigint *vec = *((bigint **) pdata); for (i = first; i < last; i++) { buf[m++] = ubuf(vec[i]).d; } } else { bigint **array = *((bigint ***) pdata); for (i = first; i < last; i++) { for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[i][mm]).d; } } } } } return m; } /* ---------------------------------------------------------------------- */ void AtomVec::unpack_reverse(int n, int *list, double *buf) { int i, j, m, mm, nn, datatype, cols; void *pdata; m = 0; for (i = 0; i < n; i++) { j = list[i]; f[j][0] += buf[m++]; f[j][1] += buf[m++]; f[j][2] += buf[m++]; } if (nreverse) { for (nn = 0; nn < nreverse; nn++) { pdata = mreverse.pdata[nn]; datatype = mreverse.datatype[nn]; cols = mreverse.cols[nn]; if (datatype == Atom::DOUBLE) { if (cols == 0) { double *vec = *((double **) pdata); for (i = 0; i < n; i++) { j = list[i]; vec[j] += buf[m++]; } } else { double **array = *((double ***) pdata); for (i = 0; i < n; i++) { j = list[i]; for (mm = 0; mm < cols; mm++) array[j][mm] += buf[m++]; } } } else if (datatype == Atom::INT) { if (cols == 0) { int *vec = *((int **) pdata); for (i = 0; i < n; i++) { j = list[i]; vec[j] += (int) ubuf(buf[m++]).i; } } else { int **array = *((int ***) pdata); for (i = 0; i < n; i++) { j = list[i]; for (mm = 0; mm < cols; mm++) array[j][mm] += (int) ubuf(buf[m++]).i; } } } else if (datatype == Atom::BIGINT) { if (cols == 0) { bigint *vec = *((bigint **) pdata); for (i = 0; i < n; i++) { j = list[i]; vec[j] += (bigint) ubuf(buf[m++]).i; } } else { bigint **array = *((bigint ***) pdata); for (i = 0; i < n; i++) { j = list[i]; for (mm = 0; mm < cols; mm++) array[j][mm] += (bigint) ubuf(buf[m++]).i; } } } } } } /* ---------------------------------------------------------------------- */ int AtomVec::pack_border(int n, int *list, double *buf, int pbc_flag, int *pbc) { int i, j, m, mm, nn, datatype, cols; double dx, dy, dz; void *pdata; m = 0; if (pbc_flag == 0) { for (i = 0; i < n; i++) { j = list[i]; buf[m++] = x[j][0]; buf[m++] = x[j][1]; buf[m++] = x[j][2]; buf[m++] = ubuf(tag[j]).d; buf[m++] = ubuf(type[j]).d; buf[m++] = ubuf(mask[j]).d; } } else { if (domain->triclinic == 0) { dx = pbc[0] * domain->xprd; dy = pbc[1] * domain->yprd; dz = pbc[2] * domain->zprd; } else { dx = pbc[0]; dy = pbc[1]; dz = pbc[2]; } for (i = 0; i < n; i++) { j = list[i]; buf[m++] = x[j][0] + dx; buf[m++] = x[j][1] + dy; buf[m++] = x[j][2] + dz; buf[m++] = ubuf(tag[j]).d; buf[m++] = ubuf(type[j]).d; buf[m++] = ubuf(mask[j]).d; } } if (nborder) { for (nn = 0; nn < nborder; nn++) { pdata = mborder.pdata[nn]; datatype = mborder.datatype[nn]; cols = mborder.cols[nn]; if (datatype == Atom::DOUBLE) { if (cols == 0) { double *vec = *((double **) pdata); for (i = 0; i < n; i++) { j = list[i]; buf[m++] = vec[j]; } } else { double **array = *((double ***) pdata); for (i = 0; i < n; i++) { j = list[i]; for (mm = 0; mm < cols; mm++) buf[m++] = array[j][mm]; } } } else if (datatype == Atom::INT) { if (cols == 0) { int *vec = *((int **) pdata); for (i = 0; i < n; i++) { j = list[i]; buf[m++] = ubuf(vec[j]).d; } } else { int **array = *((int ***) pdata); for (i = 0; i < n; i++) { j = list[i]; for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[j][mm]).d; } } } else if (datatype == Atom::BIGINT) { if (cols == 0) { bigint *vec = *((bigint **) pdata); for (i = 0; i < n; i++) { j = list[i]; buf[m++] = ubuf(vec[j]).d; } } else { bigint **array = *((bigint ***) pdata); for (i = 0; i < n; i++) { j = list[i]; for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[j][mm]).d; } } } } } if (bonus_flag) m += pack_border_bonus(n, list, &buf[m]); if (atom->nextra_border) for (int iextra = 0; iextra < atom->nextra_border; iextra++) m += modify->fix[atom->extra_border[iextra]]->pack_border(n, list, &buf[m]); return m; } /* ---------------------------------------------------------------------- */ int AtomVec::pack_border_vel(int n, int *list, double *buf, int pbc_flag, int *pbc) { int i, j, m, mm, nn, datatype, cols; double dx, dy, dz, dvx, dvy, dvz; void *pdata; m = 0; if (pbc_flag == 0) { for (i = 0; i < n; i++) { j = list[i]; buf[m++] = x[j][0]; buf[m++] = x[j][1]; buf[m++] = x[j][2]; buf[m++] = ubuf(tag[j]).d; buf[m++] = ubuf(type[j]).d; buf[m++] = ubuf(mask[j]).d; buf[m++] = v[j][0]; buf[m++] = v[j][1]; buf[m++] = v[j][2]; } } else { if (domain->triclinic == 0) { dx = pbc[0] * domain->xprd; dy = pbc[1] * domain->yprd; dz = pbc[2] * domain->zprd; } else { dx = pbc[0]; dy = pbc[1]; dz = pbc[2]; } if (!deform_vremap) { for (i = 0; i < n; i++) { j = list[i]; buf[m++] = x[j][0] + dx; buf[m++] = x[j][1] + dy; buf[m++] = x[j][2] + dz; buf[m++] = ubuf(tag[j]).d; buf[m++] = ubuf(type[j]).d; buf[m++] = ubuf(mask[j]).d; buf[m++] = v[j][0]; buf[m++] = v[j][1]; buf[m++] = v[j][2]; } } else { dvx = pbc[0] * h_rate[0] + pbc[5] * h_rate[5] + pbc[4] * h_rate[4]; dvy = pbc[1] * h_rate[1] + pbc[3] * h_rate[3]; dvz = pbc[2] * h_rate[2]; for (i = 0; i < n; i++) { j = list[i]; buf[m++] = x[j][0] + dx; buf[m++] = x[j][1] + dy; buf[m++] = x[j][2] + dz; buf[m++] = ubuf(tag[j]).d; buf[m++] = ubuf(type[j]).d; buf[m++] = ubuf(mask[j]).d; if (mask[i] & deform_groupbit) { buf[m++] = v[j][0] + dvx; buf[m++] = v[j][1] + dvy; buf[m++] = v[j][2] + dvz; } else { buf[m++] = v[j][0]; buf[m++] = v[j][1]; buf[m++] = v[j][2]; } } } } if (nborder_vel) { for (nn = 0; nn < nborder_vel; nn++) { pdata = mborder_vel.pdata[nn]; datatype = mborder_vel.datatype[nn]; cols = mborder_vel.cols[nn]; if (datatype == Atom::DOUBLE) { if (cols == 0) { double *vec = *((double **) pdata); for (i = 0; i < n; i++) { j = list[i]; buf[m++] = vec[j]; } } else { double **array = *((double ***) pdata); for (i = 0; i < n; i++) { j = list[i]; for (mm = 0; mm < cols; mm++) buf[m++] = array[j][mm]; } } } else if (datatype == Atom::INT) { if (cols == 0) { int *vec = *((int **) pdata); for (i = 0; i < n; i++) { j = list[i]; buf[m++] = ubuf(vec[j]).d; } } else { int **array = *((int ***) pdata); for (i = 0; i < n; i++) { j = list[i]; for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[j][mm]).d; } } } else if (datatype == Atom::BIGINT) { if (cols == 0) { bigint *vec = *((bigint **) pdata); for (i = 0; i < n; i++) { j = list[i]; buf[m++] = ubuf(vec[j]).d; } } else { bigint **array = *((bigint ***) pdata); for (i = 0; i < n; i++) { j = list[i]; for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[j][mm]).d; } } } } } if (bonus_flag) m += pack_border_bonus(n, list, &buf[m]); if (atom->nextra_border) for (int iextra = 0; iextra < atom->nextra_border; iextra++) m += modify->fix[atom->extra_border[iextra]]->pack_border(n, list, &buf[m]); return m; } /* ---------------------------------------------------------------------- */ void AtomVec::unpack_border(int n, int first, double *buf) { int i, m, last, mm, nn, datatype, cols; void *pdata; m = 0; last = first + n; while (last > nmax) grow(0); for (i = first; i < last; i++) { x[i][0] = buf[m++]; x[i][1] = buf[m++]; x[i][2] = buf[m++]; tag[i] = (tagint) ubuf(buf[m++]).i; type[i] = (int) ubuf(buf[m++]).i; mask[i] = (int) ubuf(buf[m++]).i; } if (nborder) { for (nn = 0; nn < nborder; nn++) { pdata = mborder.pdata[nn]; datatype = mborder.datatype[nn]; cols = mborder.cols[nn]; if (datatype == Atom::DOUBLE) { if (cols == 0) { double *vec = *((double **) pdata); for (i = first; i < last; i++) vec[i] = buf[m++]; } else { double **array = *((double ***) pdata); for (i = first; i < last; i++) for (mm = 0; mm < cols; mm++) array[i][mm] = buf[m++]; } } else if (datatype == Atom::INT) { if (cols == 0) { int *vec = *((int **) pdata); for (i = first; i < last; i++) vec[i] = (int) ubuf(buf[m++]).i; } else { int **array = *((int ***) pdata); for (i = first; i < last; i++) for (mm = 0; mm < cols; mm++) array[i][mm] = (int) ubuf(buf[m++]).i; } } else if (datatype == Atom::BIGINT) { if (cols == 0) { bigint *vec = *((bigint **) pdata); for (i = first; i < last; i++) vec[i] = (bigint) ubuf(buf[m++]).i; } else { bigint **array = *((bigint ***) pdata); for (i = first; i < last; i++) for (mm = 0; mm < cols; mm++) array[i][mm] = (bigint) ubuf(buf[m++]).i; } } } } if (bonus_flag) m += unpack_border_bonus(n, first, &buf[m]); if (atom->nextra_border) for (int iextra = 0; iextra < atom->nextra_border; iextra++) m += modify->fix[atom->extra_border[iextra]]->unpack_border(n, first, &buf[m]); } /* ---------------------------------------------------------------------- */ void AtomVec::unpack_border_vel(int n, int first, double *buf) { int i, m, last, mm, nn, datatype, cols; void *pdata; m = 0; last = first + n; while (last > nmax) grow(0); for (i = first; i < last; i++) { x[i][0] = buf[m++]; x[i][1] = buf[m++]; x[i][2] = buf[m++]; tag[i] = (tagint) ubuf(buf[m++]).i; type[i] = (int) ubuf(buf[m++]).i; mask[i] = (int) ubuf(buf[m++]).i; v[i][0] = buf[m++]; v[i][1] = buf[m++]; v[i][2] = buf[m++]; } if (nborder_vel) { for (nn = 0; nn < nborder_vel; nn++) { pdata = mborder_vel.pdata[nn]; datatype = mborder_vel.datatype[nn]; cols = mborder_vel.cols[nn]; if (datatype == Atom::DOUBLE) { if (cols == 0) { double *vec = *((double **) pdata); for (i = first; i < last; i++) vec[i] = buf[m++]; } else { double **array = *((double ***) pdata); for (i = first; i < last; i++) for (mm = 0; mm < cols; mm++) array[i][mm] = buf[m++]; } } else if (datatype == Atom::INT) { if (cols == 0) { int *vec = *((int **) pdata); for (i = first; i < last; i++) vec[i] = (int) ubuf(buf[m++]).i; } else { int **array = *((int ***) pdata); for (i = first; i < last; i++) for (mm = 0; mm < cols; mm++) array[i][mm] = (int) ubuf(buf[m++]).i; } } else if (datatype == Atom::BIGINT) { if (cols == 0) { bigint *vec = *((bigint **) pdata); for (i = first; i < last; i++) vec[i] = (bigint) ubuf(buf[m++]).i; } else { bigint **array = *((bigint ***) pdata); for (i = first; i < last; i++) for (mm = 0; mm < cols; mm++) array[i][mm] = (bigint) ubuf(buf[m++]).i; } } } } if (bonus_flag) m += unpack_border_bonus(n, first, &buf[m]); if (atom->nextra_border) for (int iextra = 0; iextra < atom->nextra_border; iextra++) m += modify->fix[atom->extra_border[iextra]]->unpack_border(n, first, &buf[m]); } /* ---------------------------------------------------------------------- pack data for atom I for sending to another proc xyz must be 1st 3 values, so comm::exchange() can test on them ------------------------------------------------------------------------- */ int AtomVec::pack_exchange(int i, double *buf) { int mm, nn, datatype, cols, collength, ncols; void *pdata, *plength; int m = 1; buf[m++] = x[i][0]; buf[m++] = x[i][1]; buf[m++] = x[i][2]; buf[m++] = v[i][0]; buf[m++] = v[i][1]; buf[m++] = v[i][2]; buf[m++] = ubuf(tag[i]).d; buf[m++] = ubuf(type[i]).d; buf[m++] = ubuf(mask[i]).d; buf[m++] = ubuf(image[i]).d; if (nexchange) { for (nn = 0; nn < nexchange; nn++) { pdata = mexchange.pdata[nn]; datatype = mexchange.datatype[nn]; cols = mexchange.cols[nn]; if (datatype == Atom::DOUBLE) { if (cols == 0) { double *vec = *((double **) pdata); buf[m++] = vec[i]; } else if (cols > 0) { double **array = *((double ***) pdata); for (mm = 0; mm < cols; mm++) buf[m++] = array[i][mm]; } else { double **array = *((double ***) pdata); collength = mexchange.collength[nn]; plength = mexchange.plength[nn]; if (collength) ncols = (*((int ***) plength))[i][collength - 1]; else ncols = (*((int **) plength))[i]; for (mm = 0; mm < ncols; mm++) buf[m++] = array[i][mm]; } } if (datatype == Atom::INT) { if (cols == 0) { int *vec = *((int **) pdata); buf[m++] = ubuf(vec[i]).d; } else if (cols > 0) { int **array = *((int ***) pdata); for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[i][mm]).d; } else { int **array = *((int ***) pdata); collength = mexchange.collength[nn]; plength = mexchange.plength[nn]; if (collength) ncols = (*((int ***) plength))[i][collength - 1]; else ncols = (*((int **) plength))[i]; for (mm = 0; mm < ncols; mm++) buf[m++] = ubuf(array[i][mm]).d; } } if (datatype == Atom::BIGINT) { if (cols == 0) { bigint *vec = *((bigint **) pdata); buf[m++] = ubuf(vec[i]).d; } else if (cols > 0) { bigint **array = *((bigint ***) pdata); for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[i][mm]).d; } else { bigint **array = *((bigint ***) pdata); collength = mexchange.collength[nn]; plength = mexchange.plength[nn]; if (collength) ncols = (*((int ***) plength))[i][collength - 1]; else ncols = (*((int **) plength))[i]; for (mm = 0; mm < ncols; mm++) buf[m++] = ubuf(array[i][mm]).d; } } } } if (bonus_flag) m += pack_exchange_bonus(i, &buf[m]); if (atom->nextra_grow) for (int iextra = 0; iextra < atom->nextra_grow; iextra++) m += modify->fix[atom->extra_grow[iextra]]->pack_exchange(i, &buf[m]); buf[0] = m; return m; } /* ---------------------------------------------------------------------- */ int AtomVec::unpack_exchange(double *buf) { int mm, nn, datatype, cols, collength, ncols; void *pdata, *plength; int nlocal = atom->nlocal; if (nlocal == nmax) grow(0); int m = 1; x[nlocal][0] = buf[m++]; x[nlocal][1] = buf[m++]; x[nlocal][2] = buf[m++]; v[nlocal][0] = buf[m++]; v[nlocal][1] = buf[m++]; v[nlocal][2] = buf[m++]; tag[nlocal] = (tagint) ubuf(buf[m++]).i; type[nlocal] = (int) ubuf(buf[m++]).i; mask[nlocal] = (int) ubuf(buf[m++]).i; image[nlocal] = (imageint) ubuf(buf[m++]).i; if (nexchange) { for (nn = 0; nn < nexchange; nn++) { pdata = mexchange.pdata[nn]; datatype = mexchange.datatype[nn]; cols = mexchange.cols[nn]; if (datatype == Atom::DOUBLE) { if (cols == 0) { double *vec = *((double **) pdata); vec[nlocal] = buf[m++]; } else if (cols > 0) { double **array = *((double ***) pdata); for (mm = 0; mm < cols; mm++) array[nlocal][mm] = buf[m++]; } else { double **array = *((double ***) pdata); collength = mexchange.collength[nn]; plength = mexchange.plength[nn]; if (collength) ncols = (*((int ***) plength))[nlocal][collength - 1]; else ncols = (*((int **) plength))[nlocal]; for (mm = 0; mm < ncols; mm++) array[nlocal][mm] = buf[m++]; } } else if (datatype == Atom::INT) { if (cols == 0) { int *vec = *((int **) pdata); vec[nlocal] = (int) ubuf(buf[m++]).i; } else if (cols > 0) { int **array = *((int ***) pdata); for (mm = 0; mm < cols; mm++) array[nlocal][mm] = (int) ubuf(buf[m++]).i; } else { int **array = *((int ***) pdata); collength = mexchange.collength[nn]; plength = mexchange.plength[nn]; if (collength) ncols = (*((int ***) plength))[nlocal][collength - 1]; else ncols = (*((int **) plength))[nlocal]; for (mm = 0; mm < ncols; mm++) array[nlocal][mm] = (int) ubuf(buf[m++]).i; } } else if (datatype == Atom::BIGINT) { if (cols == 0) { bigint *vec = *((bigint **) pdata); vec[nlocal] = (bigint) ubuf(buf[m++]).i; } else if (cols > 0) { bigint **array = *((bigint ***) pdata); for (mm = 0; mm < cols; mm++) array[nlocal][mm] = (bigint) ubuf(buf[m++]).i; } else { bigint **array = *((bigint ***) pdata); collength = mexchange.collength[nn]; plength = mexchange.plength[nn]; if (collength) ncols = (*((int ***) plength))[nlocal][collength - 1]; else ncols = (*((int **) plength))[nlocal]; for (mm = 0; mm < ncols; mm++) array[nlocal][mm] = (bigint) ubuf(buf[m++]).i; } } } } if (bonus_flag) m += unpack_exchange_bonus(nlocal, &buf[m]); if (atom->nextra_grow) for (int iextra = 0; iextra < atom->nextra_grow; iextra++) m += modify->fix[atom->extra_grow[iextra]]->unpack_exchange(nlocal, &buf[m]); atom->nlocal++; return m; } /* ---------------------------------------------------------------------- size of restart data for all atoms owned by this proc include extra data stored by fixes ------------------------------------------------------------------------- */ int AtomVec::size_restart() { int i, nn, cols, collength, ncols; void *plength; // NOTE: need to worry about overflow of returned int N int nlocal = atom->nlocal; // 11 = length storage + id,type,mask,image,x,v int n = 11 * nlocal; if (nrestart) { for (nn = 0; nn < nrestart; nn++) { cols = mrestart.cols[nn]; if (cols == 0) n += nlocal; else if (cols > 0) n += cols * nlocal; else { collength = mrestart.collength[nn]; plength = mrestart.plength[nn]; for (i = 0; i < nlocal; i++) { if (collength) ncols = (*((int ***) plength))[i][collength - 1]; else ncols = (*((int **) plength))[i]; n += ncols; } } } } if (bonus_flag) n += size_restart_bonus(); if (atom->nextra_restart) for (int iextra = 0; iextra < atom->nextra_restart; iextra++) for (i = 0; i < nlocal; i++) n += modify->fix[atom->extra_restart[iextra]]->size_restart(i); return n; } /* ---------------------------------------------------------------------- pack atom I's data for restart file including extra quantities xyz must be 1st 3 values, so that read_restart can test on them molecular types may be negative, but write as positive ------------------------------------------------------------------------- */ int AtomVec::pack_restart(int i, double *buf) { int mm, nn, datatype, cols, collength, ncols; void *pdata, *plength; // if needed, change values before packing pack_restart_pre(i); int m = 1; buf[m++] = x[i][0]; buf[m++] = x[i][1]; buf[m++] = x[i][2]; buf[m++] = ubuf(tag[i]).d; buf[m++] = ubuf(type[i]).d; buf[m++] = ubuf(mask[i]).d; buf[m++] = ubuf(image[i]).d; buf[m++] = v[i][0]; buf[m++] = v[i][1]; buf[m++] = v[i][2]; for (nn = 0; nn < nrestart; nn++) { pdata = mrestart.pdata[nn]; datatype = mrestart.datatype[nn]; cols = mrestart.cols[nn]; if (datatype == Atom::DOUBLE) { if (cols == 0) { double *vec = *((double **) pdata); buf[m++] = vec[i]; } else if (cols > 0) { double **array = *((double ***) pdata); for (mm = 0; mm < cols; mm++) buf[m++] = array[i][mm]; } else { double **array = *((double ***) pdata); collength = mrestart.collength[nn]; plength = mrestart.plength[nn]; if (collength) ncols = (*((int ***) plength))[i][collength - 1]; else ncols = (*((int **) plength))[i]; for (mm = 0; mm < ncols; mm++) buf[m++] = array[i][mm]; } } else if (datatype == Atom::INT) { if (cols == 0) { int *vec = *((int **) pdata); buf[m++] = ubuf(vec[i]).d; } else if (cols > 0) { int **array = *((int ***) pdata); for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[i][mm]).d; } else { int **array = *((int ***) pdata); collength = mrestart.collength[nn]; plength = mrestart.plength[nn]; if (collength) ncols = (*((int ***) plength))[i][collength - 1]; else ncols = (*((int **) plength))[i]; for (mm = 0; mm < ncols; mm++) buf[m++] = ubuf(array[i][mm]).d; } } else if (datatype == Atom::BIGINT) { if (cols == 0) { bigint *vec = *((bigint **) pdata); buf[m++] = ubuf(vec[i]).d; } else if (cols > 0) { bigint **array = *((bigint ***) pdata); for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[i][mm]).d; } else { bigint **array = *((bigint ***) pdata); collength = mrestart.collength[nn]; plength = mrestart.plength[nn]; if (collength) ncols = (*((int ***) plength))[i][collength - 1]; else ncols = (*((int **) plength))[i]; for (mm = 0; mm < ncols; mm++) buf[m++] = ubuf(array[i][mm]).d; } } } if (bonus_flag) m += pack_restart_bonus(i, &buf[m]); // if needed, restore values after packing pack_restart_post(i); // invoke fixes which store peratom restart info for (int iextra = 0; iextra < atom->nextra_restart; iextra++) m += modify->fix[atom->extra_restart[iextra]]->pack_restart(i, &buf[m]); buf[0] = m; return m; } /* ---------------------------------------------------------------------- unpack data for one atom from restart file including extra quantities ------------------------------------------------------------------------- */ int AtomVec::unpack_restart(double *buf) { int mm, nn, datatype, cols, collength, ncols; void *pdata, *plength; int nlocal = atom->nlocal; if (nlocal == nmax) { grow(0); if (atom->nextra_store) memory->grow(atom->extra, nmax, atom->nextra_store, "atom:extra"); } int m = 1; x[nlocal][0] = buf[m++]; x[nlocal][1] = buf[m++]; x[nlocal][2] = buf[m++]; tag[nlocal] = (tagint) ubuf(buf[m++]).i; type[nlocal] = (int) ubuf(buf[m++]).i; mask[nlocal] = (int) ubuf(buf[m++]).i; image[nlocal] = (imageint) ubuf(buf[m++]).i; v[nlocal][0] = buf[m++]; v[nlocal][1] = buf[m++]; v[nlocal][2] = buf[m++]; for (nn = 0; nn < nrestart; nn++) { pdata = mrestart.pdata[nn]; datatype = mrestart.datatype[nn]; cols = mrestart.cols[nn]; if (datatype == Atom::DOUBLE) { if (cols == 0) { double *vec = *((double **) pdata); vec[nlocal] = buf[m++]; } else if (cols > 0) { double **array = *((double ***) pdata); for (mm = 0; mm < cols; mm++) array[nlocal][mm] = buf[m++]; } else { double **array = *((double ***) pdata); collength = mrestart.collength[nn]; plength = mrestart.plength[nn]; if (collength) ncols = (*((int ***) plength))[nlocal][collength - 1]; else ncols = (*((int **) plength))[nlocal]; for (mm = 0; mm < ncols; mm++) array[nlocal][mm] = buf[m++]; } } else if (datatype == Atom::INT) { if (cols == 0) { int *vec = *((int **) pdata); vec[nlocal] = (int) ubuf(buf[m++]).i; } else if (cols > 0) { int **array = *((int ***) pdata); for (mm = 0; mm < cols; mm++) array[nlocal][mm] = (int) ubuf(buf[m++]).i; } else { int **array = *((int ***) pdata); collength = mrestart.collength[nn]; plength = mrestart.plength[nn]; if (collength) ncols = (*((int ***) plength))[nlocal][collength - 1]; else ncols = (*((int **) plength))[nlocal]; for (mm = 0; mm < ncols; mm++) array[nlocal][mm] = (int) ubuf(buf[m++]).i; } } else if (datatype == Atom::BIGINT) { if (cols == 0) { bigint *vec = *((bigint **) pdata); vec[nlocal] = (bigint) ubuf(buf[m++]).i; } else if (cols > 0) { bigint **array = *((bigint ***) pdata); for (mm = 0; mm < cols; mm++) array[nlocal][mm] = (bigint) ubuf(buf[m++]).i; } else { bigint **array = *((bigint ***) pdata); collength = mrestart.collength[nn]; plength = mrestart.plength[nn]; if (collength) ncols = (*((int ***) plength))[nlocal][collength - 1]; else ncols = (*((int **) plength))[nlocal]; for (mm = 0; mm < ncols; mm++) array[nlocal][mm] = (bigint) ubuf(buf[m++]).i; } } } if (bonus_flag) m += unpack_restart_bonus(nlocal, &buf[m]); // if needed, initialize other peratom values unpack_restart_init(nlocal); // store extra restart info which fixes can unpack when instantiated double **extra = atom->extra; if (atom->nextra_store) { int size = static_cast(buf[0]) - m; for (int i = 0; i < size; i++) extra[nlocal][i] = buf[m++]; } atom->nlocal++; return m; } /* ---------------------------------------------------------------------- create one atom of itype at coord set other values to defaults ------------------------------------------------------------------------- */ void AtomVec::create_atom(int itype, double *coord) { int m, n, datatype, cols; void *pdata; int nlocal = atom->nlocal; if (nlocal == nmax) grow(0); tag[nlocal] = 0; type[nlocal] = itype; x[nlocal][0] = coord[0]; x[nlocal][1] = coord[1]; x[nlocal][2] = coord[2]; mask[nlocal] = 1; image[nlocal] = ((imageint) IMGMAX << IMG2BITS) | ((imageint) IMGMAX << IMGBITS) | IMGMAX; v[nlocal][0] = 0.0; v[nlocal][1] = 0.0; v[nlocal][2] = 0.0; // initialization additional fields for (n = 0; n < ncreate; n++) { pdata = mcreate.pdata[n]; datatype = mcreate.datatype[n]; cols = mcreate.cols[n]; if (datatype == Atom::DOUBLE) { if (cols == 0) { double *vec = *((double **) pdata); vec[nlocal] = 0.0; } else { double **array = *((double ***) pdata); for (m = 0; m < cols; m++) array[nlocal][m] = 0.0; } } else if (datatype == Atom::INT) { if (cols == 0) { int *vec = *((int **) pdata); vec[nlocal] = 0; } else { int **array = *((int ***) pdata); for (m = 0; m < cols; m++) array[nlocal][m] = 0; } } else if (datatype == Atom::BIGINT) { if (cols == 0) { bigint *vec = *((bigint **) pdata); vec[nlocal] = 0; } else { bigint **array = *((bigint ***) pdata); for (m = 0; m < cols; m++) array[nlocal][m] = 0; } } } // if needed, initialize non-zero peratom values create_atom_post(nlocal); atom->nlocal++; } /* ---------------------------------------------------------------------- unpack one line from Atoms section of data file initialize other peratom quantities ------------------------------------------------------------------------- */ void AtomVec::data_atom(double *coord, imageint imagetmp, const std::vector &values, std::string &extract) { int m, n, datatype, cols; void *pdata; int nlocal = atom->nlocal; if (nlocal == nmax) grow(0); x[nlocal][0] = coord[0]; x[nlocal][1] = coord[1]; x[nlocal][2] = coord[2]; mask[nlocal] = 1; image[nlocal] = imagetmp; v[nlocal][0] = 0.0; v[nlocal][1] = 0.0; v[nlocal][2] = 0.0; int ivalue = 0; for (n = 0; n < ndata_atom; n++) { pdata = mdata_atom.pdata[n]; datatype = mdata_atom.datatype[n]; cols = mdata_atom.cols[n]; if (datatype == Atom::DOUBLE) { if (cols == 0) { double *vec = *((double **) pdata); vec[nlocal] = utils::numeric(FLERR, values[ivalue++], true, lmp); } else { double **array = *((double ***) pdata); if (array == atom->x) { // x was already set by coord arg ivalue += cols; continue; } for (m = 0; m < cols; m++) array[nlocal][m] = utils::numeric(FLERR, values[ivalue++], true, lmp); } } else if (datatype == Atom::INT) { if (cols == 0) { int *vec = *((int **) pdata); if (vec == atom->type) { // custom treatment of atom types extract = values[ivalue++]; continue; } vec[nlocal] = utils::inumeric(FLERR, values[ivalue++], true, lmp); } else { int **array = *((int ***) pdata); for (m = 0; m < cols; m++) array[nlocal][m] = utils::inumeric(FLERR, values[ivalue++], true, lmp); } } else if (datatype == Atom::BIGINT) { if (cols == 0) { bigint *vec = *((bigint **) pdata); vec[nlocal] = utils::bnumeric(FLERR, values[ivalue++], true, lmp); } else { bigint **array = *((bigint ***) pdata); for (m = 0; m < cols; m++) array[nlocal][m] = utils::bnumeric(FLERR, values[ivalue++], true, lmp); } } } // error checks applicable to all styles if ((atom->tag_enable && (tag[nlocal] <= 0)) || (!atom->tag_enable && (tag[nlocal] != 0))) error->one(FLERR, "Invalid atom ID {} in line {} of Atoms section of data file", tag[nlocal], nlocal + 1); // if needed, modify unpacked values or initialize other peratom values data_atom_post(nlocal); atom->nlocal++; } /* ---------------------------------------------------------------------- pack atom info for data file including 3 image flags ------------------------------------------------------------------------- */ void AtomVec::pack_data(double **buf) { int i, j, m, n, datatype, cols; void *pdata; int nlocal = atom->nlocal; for (i = 0; i < nlocal; i++) { // if needed, change values before packing pack_data_pre(i); j = 0; for (n = 0; n < ndata_atom; n++) { pdata = mdata_atom.pdata[n]; datatype = mdata_atom.datatype[n]; cols = mdata_atom.cols[n]; if (datatype == Atom::DOUBLE) { if (cols == 0) { double *vec = *((double **) pdata); buf[i][j++] = vec[i]; } else { double **array = *((double ***) pdata); for (m = 0; m < cols; m++) buf[i][j++] = array[i][m]; } } else if (datatype == Atom::INT) { if (cols == 0) { int *vec = *((int **) pdata); buf[i][j++] = ubuf(vec[i]).d; } else { int **array = *((int ***) pdata); for (m = 0; m < cols; m++) buf[i][j++] = ubuf(array[i][m]).d; } } else if (datatype == Atom::BIGINT) { if (cols == 0) { bigint *vec = *((bigint **) pdata); buf[i][j++] = ubuf(vec[i]).d; } else { bigint **array = *((bigint ***) pdata); for (m = 0; m < cols; m++) buf[i][j++] = ubuf(array[i][m]).d; } } } buf[i][j++] = ubuf((image[i] & IMGMASK) - IMGMAX).d; buf[i][j++] = ubuf((image[i] >> IMGBITS & IMGMASK) - IMGMAX).d; buf[i][j++] = ubuf((image[i] >> IMG2BITS) - IMGMAX).d; // if needed, restore values after packing pack_data_post(i); } } /* ---------------------------------------------------------------------- write atom info to data file id is first field, 3 image flags are final fields ------------------------------------------------------------------------- */ void AtomVec::write_data(FILE *fp, int n, double **buf) { int i, j, m, nn, datatype, cols; for (i = 0; i < n; i++) { utils::print(fp, "{}", ubuf(buf[i][0]).i); j = 1; for (nn = 1; nn < ndata_atom; nn++) { datatype = mdata_atom.datatype[nn]; cols = mdata_atom.cols[nn]; if (datatype == Atom::DOUBLE) { if (cols == 0) { utils::print(fp, " {:.16}", buf[i][j++]); } else { for (m = 0; m < cols; m++) utils::print(fp, " {}", buf[i][j++]); } } else if (datatype == Atom::INT) { if (cols == 0) { if (atom->types_style == Atom::LABELS && atom->peratom[mdata_atom.index[nn]].name == "type") { utils::print(fp, " {}", atom->lmap->typelabel[ubuf(buf[i][j++]).i - 1]); } else utils::print(fp, " {}", ubuf(buf[i][j++]).i); } else { for (m = 0; m < cols; m++) utils::print(fp, " {}", ubuf(buf[i][j++]).i); } } else if (datatype == Atom::BIGINT) { if (cols == 0) { utils::print(fp, " {}", ubuf(buf[i][j++]).i); } else { for (m = 0; m < cols; m++) utils::print(fp, " {}", ubuf(buf[i][j++]).i); } } } utils::print(fp, " {} {} {}\n", ubuf(buf[i][j]).i, ubuf(buf[i][j + 1]).i, ubuf(buf[i][j + 2]).i); } } /* ---------------------------------------------------------------------- unpack one line from Velocities section of data file ------------------------------------------------------------------------- */ void AtomVec::data_vel(int ilocal, const std::vector &values) { int m, n, datatype, cols; void *pdata; double **v = atom->v; int ivalue = 1; v[ilocal][0] = utils::numeric(FLERR, values[ivalue++], true, lmp); v[ilocal][1] = utils::numeric(FLERR, values[ivalue++], true, lmp); v[ilocal][2] = utils::numeric(FLERR, values[ivalue++], true, lmp); if (ndata_vel > 2) { for (n = 2; n < ndata_vel; n++) { pdata = mdata_vel.pdata[n]; datatype = mdata_vel.datatype[n]; cols = mdata_vel.cols[n]; if (datatype == Atom::DOUBLE) { if (cols == 0) { double *vec = *((double **) pdata); vec[ilocal] = utils::numeric(FLERR, values[ivalue++], true, lmp); } else { double **array = *((double ***) pdata); for (m = 0; m < cols; m++) array[ilocal][m] = utils::numeric(FLERR, values[ivalue++], true, lmp); } } else if (datatype == Atom::INT) { if (cols == 0) { int *vec = *((int **) pdata); vec[ilocal] = utils::inumeric(FLERR, values[ivalue++], true, lmp); } else { int **array = *((int ***) pdata); for (m = 0; m < cols; m++) array[ilocal][m] = utils::inumeric(FLERR, values[ivalue++], true, lmp); } } else if (datatype == Atom::BIGINT) { if (cols == 0) { bigint *vec = *((bigint **) pdata); vec[ilocal] = utils::bnumeric(FLERR, values[ivalue++], true, lmp); } else { bigint **array = *((bigint ***) pdata); for (m = 0; m < cols; m++) array[ilocal][m] = utils::bnumeric(FLERR, values[ivalue++], true, lmp); } } } } } /* ---------------------------------------------------------------------- pack velocity info for data file ------------------------------------------------------------------------- */ void AtomVec::pack_vel(double **buf) { int i, j, m, n, datatype, cols; void *pdata; int nlocal = atom->nlocal; for (i = 0; i < nlocal; i++) { j = 0; for (n = 0; n < ndata_vel; n++) { pdata = mdata_vel.pdata[n]; datatype = mdata_vel.datatype[n]; cols = mdata_vel.cols[n]; if (datatype == Atom::DOUBLE) { if (cols == 0) { double *vec = *((double **) pdata); buf[i][j++] = vec[i]; } else { double **array = *((double ***) pdata); for (m = 0; m < cols; m++) buf[i][j++] = array[i][m]; } } else if (datatype == Atom::INT) { if (cols == 0) { int *vec = *((int **) pdata); buf[i][j++] = ubuf(vec[i]).d; } else { int **array = *((int ***) pdata); for (m = 0; m < cols; m++) buf[i][j++] = ubuf(array[i][m]).d; } } else if (datatype == Atom::BIGINT) { if (cols == 0) { bigint *vec = *((bigint **) pdata); buf[i][j++] = ubuf(vec[i]).d; } else { bigint **array = *((bigint ***) pdata); for (m = 0; m < cols; m++) buf[i][j++] = ubuf(array[i][m]).d; } } } } } /* ---------------------------------------------------------------------- write velocity info to data file id and velocity vector are first 4 fields ------------------------------------------------------------------------- */ void AtomVec::write_vel(FILE *fp, int n, double **buf) { int i, j, m, nn, datatype, cols; for (i = 0; i < n; i++) { utils::print(fp, "{}", ubuf(buf[i][0]).i); j = 1; for (nn = 1; nn < ndata_vel; nn++) { datatype = mdata_vel.datatype[nn]; cols = mdata_vel.cols[nn]; if (datatype == Atom::DOUBLE) { if (cols == 0) { utils::print(fp, " {}", buf[i][j++]); } else { for (m = 0; m < cols; m++) utils::print(fp, " {}", buf[i][j++]); } } else if (datatype == Atom::INT) { if (cols == 0) { utils::print(fp, " {}", ubuf(buf[i][j++]).i); } else { for (m = 0; m < cols; m++) utils::print(fp, " {}", ubuf(buf[i][j++]).i); } } else if (datatype == Atom::BIGINT) { if (cols == 0) { utils::print(fp, " {}", ubuf(buf[i][j++]).i); } else { for (m = 0; m < cols; m++) utils::print(fp, " {}", ubuf(buf[i][j++]).i); } } } fputs("\n", fp); } } /* ---------------------------------------------------------------------- pack bond info for data file into buf if non-nullptr return count of bonds from this proc do not count/pack bonds with bondtype = 0 if bondtype is negative, flip back to positive ------------------------------------------------------------------------- */ int AtomVec::pack_bond(tagint **buf) { tagint *tag = atom->tag; int *num_bond = atom->num_bond; int **bond_type = atom->bond_type; tagint **bond_atom = atom->bond_atom; int nlocal = atom->nlocal; int newton_bond = force->newton_bond; int i, j; int m = 0; if (newton_bond) { for (i = 0; i < nlocal; i++) for (j = 0; j < num_bond[i]; j++) { if (bond_type[i][j] == 0) continue; if (buf) { buf[m][0] = MAX(bond_type[i][j], -bond_type[i][j]); buf[m][1] = tag[i]; buf[m][2] = bond_atom[i][j]; } m++; } } else { for (i = 0; i < nlocal; i++) for (j = 0; j < num_bond[i]; j++) if (tag[i] < bond_atom[i][j]) { if (bond_type[i][j] == 0) continue; if (buf) { buf[m][0] = MAX(bond_type[i][j], -bond_type[i][j]); buf[m][1] = tag[i]; buf[m][2] = bond_atom[i][j]; } m++; } } return m; } /* ---------------------------------------------------------------------- write bond info to data file ------------------------------------------------------------------------- */ void AtomVec::write_bond(FILE *fp, int n, tagint **buf, int index) { std::string typestr; for (int i = 0; i < n; i++) { typestr = std::to_string(buf[i][0]); if (atom->types_style == Atom::LABELS) typestr = atom->lmap->btypelabel[buf[i][0] - 1]; utils::print(fp, "{} {} {} {}\n", index, typestr, buf[i][1], buf[i][2]); index++; } } /* ---------------------------------------------------------------------- pack angle info for data file into buf if non-nullptr return count of angles from this proc do not count/pack angles with angletype = 0 if angletype is negative, flip back to positive ------------------------------------------------------------------------- */ int AtomVec::pack_angle(tagint **buf) { tagint *tag = atom->tag; int *num_angle = atom->num_angle; int **angle_type = atom->angle_type; tagint **angle_atom1 = atom->angle_atom1; tagint **angle_atom2 = atom->angle_atom2; tagint **angle_atom3 = atom->angle_atom3; int nlocal = atom->nlocal; int newton_bond = force->newton_bond; int i, j; int m = 0; if (newton_bond) { for (i = 0; i < nlocal; i++) for (j = 0; j < num_angle[i]; j++) { if (angle_type[i][j] == 0) continue; if (buf) { buf[m][0] = MAX(angle_type[i][j], -angle_type[i][j]); buf[m][1] = angle_atom1[i][j]; buf[m][2] = angle_atom2[i][j]; buf[m][3] = angle_atom3[i][j]; } m++; } } else { for (i = 0; i < nlocal; i++) for (j = 0; j < num_angle[i]; j++) if (tag[i] == angle_atom2[i][j]) { if (angle_type[i][j] == 0) continue; if (buf) { buf[m][0] = MAX(angle_type[i][j], -angle_type[i][j]); buf[m][1] = angle_atom1[i][j]; buf[m][2] = angle_atom2[i][j]; buf[m][3] = angle_atom3[i][j]; } m++; } } return m; } /* ---------------------------------------------------------------------- write angle info to data file ------------------------------------------------------------------------- */ void AtomVec::write_angle(FILE *fp, int n, tagint **buf, int index) { std::string typestr; for (int i = 0; i < n; i++) { typestr = std::to_string(buf[i][0]); if (atom->types_style == Atom::LABELS) typestr = atom->lmap->atypelabel[buf[i][0] - 1]; utils::print(fp, "{} {} {} {} {}\n", index, typestr, buf[i][1], buf[i][2], buf[i][3]); index++; } } /* ---------------------------------------------------------------------- pack dihedral info for data file ------------------------------------------------------------------------- */ int AtomVec::pack_dihedral(tagint **buf) { tagint *tag = atom->tag; int *num_dihedral = atom->num_dihedral; int **dihedral_type = atom->dihedral_type; tagint **dihedral_atom1 = atom->dihedral_atom1; tagint **dihedral_atom2 = atom->dihedral_atom2; tagint **dihedral_atom3 = atom->dihedral_atom3; tagint **dihedral_atom4 = atom->dihedral_atom4; int nlocal = atom->nlocal; int newton_bond = force->newton_bond; int i, j; int m = 0; if (newton_bond) { for (i = 0; i < nlocal; i++) for (j = 0; j < num_dihedral[i]; j++) { if (buf) { buf[m][0] = MAX(dihedral_type[i][j], -dihedral_type[i][j]); buf[m][1] = dihedral_atom1[i][j]; buf[m][2] = dihedral_atom2[i][j]; buf[m][3] = dihedral_atom3[i][j]; buf[m][4] = dihedral_atom4[i][j]; } m++; } } else { for (i = 0; i < nlocal; i++) for (j = 0; j < num_dihedral[i]; j++) if (tag[i] == dihedral_atom2[i][j]) { if (buf) { buf[m][0] = MAX(dihedral_type[i][j], -dihedral_type[i][j]); buf[m][1] = dihedral_atom1[i][j]; buf[m][2] = dihedral_atom2[i][j]; buf[m][3] = dihedral_atom3[i][j]; buf[m][4] = dihedral_atom4[i][j]; } m++; } } return m; } /* ---------------------------------------------------------------------- write dihedral info to data file ------------------------------------------------------------------------- */ void AtomVec::write_dihedral(FILE *fp, int n, tagint **buf, int index) { std::string typestr; for (int i = 0; i < n; i++) { typestr = std::to_string(buf[i][0]); if (atom->types_style == Atom::LABELS) typestr = atom->lmap->dtypelabel[buf[i][0] - 1]; utils::print(fp, "{} {} {} {} {} {}\n", index, typestr, buf[i][1], buf[i][2], buf[i][3], buf[i][4]); index++; } } /* ---------------------------------------------------------------------- pack improper info for data file ------------------------------------------------------------------------- */ int AtomVec::pack_improper(tagint **buf) { tagint *tag = atom->tag; int *num_improper = atom->num_improper; int **improper_type = atom->improper_type; tagint **improper_atom1 = atom->improper_atom1; tagint **improper_atom2 = atom->improper_atom2; tagint **improper_atom3 = atom->improper_atom3; tagint **improper_atom4 = atom->improper_atom4; int nlocal = atom->nlocal; int newton_bond = force->newton_bond; int i, j; int m = 0; if (newton_bond) { for (i = 0; i < nlocal; i++) for (j = 0; j < num_improper[i]; j++) { if (buf) { buf[m][0] = MAX(improper_type[i][j], -improper_type[i][j]); buf[m][1] = improper_atom1[i][j]; buf[m][2] = improper_atom2[i][j]; buf[m][3] = improper_atom3[i][j]; buf[m][4] = improper_atom4[i][j]; } m++; } } else { for (i = 0; i < nlocal; i++) for (j = 0; j < num_improper[i]; j++) if (tag[i] == improper_atom2[i][j]) { if (buf) { buf[m][0] = MAX(improper_type[i][j], -improper_type[i][j]); buf[m][1] = improper_atom1[i][j]; buf[m][2] = improper_atom2[i][j]; buf[m][3] = improper_atom3[i][j]; buf[m][4] = improper_atom4[i][j]; } m++; } } return m; } /* ---------------------------------------------------------------------- write improper info to data file ------------------------------------------------------------------------- */ void AtomVec::write_improper(FILE *fp, int n, tagint **buf, int index) { std::string typestr; for (int i = 0; i < n; i++) { typestr = std::to_string(buf[i][0]); if (atom->types_style == Atom::LABELS) typestr = atom->lmap->itypelabel[buf[i][0] - 1]; utils::print(fp, "{} {} {} {} {} {}\n", index, typestr, buf[i][1], buf[i][2], buf[i][3], buf[i][4]); index++; } } /* ---------------------------------------------------------------------- convert info input by read_data from general to restricted triclinic atom coords are converted in Atom::data_atoms() parent class operates on data from Velocities section of data file child classes operate on all other data: Atoms, Ellipsoids, Lines, Triangles, etc ------------------------------------------------------------------------- */ void AtomVec::read_data_general_to_restricted(int nlocal_previous, int nlocal) { int datatype, cols; void *pdata; for (int n = 1; n < ndata_vel; n++) { pdata = mdata_vel.pdata[n]; datatype = mdata_vel.datatype[n]; cols = mdata_vel.cols[n]; // operate on v, omega, angmom // no other read_data Velocities fields are Nx3 double arrays if (datatype == Atom::DOUBLE) { if (cols == 3) { double **array = *((double ***) pdata); for (int i = nlocal_previous; i < nlocal; i++) domain->general_to_restricted_vector(array[i]); } } } } /* ---------------------------------------------------------------------- convert info output by write_data from restricted to general triclinic create "hold" copy of original restricted data to restore after data file is written parent class only operates on x and data from Velocities section of data file child classes operate on all other data: Atoms, Ellipsoids, Lines, Triangles, etc ------------------------------------------------------------------------- */ void AtomVec::write_data_restricted_to_general() { int datatype, cols; void *pdata; int nlocal = atom->nlocal; memory->create(x_hold,nlocal,3,"atomvec:x_hold"); if (nlocal) memcpy(&x_hold[0][0],&x[0][0],(sizeof(double)*3*nlocal)&MEMCPYMASK); for (int i = 0; i < nlocal; i++) domain->restricted_to_general_coords(x[i]); double **omega = atom->omega; double **angmom = atom->angmom; for (int n = 1; n < ndata_vel; n++) { pdata = mdata_vel.pdata[n]; datatype = mdata_vel.datatype[n]; cols = mdata_vel.cols[n]; // operate on v, omega, angmom // no other write_data Velocities fields are Nx3 double arrays if (datatype == Atom::DOUBLE) { if (cols == 3) { double **array = *((double ***) pdata); if (array == v) { memory->create(v_hold,nlocal,3,"atomvec:v_hold"); if (nlocal) memcpy(&v_hold[0][0],&v[0][0],(sizeof(double)*3*nlocal)&MEMCPYMASK); for (int i = 0; i < nlocal; i++) domain->restricted_to_general_vector(v[i]); } else if (array == omega) { memory->create(omega_hold,nlocal,3,"atomvec:omega_hold"); if (nlocal) memcpy(&omega_hold[0][0],&omega[0][0],(sizeof(double)*3*nlocal)&MEMCPYMASK); for (int i = 0; i < nlocal; i++) domain->restricted_to_general_vector(omega[i]); } else if (array == angmom) { memory->create(angmom_hold,nlocal,3,"atomvec:angmom_hold"); if (nlocal) memcpy(&angmom_hold[0][0],&angmom[0][0],(sizeof(double)*3*nlocal)&MEMCPYMASK); for (int i = 0; i < nlocal; i++) domain->restricted_to_general_vector(angmom[i]); } } } } } /* ---------------------------------------------------------------------- restore info output by write_data to restricted triclinic original data is in "hold" arrays parent class only operates on x and data from Velocities section of data file child classes operate on all other data: Atoms, Ellipsoids, Lines, Triangles, etc ------------------------------------------------------------------------- */ void AtomVec::write_data_restore_restricted() { int nlocal = atom->nlocal; if (x_hold) { memcpy(&x[0][0],&x_hold[0][0],(sizeof(double)*3*nlocal)&MEMCPYMASK); memory->destroy(x_hold); x_hold = nullptr; } // operate on v, omega, angmom // no other write_data Velocities fields are Nx3 double arrays if (v_hold) { memcpy(&v[0][0],&v_hold[0][0],(sizeof(double)*3*nlocal)&MEMCPYMASK); memory->destroy(v_hold); v_hold = nullptr; } if (omega_hold) { memcpy(&atom->omega[0][0],&omega_hold[0][0],(sizeof(double)*3*nlocal)&MEMCPYMASK); memory->destroy(omega_hold); omega_hold = nullptr; } if (angmom_hold) { memcpy(&atom->angmom[0][0],&angmom_hold[0][0],(sizeof(double)*3*nlocal)&MEMCPYMASK); memory->destroy(angmom_hold); angmom_hold = nullptr; } } /* ---------------------------------------------------------------------- return # of bytes of allocated memory ------------------------------------------------------------------------- */ double AtomVec::memory_usage() { int datatype, cols, maxcols; void *pdata; double bytes = 0; bytes += memory->usage(tag, nmax); bytes += memory->usage(type, nmax); bytes += memory->usage(mask, nmax); bytes += memory->usage(image, nmax); bytes += memory->usage(x, nmax, 3); bytes += memory->usage(v, nmax, 3); bytes += memory->usage(f, nmax * comm->nthreads, 3); for (int i = 0; i < ngrow; i++) { pdata = mgrow.pdata[i]; datatype = mgrow.datatype[i]; cols = mgrow.cols[i]; const int nthreads = threads[i] ? comm->nthreads : 1; if (datatype == Atom::DOUBLE) { if (cols == 0) { bytes += memory->usage(*((double **) pdata), nmax * nthreads); } else if (cols > 0) { bytes += memory->usage(*((double ***) pdata), nmax * nthreads, cols); } else { maxcols = *(mgrow.maxcols[i]); bytes += memory->usage(*((double ***) pdata), nmax * nthreads, maxcols); } } else if (datatype == Atom::INT) { if (cols == 0) { bytes += memory->usage(*((int **) pdata), nmax * nthreads); } else if (cols > 0) { bytes += memory->usage(*((int ***) pdata), nmax * nthreads, cols); } else { maxcols = *(mgrow.maxcols[i]); bytes += memory->usage(*((int ***) pdata), nmax * nthreads, maxcols); } } else if (datatype == Atom::BIGINT) { if (cols == 0) { bytes += memory->usage(*((bigint **) pdata), nmax * nthreads); } else if (cols > 0) { bytes += memory->usage(*((bigint ***) pdata), nmax * nthreads, cols); } else { maxcols = *(mgrow.maxcols[i]); bytes += memory->usage(*((bigint ***) pdata), nmax * nthreads, maxcols); } } } if (bonus_flag) bytes += memory_usage_bonus(); return bytes; } // ---------------------------------------------------------------------- // internal methods // ---------------------------------------------------------------------- /* ---------------------------------------------------------------------- process field strings to initialize data structs for all other methods ------------------------------------------------------------------------- */ void AtomVec::setup_fields() { int n, cols; if ((fields_data_atom.size() < 1) || (fields_data_atom[0] != "id")) error->all(FLERR, "Atom style fields_data_atom must have 'id' as first field"); if ((fields_data_vel.size() < 2) || (fields_data_vel[0] != "id") || (fields_data_vel[1] != "v")) error->all(FLERR, "Atom style fields_data_vel must have 'id' and 'v' as first two fields"); // process field strings // return # of fields and matching index into atom.peratom (in Method struct) ngrow = process_fields(fields_grow, default_grow, &mgrow); ncopy = process_fields(fields_copy, default_copy, &mcopy); ncomm = process_fields(fields_comm, default_comm, &mcomm); ncomm_vel = process_fields(fields_comm_vel, default_comm_vel, &mcomm_vel); nreverse = process_fields(fields_reverse, default_reverse, &mreverse); nborder = process_fields(fields_border, default_border, &mborder); nborder_vel = process_fields(fields_border_vel, default_border_vel, &mborder_vel); nexchange = process_fields(fields_exchange, default_exchange, &mexchange); nrestart = process_fields(fields_restart, default_restart, &mrestart); ncreate = process_fields(fields_create, default_create, &mcreate); ndata_atom = process_fields(fields_data_atom, default_data_atom, &mdata_atom); ndata_vel = process_fields(fields_data_vel, default_data_vel, &mdata_vel); // populate field-based data struct for each method to use init_method(ngrow, &mgrow); init_method(ncopy, &mcopy); init_method(ncomm, &mcomm); init_method(ncomm_vel, &mcomm_vel); init_method(nreverse, &mreverse); init_method(nborder, &mborder); init_method(nborder_vel, &mborder_vel); init_method(nexchange, &mexchange); init_method(nrestart, &mrestart); init_method(ncreate, &mcreate); init_method(ndata_atom, &mdata_atom); init_method(ndata_vel, &mdata_vel); // create threads data struct for grow and memory_usage to use if (ngrow) threads = new bool[ngrow]; else threads = nullptr; for (int i = 0; i < ngrow; i++) { const auto &field = atom->peratom[mgrow.index[i]]; threads[i] = field.threadflag == 1; } // set style-specific sizes comm_x_only = 1; if (ncomm) comm_x_only = 0; if (bonus_flag && size_forward_bonus) comm_x_only = 0; if (nreverse == 0) comm_f_only = 1; else comm_f_only = 0; size_forward = 3; for (n = 0; n < ncomm; n++) { cols = mcomm.cols[n]; if (cols == 0) size_forward++; else size_forward += cols; } if (bonus_flag) size_forward += size_forward_bonus; size_reverse = 3; for (n = 0; n < nreverse; n++) { cols = mreverse.cols[n]; if (cols == 0) size_reverse++; else size_reverse += cols; } size_border = 6; for (n = 0; n < nborder; n++) { cols = mborder.cols[n]; if (cols == 0) size_border++; else size_border += cols; } if (bonus_flag) size_border += size_border_bonus; size_velocity = 3; for (n = 0; n < ncomm_vel; n++) { cols = mcomm_vel.cols[n]; if (cols == 0) size_velocity++; else size_velocity += cols; } size_data_atom = 0; for (n = 0; n < ndata_atom; n++) { cols = mdata_atom.cols[n]; if (atom->peratom[mdata_atom.index[n]].name == "x") xcol_data = size_data_atom + 1; if (cols == 0) size_data_atom++; else size_data_atom += cols; } size_data_vel = 0; for (n = 0; n < ndata_vel; n++) { cols = mdata_vel.cols[n]; if (cols == 0) size_data_vel++; else size_data_vel += cols; } } /* ---------------------------------------------------------------------- process a single field string ------------------------------------------------------------------------- */ int AtomVec::process_fields(const std::vector &words, const std::vector &def_words, Method *method) { int nfield = words.size(); int ndef = def_words.size(); // process fields one by one, add to index vector const auto &peratom = atom->peratom; const int nperatom = peratom.size(); // allocate memory in method method->resize(nfield); std::vector &index = method->index; int match; for (int i = 0; i < nfield; i++) { const std::string &field = words[i]; // find field in master Atom::peratom list for (match = 0; match < nperatom; match++) if (field == peratom[match].name) break; if (match == nperatom) error->all(FLERR, "Peratom field {} not recognized", field); index[i] = match; // error if field appears multiple times for (match = 0; match < i; match++) if (index[i] == index[match]) error->all(FLERR, "Peratom field {} is repeated", field); // error if field is in default str for (match = 0; match < ndef; match++) if (field == def_words[match]) error->all(FLERR, "Peratom field {} is a default", field); } return nfield; } /* ---------------------------------------------------------------------- init method data structs for processing fields ------------------------------------------------------------------------- */ void AtomVec::init_method(int nfield, Method *method) { for (int i = 0; i < nfield; i++) { const auto &field = atom->peratom[method->index[i]]; method->pdata[i] = (void *) field.address; method->datatype[i] = field.datatype; method->cols[i] = field.cols; if (method->cols[i] < 0) { method->maxcols[i] = field.address_maxcols; method->collength[i] = field.collength; method->plength[i] = field.address_length; } } } /* ---------------------------------------------------------------------- Method class members ------------------------------------------------------------------------- */ void AtomVec::Method::resize(int nfield) { pdata.resize(nfield); datatype.resize(nfield); cols.resize(nfield); maxcols.resize(nfield); collength.resize(nfield); plength.resize(nfield); index.resize(nfield); }