Files
lammps-gran-kokkos/python/lammps/pylammps.py
Axel Kohlmeyer 4a58be05fa simplify
2025-06-26 14:42:13 -04:00

1023 lines
31 KiB
Python

# ----------------------------------------------------------------------
# LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
# https://www.lammps.org/ Sandia National Laboratories
# LAMMPS Development team: developers@lammps.org
#
# Copyright (2003) Sandia Corporation. Under the terms of Contract
# DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
# certain rights in this software. This software is distributed under
# the GNU General Public License.
#
# See the README file in the top-level LAMMPS directory.
# -------------------------------------------------------------------------
################################################################################
# Alternative Python Wrapper
# Written by Richard Berger <richard.berger@outlook.com>
################################################################################
# for python2/3 compatibility
from __future__ import print_function
import io
import os
import re
import sys
import tempfile
from collections import namedtuple
from lammps.core import lammps
from lammps.constants import LMP_VAR_EQUAL, LMP_VAR_ATOM, LMP_VAR_VECTOR, LMP_VAR_STRING
# -------------------------------------------------------------------------
class OutputCapture(object):
""" Utility class to capture LAMMPS library output """
def __init__(self):
self.stdout_fd = 1
self.captured_output = ""
def __enter__(self):
self.tmpfile = tempfile.TemporaryFile(mode='w+b')
sys.stdout.flush()
# make copy of original stdout
self.stdout_orig = os.dup(self.stdout_fd)
# replace stdout and redirect to temp file
os.dup2(self.tmpfile.fileno(), self.stdout_fd)
return self
def __exit__(self, exc_type, exc_value, traceback):
os.dup2(self.stdout_orig, self.stdout_fd)
os.close(self.stdout_orig)
self.tmpfile.close()
@property
def output(self):
sys.stdout.flush()
self.tmpfile.flush()
self.tmpfile.seek(0, io.SEEK_SET)
self.captured_output = self.tmpfile.read().decode('utf-8')
return self.captured_output
# -------------------------------------------------------------------------
class Variable(object):
def __init__(self, pylammps_instance, name):
self._pylmp = pylammps_instance
self.name = name
@property
def style(self):
vartype = self._pylmp.lmp.lib.lammps_extract_variable_datatype(self._pylmp.lmp.lmp, self.name.encode())
if vartype == LMP_VAR_EQUAL:
return "equal"
elif vartype == LMP_VAR_ATOM:
return "atom"
elif vartype == LMP_VAR_VECTOR:
return "vector"
elif vartype == LMP_VAR_STRING:
return "string"
return None
@property
def value(self):
return self._pylmp.lmp.extract_variable(self.name)
@value.setter
def value(self, newvalue):
style = self.style
if style == "equal" or style == "string":
self._pylmp.variable("{} {} {}".format(self.name, style, newvalue))
else:
raise Exception("Setter not implemented for {} style variables.".format(style))
def __str__(self):
value = self.value
if isinstance(value, str):
value = "\"{}\"".format(value)
return "Variable(name=\"{}\", value={})".format(self.name, value)
def __repr__(self):
return self.__str__()
# -------------------------------------------------------------------------
class AtomList(object):
"""
A dynamic list of atoms that returns either an :py:class:`Atom` or
:py:class:`Atom2D` instance for each atom. Instances are only allocated
when accessed.
:ivar natoms: total number of atoms
:ivar dimensions: number of dimensions in system
"""
def __init__(self, pylammps_instance):
self._pylmp = pylammps_instance
self.natoms = self._pylmp.system.natoms
self.dimensions = self._pylmp.system.dimensions
self._loaded = {}
def __getitem__(self, index):
"""
Return Atom with given local index
:param index: Local index of atom
:type index: int
:rtype: Atom or Atom2D
"""
if index not in self._loaded:
if self.dimensions == 2:
atom = Atom2D(self._pylmp, index)
else:
atom = Atom(self._pylmp, index)
self._loaded[index] = atom
return self._loaded[index]
def __len__(self):
return self.natoms
# -------------------------------------------------------------------------
class Atom(object):
"""
A wrapper class then represents a single atom inside of LAMMPS
It provides access to properties of the atom and allows you to change some of them.
"""
def __init__(self, pylammps_instance, index):
self._pylmp = pylammps_instance
self.index = index
def __dir__(self):
return [k for k in super().__dir__() if not k.startswith('_')]
def get(self, name, index):
prop = self._pylmp.lmp.numpy.extract_atom(name)
if prop is not None:
return prop[index]
return None
@property
def id(self):
"""
Return the atom ID
:type: int
"""
return self.get("id", self.index)
@property
def type(self):
"""
Return the atom type
:type: int
"""
return self.get("type", self.index)
@property
def mol(self):
"""
Return the atom molecule index
:type: int
"""
return self.get("mol", self.index)
@property
def mass(self):
"""
Return the atom mass as a per-atom property.
This returns either the per-type mass or the per-atom
mass (AKA 'rmass') depending on what is available with
preference for the per-atom mass.
.. versionchanged:: 17Apr2024
Support both per-type and per-atom masses. With
per-type return "mass[type[i]]" else return "rmass[i]".
Per-atom mass is preferred if available.
:type: float
"""
if self._pylmp.lmp.extract_setting('rmass_flag'):
return self.get("rmass", self.index)
else:
return self.get("mass", self.type)
@property
def radius(self):
"""
Return the particle radius
:type: float
"""
return self.get("radius", self.index)
@property
def position(self):
"""
:getter: Return position of atom
:setter: Set position of atom
:type: numpy.array (float, float, float)
"""
return self.get("x", self.index)
@position.setter
def position(self, value):
current = self.position
current[:] = value
@property
def velocity(self):
"""
:getter: Return velocity of atom
:setter: Set velocity of atom
:type: numpy.array (float, float, float)
"""
return self.get("v", self.index)
@velocity.setter
def velocity(self, value):
current = self.velocity
current[:] = value
@property
def force(self):
"""
Return the total force acting on the atom
:type: numpy.array (float, float, float)
"""
return self.get("f", self.index)
@force.setter
def force(self, value):
current = self.force
current[:] = value
@property
def torque(self):
"""
Return the total torque acting on the atom
:type: numpy.array (float, float, float)
"""
return self.get("torque", self.index)
@force.setter
def torque(self, value):
current = self.torque
current[:] = value
@property
def omega(self):
"""
Return the rotational velocity of the particle
:type: numpy.array (float, float, float)
"""
return self.get("torque", self.index)
@omega.setter
def omega(self, value):
current = self.torque
current[:] = value
@property
def torque(self):
"""
Return the total torque acting on the particle
:type: numpy.array (float, float, float)
"""
return self.get("torque", self.index)
@torque.setter
def torque(self, value):
current = self.torque
current[:] = value
@property
def angular_momentum(self):
"""
Return the angular momentum of the particle
:type: numpy.array (float, float, float)
"""
return self.get("angmom", self.index)
@angular_momentum.setter
def angular_momentum(self, value):
current = self.angular_momentum
current[:] = value
@property
def charge(self):
"""
Return the atom charge
:type: float
"""
return self.get("q", self.index)
# -------------------------------------------------------------------------
class Atom2D(Atom):
"""
A wrapper class then represents a single 2D atom inside of LAMMPS
Inherits all properties from the :py:class:`Atom` class, but returns 2D versions
of position, velocity, and force.
It provides access to properties of the atom and allows you to change some of them.
"""
def __init__(self, pylammps_instance, index):
super(Atom2D, self).__init__(pylammps_instance, index)
@property
def position(self):
"""Access to coordinates of an atom
:getter: Return position of atom
:setter: Set position of atom
:type: numpy.array (float, float)
"""
return super(Atom2D, self).position[0:2]
@position.setter
def position(self, value):
current = self.position
current[:] = value
@property
def velocity(self):
"""Access to velocity of an atom
:getter: Return velocity of atom
:setter: Set velocity of atom
:type: numpy.array (float, float)
"""
return super(Atom2D, self).velocity[0:2]
@velocity.setter
def velocity(self, value):
current = self.velocity
current[:] = value
@property
def force(self):
"""Access to force of an atom
:getter: Return force of atom
:setter: Set force of atom
:type: numpy.array (float, float)
"""
return super(Atom2D, self).force[0:2]
@force.setter
def force(self, value):
current = self.force
current[:] = value
# -------------------------------------------------------------------------
class variable_set:
def __init__(self, name, variable_dict):
self._name = name
array_pattern = re.compile(r"(?P<arr>.+)\[(?P<index>[0-9]+)\]")
for key, value in variable_dict.items():
m = array_pattern.match(key)
if m:
g = m.groupdict()
varname = g['arr']
idx = int(g['index'])
if varname not in self.__dict__:
self.__dict__[varname] = {}
self.__dict__[varname][idx] = value
else:
self.__dict__[key] = value
def __str__(self):
return "{}({})".format(self._name, ','.join(["{}={}".format(k, self.__dict__[k]) for k in self.__dict__.keys() if not k.startswith('_')]))
def __dir__(self):
return [k for k in self.__dict__.keys() if not k.startswith('_')]
def __repr__(self):
return self.__str__()
# -------------------------------------------------------------------------
# -------------------------------------------------------------------------
class PyLammps(object):
"""
This is a Python wrapper class around the lower-level
:py:class:`lammps` class, exposing a more Python-like,
object-oriented interface for prototyping systems inside of IPython and
Jupyter notebooks.
It either creates its own instance of :py:class:`lammps` or can be
initialized with an existing instance. The arguments are the same of the
lower-level interface. The original interface can still be accessed via
:py:attr:`PyLammps.lmp`.
.. deprecated:: TBA
:param name: "machine" name of the shared LAMMPS library ("mpi" loads ``liblammps_mpi.so``, "" loads ``liblammps.so``)
:type name: string
:param cmdargs: list of command line arguments to be passed to the :cpp:func:`lammps_open` function. The executable name is automatically added.
:type cmdargs: list
:param ptr: pointer to a LAMMPS C++ class instance when called from an embedded Python interpreter. None means load symbols from shared library.
:type ptr: pointer
:param comm: MPI communicator (as provided by `mpi4py <mpi4py_docs_>`_). ``None`` means use ``MPI_COMM_WORLD`` implicitly.
:type comm: MPI_Comm
:param verbose: print all LAMMPS output to stdout
:type verbose: bool
:ivar lmp: instance of original LAMMPS Python interface
:vartype lmp: :py:class:`lammps`
:ivar runs: list of completed runs, each storing the thermo output
:vartype run: list
"""
def __init__(self, name="", cmdargs=None, ptr=None, comm=None, verbose=False):
self.has_echo = False
self.verbose = verbose
if cmdargs:
if '-echo' in cmdargs:
idx = cmdargs.index('-echo')
# ensures that echo line is ignored during output capture
self.has_echo = idx+1 < len(cmdargs) and cmdargs[idx+1] in ('screen', 'both')
if ptr:
if isinstance(ptr,PyLammps):
self.lmp = ptr.lmp
elif isinstance(ptr,lammps):
self.lmp = ptr
else:
self.lmp = lammps(name=name,cmdargs=cmdargs,ptr=ptr,comm=comm)
else:
self.lmp = lammps(name=name,cmdargs=cmdargs,ptr=None,comm=comm)
self.comm_nprocs = self.lmp.extract_setting("world_size")
self.comm_me = self.lmp.extract_setting("world_rank")
if self.comm_me == 0:
print("\nWARNING-WARNING-WARNING-WARNING-WARNING-WARNING-WARNING-WARNING-WARNING-WARNING")
print("WARNING:")
print("WARNING: The PyLammps class is obsolete and will be removed from LAMMPS soon.")
print("WARNING: Please use the lammps Python class instead.")
print("WARNING:")
print("WARNING-WARNING-WARNING-WARNING-WARNING-WARNING-WARNING-WARNING-WARNING-WARNING\n")
print("LAMMPS output is captured by PyLammps wrapper")
if self.comm_nprocs > 1:
print("WARNING: Using PyLammps with multiple MPI ranks is experimental. Not all functionality is supported.")
self._cmd_history = []
self._enable_cmd_history = False
self.runs = []
if not self.lmp.has_package("PYTHON"):
if self.comm_me == 0:
print("WARNING: run thermo data not captured since PYTHON LAMMPS package is not enabled")
def __enter__(self):
return self
def __exit__(self, ex_type, ex_value, ex_traceback):
self.close()
def __del__(self):
if self.lmp: self.lmp.close()
self.lmp = None
def close(self):
"""Explicitly delete a LAMMPS instance
This is a wrapper around the :py:meth:`lammps.close` of the Python interface.
"""
if self.lmp: self.lmp.close()
self.lmp = None
def version(self):
"""Return a numerical representation of the LAMMPS version in use.
This is a wrapper around the :py:meth:`lammps.version` function of the Python interface.
:return: version number
:rtype: int
"""
return self.lmp.version()
def file(self, file):
"""Read LAMMPS commands from a file.
This is a wrapper around the :py:meth:`lammps.file` function of the Python interface.
:param path: Name of the file/path with LAMMPS commands
:type path: string
"""
self.lmp.file(file)
@property
def enable_cmd_history(self):
"""
:getter: Return whether command history is saved
:setter: Set if command history should be saved
:type: bool
"""
return self._enable_cmd_history
@enable_cmd_history.setter
def enable_cmd_history(self, value):
"""
:getter: Return whether command history is saved
:setter: Set if command history should be saved
:type: bool
"""
self._enable_cmd_history = (value == True)
def write_script(self, filepath):
"""
Write LAMMPS script file containing all commands executed up until now
:param filepath: path to script file that should be written
:type filepath: string
"""
with open(filepath, "w") as f:
for cmd in self._cmd_history:
print(cmd, file=f)
def clear_cmd_history(self):
"""
Clear LAMMPS command history up to this point
"""
self._cmd_history = []
def append_cmd_history(self, cmd):
"""
Commands will be added to the command history but not executed.
Add `commands` only to the command history, but do not execute them, so that you can
conveniently create LAMMPS input files, using
:py:meth:`PyLammps.write_script()`.
"""
self._cmd_history.append(cmd)
def command(self, cmd):
"""
Execute LAMMPS command
If :py:attr:`PyLammps.enable_cmd_history` is set to ``True``, commands executed
will be recorded. The entire command history can be written to a file using
:py:meth:`PyLammps.write_script()`. To clear the command history, use
:py:meth:`PyLammps.clear_cmd_history()`.
:param cmd: command string that should be executed
:type: cmd: string
"""
self.lmp.command(cmd)
if self.enable_cmd_history:
self._cmd_history.append(cmd)
def _append_run_thermo(self, thermo):
for k, v in thermo.items():
if k in self._current_run:
self._current_run[k].append(v)
else:
self._current_run[k] = [v]
def run(self, *args, **kwargs):
"""
Execute LAMMPS run command with given arguments
Thermo data of the run is recorded and saved as new entry in
:py:attr:`PyLammps.runs`. The latest run can be retrieved by
:py:attr:`PyLammps.last_run`.
Note, for recording of all thermo steps during a run, the PYTHON package
needs to be enabled in LAMMPS. Otherwise, it will only capture the final
timestep.
"""
self._current_run = {}
self._last_thermo_step = -1
def end_of_step_callback(lmp):
if self.lmp.last_thermo_step == self._last_thermo_step: return
thermo = self.lmp.last_thermo()
self._append_run_thermo(thermo)
self._last_thermo_step = thermo['Step']
import __main__
__main__._PyLammps_end_of_step_callback = end_of_step_callback
capture_thermo = self.lmp.has_package("PYTHON")
if capture_thermo:
self.fix("__pylammps_internal_run_callback", "all", "python/invoke", "1", "end_of_step", "_PyLammps_end_of_step_callback")
output = self.__getattr__('run')(*args, **kwargs)
if capture_thermo:
self.unfix("__pylammps_internal_run_callback")
self._append_run_thermo(self.lmp.last_thermo())
thermo_data = variable_set('ThermoData', self._current_run)
r = {'thermo' : thermo_data }
self.runs.append(namedtuple('Run', list(r.keys()))(*list(r.values())))
return output
@property
def last_run(self):
"""
Return data produced of last completed run command
:getter: Returns an object containing information about the last run command
:type: dict
"""
if len(self.runs) > 0:
return self.runs[-1]
return None
@property
def atoms(self):
"""
All atoms of this LAMMPS instance
:getter: Returns a list of atoms currently in the system
:type: AtomList
"""
return AtomList(self)
@property
def system(self):
"""
The system state of this LAMMPS instance
:getter: Returns an object with properties storing the current system state
:type: namedtuple
"""
output = self.lmp_info("system")
output = output[output.index("System information:")+1:]
d = self._parse_info_system(output)
return namedtuple('System', d.keys())(*d.values())
@property
def communication(self):
"""
The communication state of this LAMMPS instance
:getter: Returns an object with properties storing the current communication state
:type: namedtuple
"""
output = self.lmp_info("communication")
output = output[output.index("Communication information:")+1:]
d = self._parse_info_communication(output)
return namedtuple('Communication', d.keys())(*d.values())
@property
def computes(self):
"""
The list of active computes of this LAMMPS instance
:getter: Returns a list of computes that are currently active in this LAMMPS instance
:type: list
"""
output = self.lmp_info("computes")
output = output[output.index("Compute information:")+1:]
return self._parse_element_list(output)
@property
def dumps(self):
"""
The list of active dumps of this LAMMPS instance
:getter: Returns a list of dumps that are currently active in this LAMMPS instance
:type: list
"""
output = self.lmp_info("dumps")
output = output[output.index("Dump information:")+1:]
return self._parse_element_list(output)
@property
def fixes(self):
"""
The list of active fixes of this LAMMPS instance
:getter: Returns a list of fixes that are currently active in this LAMMPS instance
:type: list
"""
output = self.lmp_info("fixes")
output = output[output.index("Fix information:")+1:]
return self._parse_element_list(output)
@property
def groups(self):
"""
The list of active atom groups of this LAMMPS instance
:getter: Returns a list of atom groups that are currently active in this LAMMPS instance
:type: list
"""
return self.lmp.available_ids("group")
@property
def variables(self):
"""
Returns a dictionary of all variables defined in the current LAMMPS instance
:getter: Returns a dictionary of all variables that are defined in this LAMMPS instance
:type: dict
"""
variables = {}
for name in self.lmp.available_ids("variable"):
variables[name] = Variable(self, name)
return variables
def eval(self, expr):
"""
Evaluate LAMMPS input file expression.
This is equivalent to using immediate variable expressions in the format "$(...)"
in the LAMMPS input and will return the result of that expression.
.. warning::
This function is only supported on MPI rank 0. Calling it from a different
MPI rank will raise an exception.
:param expr: the expression string that should be evaluated inside of LAMMPS
:type expr: string
:return: the value of the evaluated expression
:rtype: float if numeric, string otherwise
"""
if self.comm_me > 0:
raise Exception("PyLammps.eval() may only be used on MPI rank 0")
value = self.lmp_print('"$(%s)"' % expr).strip()
try:
return float(value)
except ValueError:
return value
def _split_values(self, line):
return [x.strip() for x in line.split(',')]
def _get_pair(self, value):
return [x.strip() for x in value.split('=')]
def _parse_info_system(self, output):
system = {}
system['dimensions'] = self.lmp.extract_setting("dimension")
system['xlo'] = self.lmp.extract_global("boxxlo")
system['ylo'] = self.lmp.extract_global("boxylo")
system['zlo'] = self.lmp.extract_global("boxzlo")
system['xhi'] = self.lmp.extract_global("boxxhi")
system['yhi'] = self.lmp.extract_global("boxyhi")
system['zhi'] = self.lmp.extract_global("boxzhi")
xprd = system["xhi"] - system["xlo"]
yprd = system["yhi"] - system["ylo"]
zprd = system["zhi"] - system["zlo"]
if self.lmp.extract_setting("triclinic") == 1:
system['triclinic_box'] = (xprd, yprd, zprd)
else:
system['orthogonal_box'] = (xprd, yprd, zprd)
system['nangles'] = self.lmp.extract_global("nbonds")
system['nangletypes'] = self.lmp.extract_setting("nbondtypes")
system['angle_style'] = self.lmp.extract_global("angle_style")
system['nbonds'] = self.lmp.extract_global("nbonds")
system['nbondtypes'] = self.lmp.extract_setting("nbondtypes")
system['bond_style'] = self.lmp.extract_global("bond_style")
system['ndihedrals'] = self.lmp.extract_global("ndihedrals")
system['ndihedraltypes'] = self.lmp.extract_setting("ndihedraltypes")
system['dihedral_style'] = self.lmp.extract_global("dihedral_style")
system['nimpropers'] = self.lmp.extract_global("nimpropers")
system['nimpropertypes'] = self.lmp.extract_setting("nimpropertypes")
system['improper_style'] = self.lmp.extract_global("improper_style")
system['kspace_style'] = self.lmp.extract_global("kspace_style")
system['natoms'] = self.lmp.extract_global("natoms")
system['ntypes'] = self.lmp.extract_global("ntypes")
system['pair_style'] = self.lmp.extract_global("pair_style")
system['atom_style'] = self.lmp.extract_global("atom_style")
system['units'] = self.lmp.extract_global("units")
for line in output:
if line.startswith("Atom map"):
system['atom_map'] = self._get_pair(line)[1]
elif line.startswith("Boundaries"):
system['boundaries'] = self._get_pair(line)[1]
elif line.startswith("Molecule type"):
system['molecule_type'] = self._get_pair(line)[1]
return system
def _parse_info_communication(self, output):
comm = {}
comm['nprocs'] = self.lmp.extract_setting("world_size")
comm['nthreads'] = self.lmp.extract_setting("nthreads")
comm['proc_grid'] = comm['procgrid'] = self.lmp.extract_global("procgrid")
idx = self.lmp.extract_setting("comm_style")
comm['comm_style'] = ('brick', 'tiled')[idx]
idx = self.lmp.extract_setting("comm_style")
comm['comm_layout'] = ('uniform', 'nonuniform', 'irregular')[idx]
comm['ghost_velocity'] = self.lmp.extract_setting("ghost_velocity") == 1
for line in output:
if line.startswith("MPI library"):
comm['mpi_version'] = line.split(':')[1].strip()
return comm
def _parse_element_list(self, output):
elements = []
for line in output:
if not line or (":" not in line): continue
element_info = self._split_values(line.split(':')[1].strip())
element = {'name': element_info[0]}
for key, value in [self._get_pair(x) for x in element_info[1:]]:
element[key] = value
elements.append(element)
return elements
def lmp_print(self, s):
""" needed for Python2 compatibility, since print is a reserved keyword """
return self.__getattr__("print")(s)
def __dir__(self):
return sorted(set(['angle_coeff', 'angle_style', 'atom_modify', 'atom_style', 'atom_style',
'bond_coeff', 'bond_style', 'boundary', 'change_box', 'communicate', 'compute',
'create_atoms', 'create_box', 'delete_atoms', 'delete_bonds', 'dielectric',
'dihedral_coeff', 'dihedral_style', 'dimension', 'dump', 'fix', 'fix_modify',
'group', 'improper_coeff', 'improper_style', 'include', 'kspace_modify',
'kspace_style', 'lattice', 'mass', 'minimize', 'min_style', 'neighbor',
'neigh_modify', 'newton', 'nthreads', 'pair_coeff', 'pair_modify',
'pair_style', 'processors', 'read', 'read_data', 'read_restart', 'region',
'replicate', 'reset_timestep', 'restart', 'run', 'run_style', 'thermo',
'thermo_modify', 'thermo_style', 'timestep', 'undump', 'unfix', 'units',
'variable', 'velocity', 'write_restart'] + self.lmp.available_styles("command")))
def lmp_info(self, s):
# skip anything before and after Info-Info-Info
# also skip timestamp line
output = self.__getattr__("info")(s)
indices = [index for index, line in enumerate(output) if line.startswith("Info-Info-Info-Info")]
start = indices[0]
end = indices[1]
return [line for line in output[start+2:end] if line]
def __getattr__(self, name):
"""
This method is where the Python 'magic' happens. If a method is not
defined by the class PyLammps, it assumes it is a LAMMPS command. It takes
all the arguments, concatinates them to a single string, and executes it using
:py:meth:`lammps.PyLammps.command()`.
:param verbose: Print output of command
:type verbose: bool
:return: line or list of lines of output, None if no output
:rtype: list or string
"""
def handler(*args, **kwargs):
cmd_args = [name] + [str(x) for x in args]
self.lmp.flush_buffers()
with OutputCapture() as capture:
cmd = ' '.join(cmd_args)
self.command(cmd)
self.lmp.flush_buffers()
output = capture.output
comm = self.lmp.get_mpi_comm()
if comm:
output = self.lmp.comm.bcast(output, root=0)
if self.verbose or ('verbose' in kwargs and kwargs['verbose']):
print(output, end = '')
lines = output.splitlines()
if self.has_echo:
lines = lines[1:]
if len(lines) > 1:
return lines
elif len(lines) == 1:
return lines[0]
return None
return handler
class IPyLammps(PyLammps):
"""
IPython wrapper for LAMMPS which adds embedded graphics capabilities to PyLammps interface
It either creates its own instance of :py:class:`lammps` or can be
initialized with an existing instance. The arguments are the same of the
lower-level interface. The original interface can still be accessed via
:py:attr:`PyLammps.lmp`.
:param name: "machine" name of the shared LAMMPS library ("mpi" loads ``liblammps_mpi.so``, "" loads ``liblammps.so``)
:type name: string
:param cmdargs: list of command line arguments to be passed to the :cpp:func:`lammps_open` function. The executable name is automatically added.
:type cmdargs: list
:param ptr: pointer to a LAMMPS C++ class instance when called from an embedded Python interpreter. None means load symbols from shared library.
:type ptr: pointer
:param comm: MPI communicator (as provided by `mpi4py <mpi4py_docs_>`_). ``None`` means use ``MPI_COMM_WORLD`` implicitly.
:type comm: MPI_Comm
"""
def __init__(self,name="",cmdargs=None,ptr=None,comm=None):
super(IPyLammps, self).__init__(name=name,cmdargs=cmdargs,ptr=ptr,comm=comm)
def image(self, filename="snapshot.png", group="all", color="type", diameter="type",
size=None, view=None, center=None, up=None, zoom=1.0, background_color="white"):
""" Generate image using write_dump command and display it
See :doc:`dump image <dump_image>` for more information.
:param filename: Name of the image file that should be generated. The extension determines whether it is PNG or JPEG
:type filename: string
:param group: the group of atoms write_image should use
:type group: string
:param color: name of property used to determine color
:type color: string
:param diameter: name of property used to determine atom diameter
:type diameter: string
:param size: dimensions of image
:type size: tuple (width, height)
:param view: view parameters
:type view: tuple (theta, phi)
:param center: center parameters
:type center: tuple (flag, center_x, center_y, center_z)
:param up: vector pointing to up direction
:type up: tuple (up_x, up_y, up_z)
:param zoom: zoom factor
:type zoom: float
:param background_color: background color of scene
:type background_color: string
:return: Image instance used to display image in notebook
:rtype: :py:class:`IPython.core.display.Image`
"""
cmd_args = [group, "image", filename, color, diameter]
if size is not None:
width = size[0]
height = size[1]
cmd_args += ["size", width, height]
if view is not None:
theta = view[0]
phi = view[1]
cmd_args += ["view", theta, phi]
if center is not None:
flag = center[0]
Cx = center[1]
Cy = center[2]
Cz = center[3]
cmd_args += ["center", flag, Cx, Cy, Cz]
if up is not None:
Ux = up[0]
Uy = up[1]
Uz = up[2]
cmd_args += ["up", Ux, Uy, Uz]
if zoom is not None:
cmd_args += ["zoom", zoom]
cmd_args.append("modify backcolor " + background_color)
self.write_dump(*cmd_args)
from IPython.core.display import Image
return Image(filename)
def video(self, filename):
"""
Load video from file
Can be used to visualize videos from :doc:`dump movie <dump_image>`.
:param filename: Path to video file
:type filename: string
:return: HTML Video Tag used by notebook to embed a video
:rtype: :py:class:`IPython.display.HTML`
"""
from IPython.display import HTML
return HTML("<video controls><source src=\"" + filename + "\"></video>")
# Local Variables:
# fill-column: 100
# python-indent-offset: 2
# End: