Files
lammps-gran-kokkos/lib/colvars/colvarbias.h
Giacomo Fiorin cba479bf6e Update Colvars library to version 2025-04-18
The following is a list of pull requests relevant to LAMMPS in the Colvars repository since 2024-08-06:

- 752 New tool poisson_integrator_conv
  https://github.com/Colvars/colvars/pull/752 (@jhenin)

- 733 Custom grids for all biases
  https://github.com/Colvars/colvars/pull/733 (@giacomofiorin, @jhenin)

- 776 Avoid error in acos and asin with fast-math
  https://github.com/Colvars/colvars/pull/776 (@jhenin)

- 773 fix: fix the clang build test failure of OPES
  https://github.com/Colvars/colvars/pull/773 (@HanatoK)

- 768 fix: clamp the input values of asin and acos in case of fast math on aarch64
  https://github.com/Colvars/colvars/pull/768 (@HanatoK)

- 761 Add debug code for the Jacobi failure
  https://github.com/Colvars/colvars/pull/761 (@HanatoK)

- 759 min_image fix; Saves long runs from crashes;
  https://github.com/Colvars/colvars/pull/759 (@PolyachenkoYA)

- 757 Fix MSVC OpenMP issue
  https://github.com/Colvars/colvars/pull/757 (@HanatoK)

- 755 Fix indentation of 'Init CVC' message in standard output
  https://github.com/Colvars/colvars/pull/755 (@jhenin)

- 750 Optimize and simplify the calculation of dihedral gradients
  https://github.com/Colvars/colvars/pull/750 (@HanatoK)

- 749 Add references to new Colvars paper
  https://github.com/Colvars/colvars/pull/749 (@jhenin, @giacomofiorin)

- 740 Report the specific C++ standard at init time, stop warning about C++97/03
  https://github.com/Colvars/colvars/pull/740 (@giacomofiorin)

- 731 Improve detection of hard/mathematical boundaries
  https://github.com/Colvars/colvars/pull/731 (@giacomofiorin)

- 729 Optimize the fit gradients
  https://github.com/Colvars/colvars/pull/729 (@HanatoK, @jhenin)

- 728 Fix undefined behavior when getting the current working directory from std::filesystem
  https://github.com/Colvars/colvars/pull/728 (@giacomofiorin)

- 727 Add patchversion scripting command
  https://github.com/Colvars/colvars/pull/727 (@giacomofiorin)

- 724 Fix gradients and metric functions of distanceDir
  https://github.com/Colvars/colvars/pull/724 (@giacomofiorin)

- 715 Add missing rotation in orientation component
  https://github.com/Colvars/colvars/pull/715 (@giacomofiorin)

- 713 fix: try to solve #87 for non-scala components
  https://github.com/Colvars/colvars/pull/713 (@HanatoK)

- 709 Implementation of OPES in Colvars
  https://github.com/Colvars/colvars/pull/709 (@HanatoK, @giacomofiorin, @jhenin)

- 706 BUGFIX for Segmentation fault in colvarbias_meta::calc_energy() with useGrids off
  https://github.com/Colvars/colvars/pull/706 (@alphataubio)

- 570 enable use of CVs defined by PyTorch neural network models
  https://github.com/Colvars/colvars/pull/570 (@zwpku, @giacomofiorin, @HanatoK, @jhenin)

Authors: @alphataubio, @EzryStIago, @giacomofiorin, @HanatoK, @jhenin, @PolyachenkoYA, @zwpku
2025-04-30 15:32:30 -04:00

376 lines
12 KiB
C++

// -*- c++ -*-
// This file is part of the Collective Variables module (Colvars).
// The original version of Colvars and its updates are located at:
// https://github.com/Colvars/colvars
// Please update all Colvars source files before making any changes.
// If you wish to distribute your changes, please submit them to the
// Colvars repository at GitHub.
#ifndef COLVARBIAS_H
#define COLVARBIAS_H
#include <memory>
#include "colvar.h"
#include "colvarparse.h"
#include "colvardeps.h"
class colvar_grid_scalar;
/// \brief Collective variable bias, base class
class colvarbias
: public virtual colvarparse, public virtual colvardeps {
public:
/// Name of this bias
std::string name;
/// Keyword indicating the type of this bias
std::string bias_type;
/// Keyword used in state files (== bias_type most of the time)
std::string state_keyword;
/// Track how many times a bias of this type was defined
int rank;
/// Add a new collective variable to this bias
int add_colvar(std::string const &cv_name);
/// How many variables are defined for this bias
inline size_t num_variables() const
{
return colvars.size();
}
/// Access the variables vector
inline std::vector<colvar *> *variables()
{
return &colvars;
}
/// Access the i-th variable
inline colvar * variables(int i) const
{
return colvars[i];
}
/// Retrieve colvar values and calculate their biasing forces
/// Some implementations may use calc_energy() and calc_forces()
virtual int update();
/// Returns true if the current step represent a valid increment, whose data
/// can be recorded (as opposed to e.g. a continuation step from a restart)
virtual bool can_accumulate_data();
/// Compute the energy of the bias
/// Uses the vector of colvar values provided if not NULL, and the values
/// currently cached in the bias instance otherwise
virtual int calc_energy(std::vector<colvarvalue> const *values);
/// Compute the forces due to the bias
/// Uses the vector of colvar values provided if not NULL, and the values
/// currently cached in the bias instance otherwise
virtual int calc_forces(std::vector<colvarvalue> const *values);
/// Send forces to the collective variables
int communicate_forces();
/// Carry out operations needed before next step is run
virtual int end_of_step();
/// Load new configuration - force constant and/or centers only
virtual int change_configuration(std::string const &conf);
/// Calculate change in energy from using alternate configuration
virtual cvm::real energy_difference(std::string const &conf);
/// Give the total number of bins for a given bias.
// FIXME this is currently 1D only
virtual int bin_num();
/// Calculate the bin index for a given bias.
// FIXME this is currently 1D only
virtual int current_bin();
//// Give the count at a given bin index.
virtual int bin_count(int bin_index);
/// Return the average number of samples in a given "radius" around current bin
virtual int local_sample_count(int radius);
//// Share information between replicas, whatever it may be.
virtual int replica_share();
/// Report the frequency at which this bias needs to communicate with replicas
virtual size_t replica_share_freq() const;
/// Perform analysis tasks
virtual void analyze() {}
/// \brief Constructor
colvarbias(char const *key);
/// \brief Parse config string and (re)initialize
virtual int init(std::string const &conf);
/// \brief Initialize dependency tree
virtual int init_dependencies();
/// \brief Set to zero all mutable data
virtual int reset();
private:
/// Default constructor
colvarbias();
/// Copy constructor
colvarbias(colvarbias &);
public:
/// \brief Delete everything
virtual int clear();
/// \brief Delete only the allocatable data (save memory)
virtual int clear_state_data();
/// Destructor
virtual ~colvarbias();
/// Write the values of specific mutable properties to a string
virtual std::string const get_state_params() const;
/// Check the name of the bias vs. the given string, set the matching_state flag accordingly
int check_matching_state(std::string const &conf);
/// Read the values of specific mutable properties from a string
virtual int set_state_params(std::string const &state_conf);
/// Write all mutable data not already written by get_state_params() to a formatted stream
virtual std::ostream & write_state_data(std::ostream &os)
{
return os;
}
/// Write all mutable data not already written by get_state_params() to an unformatted stream
virtual cvm::memory_stream & write_state_data(cvm::memory_stream &os)
{
return os;
}
/// Read all mutable data not already set by set_state_params() from a formatted stream
virtual std::istream & read_state_data(std::istream &is)
{
return is;
}
/// Read all mutable data not already set by set_state_params() from an unformatted stream
virtual cvm::memory_stream & read_state_data(cvm::memory_stream &is)
{
return is;
}
/// Write a keyword header for a data sequence to a formatted stream
/// \param[in,out] os Output stream
/// \param[in] key Keyword labeling the header block
/// \param[in] header Whether this is the header of a multi-line segment vs a single line
std::ostream &write_state_data_key(std::ostream &os, std::string const &key, bool header = true) const;
/// Write a keyword header for a data sequence to an unformatted stream
/// \param[in,out] os Output stream
/// \param[in] key Keyword labeling the header block
/// \param[in] header Ignored
cvm::memory_stream &write_state_data_key(cvm::memory_stream &os, std::string const &key,
bool header = true) const;
private:
/// Read a keyword header for a data sequence from a stream
/// \param[in,out] Input stream
/// \param[in] Keyword labeling the header block; an error will be raised if not matching
template <typename IST> IST &read_state_data_key_template_(IST &is, std::string const &key);
public:
/// Read a keyword header for a data sequence from a formatted stream
/// \param[in,out] Input stream
/// \param[in] Keyword labeling the header block; an error will be raised if not matching
std::istream & read_state_data_key(std::istream &is, std::string const &key);
/// Read a keyword header for a data sequence from an unformatted stream
/// \param[in,out] Input stream
/// \param[in] Keyword labeling the header block; an error will be raised if not matching
cvm::memory_stream & read_state_data_key(cvm::memory_stream &is, std::string const &key);
private:
/// Generic stream reading function (formatted and not)
template <typename IST> IST & read_state_template_(IST &is);
public:
/// Write the bias configuration to a formatted stream
std::ostream &write_state(std::ostream &os);
/// Write the bias configuration to an unformatted stream
cvm::memory_stream & write_state(cvm::memory_stream &os);
/// Read the bias configuration from a formatted stream
std::istream & read_state(std::istream &is);
/// Read the bias configuration from an unformatted stream
cvm::memory_stream & read_state(cvm::memory_stream &is);
/// Write the bias state to a file with the given prefix
int write_state_prefix(std::string const &prefix);
/// Write the bias state to a string
int write_state_string(std::string &output);
/// Read the bias state from a file with this name or prefix
int read_state_prefix(std::string const &prefix);
/// Read the bias state from this string buffer
int read_state_string(char const *buffer);
/// Write a label to the trajectory file (comment line)
virtual std::ostream & write_traj_label(std::ostream &os);
/// Output quantities such as the bias energy to the trajectory file
virtual std::ostream & write_traj(std::ostream &os);
/// (Re)initialize the output files (does not write them yet)
virtual int setup_output()
{
return COLVARS_OK;
}
/// Frequency for writing output files
size_t output_freq;
/// Write any output files that this bias may have (e.g. PMF files)
virtual int write_output_files()
{
return COLVARS_OK;
}
/// Use this prefix for all output files
std::string output_prefix;
/// If this bias is communicating with other replicas through files, send it to them
virtual int write_state_to_replicas()
{
return COLVARS_OK;
}
inline cvm::real get_energy()
{
return bias_energy;
}
/// \brief Implementation of the feature list for colvarbias
static std::vector<feature *> cvb_features;
/// \brief Implementation of the feature list accessor for colvarbias
virtual const std::vector<feature *> &features() const
{
return cvb_features;
}
virtual std::vector<feature *> &modify_features()
{
return cvb_features;
}
static void delete_features() {
for (size_t i=0; i < cvb_features.size(); i++) {
delete cvb_features[i];
}
cvb_features.clear();
}
protected:
/// \brief Pointers to collective variables to which the bias is
/// applied; current values and metric functions will be obtained
/// through each colvar object
std::vector<colvar *> colvars;
/// \brief Up to date value of each colvar
std::vector<colvarvalue> colvar_values;
/// \brief Current forces from this bias to the variables
std::vector<colvarvalue> colvar_forces;
/// \brief Forces last applied by this bias to the variables
std::vector<colvarvalue> previous_colvar_forces;
/// \brief Current energy of this bias (colvar_forces should be obtained by deriving this)
cvm::real bias_energy;
/// Whether to write the current bias energy from this bias to the trajectory file
bool b_output_energy;
/// \brief Whether this bias has already accumulated information
/// (for history-dependent biases)
bool has_data;
/// \brief Step number read from the last state file
cvm::step_number state_file_step;
/// Flag used to tell if the state string being read is for this bias
bool matching_state;
/// \brief The biasing forces will be scaled by the factor in this grid
/// if b_bias_force_scaled is true
colvar_grid_scalar* biasing_force_scaling_factors;
std::vector<int> biasing_force_scaling_factors_bin;
};
class colvar_grid_gradient;
class colvar_grid_count;
/// \brief Base class for unconstrained thermodynamic-integration FE estimator
class colvarbias_ti : public virtual colvarbias {
public:
colvarbias_ti(char const *key);
virtual ~colvarbias_ti();
virtual int init(std::string const &conf);
virtual int init_grids();
virtual int update();
/// Subtract applied forces (either last forces or argument) from the total
/// forces
virtual int update_system_forces(std::vector<colvarvalue> const
*subtract_forces);
virtual std::string const get_state_params() const;
virtual int set_state_params(std::string const &state_conf);
virtual std::ostream & write_state_data(std::ostream &os);
virtual cvm::memory_stream & write_state_data(cvm::memory_stream &os);
virtual std::istream & read_state_data(std::istream &is);
virtual cvm::memory_stream & read_state_data(cvm::memory_stream &is);
virtual int write_output_files();
protected:
/// \brief Forces exerted from the system to the associated variables
std::vector<colvarvalue> ti_system_forces;
/// Grid configuration parameters (also used by grids in derived classes)
std::string grid_conf;
/// Averaged system forces
std::shared_ptr<colvar_grid_gradient> ti_avg_forces;
/// Histogram of sampled data
std::shared_ptr<colvar_grid_count> ti_count;
/// Because total forces may be from the last simulation step,
/// store the index of the variables then
std::vector<int> ti_bin;
};
#endif