Files
lammps-gran-kokkos/lib/colvars/colvarcomp_gpath.cpp
2024-08-06 01:07:43 +02:00

937 lines
44 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// -*- c++ -*-
// This file is part of the Collective Variables module (Colvars).
// The original version of Colvars and its updates are located at:
// https://github.com/Colvars/colvars
// Please update all Colvars source files before making any changes.
// If you wish to distribute your changes, please submit them to the
// Colvars repository at GitHub.
#include <numeric>
#include <algorithm>
#include <cmath>
#include <limits>
#include <fstream>
#include "colvarmodule.h"
#include "colvarvalue.h"
#include "colvar.h"
#include "colvarcomp.h"
colvar::CartesianBasedPath::CartesianBasedPath()
{
x.type(colvarvalue::type_scalar);
// Don't use implicit gradient
enable(f_cvc_explicit_gradient);
}
int colvar::CartesianBasedPath::init(std::string const &conf)
{
int error_code = cvc::init(conf);
if (error_code != COLVARS_OK) return error_code;
// Parse selected atoms
atoms = parse_group(conf, "atoms");
has_user_defined_fitting = false;
std::string fitting_conf;
if (key_lookup(conf, "fittingAtoms", &fitting_conf)) {
has_user_defined_fitting = true;
}
// Lookup reference column of PDB
// Copied from the RMSD class
std::string reference_column;
double reference_column_value = 0.0;
if (get_keyval(conf, "refPositionsCol", reference_column, std::string(""))) {
bool found = get_keyval(conf, "refPositionsColValue", reference_column_value, reference_column_value);
if (found && reference_column_value == 0.0) {
return cvm::error("Error: refPositionsColValue, if provided, must be non-zero.\n",
COLVARS_INPUT_ERROR);
}
}
// Lookup all reference frames
bool has_frames = true;
total_reference_frames = 0;
while (has_frames) {
std::string reference_position_file_lookup = "refPositionsFile" + cvm::to_str(total_reference_frames + 1);
if (key_lookup(conf, reference_position_file_lookup.c_str())) {
std::string reference_position_filename;
get_keyval(conf, reference_position_file_lookup.c_str(), reference_position_filename, std::string(""));
std::vector<cvm::atom_pos> reference_position(atoms->size());
cvm::load_coords(reference_position_filename.c_str(), &reference_position, atoms, reference_column, reference_column_value);
reference_frames.push_back(reference_position);
++total_reference_frames;
} else {
has_frames = false;
}
}
// Setup alignment to compute RMSD with respect to reference frames
for (size_t i_frame = 0; i_frame < reference_frames.size(); ++i_frame) {
cvm::atom_group* tmp_atoms = parse_group(conf, "atoms");
if (!has_user_defined_fitting) {
// Swipe from the rmsd class
tmp_atoms->enable(f_ag_center);
tmp_atoms->enable(f_ag_rotate);
tmp_atoms->ref_pos = reference_frames[i_frame];
tmp_atoms->center_ref_pos();
tmp_atoms->enable(f_ag_fit_gradients);
} else {
// parse a group of atoms for fitting
std::string fitting_group_name = std::string("fittingAtoms") + cvm::to_str(i_frame);
cvm::atom_group* tmp_fitting_atoms = new cvm::atom_group(fitting_group_name.c_str());
tmp_fitting_atoms->parse(fitting_conf);
tmp_fitting_atoms->disable(f_ag_scalable);
tmp_fitting_atoms->fit_gradients.assign(tmp_fitting_atoms->size(), cvm::atom_pos(0.0, 0.0, 0.0));
std::string reference_position_file_lookup = "refPositionsFile" + cvm::to_str(i_frame + 1);
std::string reference_position_filename;
get_keyval(conf, reference_position_file_lookup.c_str(), reference_position_filename, std::string(""));
std::vector<cvm::atom_pos> reference_fitting_position(tmp_fitting_atoms->size());
cvm::load_coords(reference_position_filename.c_str(), &reference_fitting_position, tmp_fitting_atoms, reference_column, reference_column_value);
// setup the atom group for calculating
tmp_atoms->enable(f_ag_center);
tmp_atoms->enable(f_ag_rotate);
tmp_atoms->b_user_defined_fit = true;
tmp_atoms->disable(f_ag_scalable);
tmp_atoms->ref_pos = reference_fitting_position;
tmp_atoms->center_ref_pos();
tmp_atoms->enable(f_ag_fit_gradients);
tmp_atoms->enable(f_ag_fitting_group);
tmp_atoms->fitting_group = tmp_fitting_atoms;
reference_fitting_frames.push_back(reference_fitting_position);
}
tmp_atoms->setup_rotation_derivative();
comp_atoms.push_back(tmp_atoms);
}
return error_code;
}
colvar::CartesianBasedPath::~CartesianBasedPath() {
for (auto it_comp_atoms = comp_atoms.begin(); it_comp_atoms != comp_atoms.end(); ++it_comp_atoms) {
if (*it_comp_atoms != nullptr) {
delete (*it_comp_atoms);
(*it_comp_atoms) = nullptr;
}
}
// Avoid double-freeing due to CVC-in-CVC construct
atom_groups.clear();
}
void colvar::CartesianBasedPath::computeDistanceToReferenceFrames(std::vector<cvm::real>& result) {
for (size_t i_frame = 0; i_frame < reference_frames.size(); ++i_frame) {
cvm::real frame_rmsd = 0.0;
for (size_t i_atom = 0; i_atom < atoms->size(); ++i_atom) {
frame_rmsd += ((*(comp_atoms[i_frame]))[i_atom].pos - reference_frames[i_frame][i_atom]).norm2();
}
frame_rmsd /= cvm::real(atoms->size());
frame_rmsd = cvm::sqrt(frame_rmsd);
result[i_frame] = frame_rmsd;
}
}
// mainly used for determining the lambda value for arithmetic path
void colvar::CartesianBasedPath::computeDistanceBetweenReferenceFrames(std::vector<cvm::real>& result) {
for (size_t i_frame = 0; i_frame < reference_frames.size() - 1; ++i_frame) {
std::vector<cvm::atom_pos> this_frame_atom_pos(reference_frames[i_frame].size());
std::vector<cvm::atom_pos> next_frame_atom_pos(reference_frames[i_frame + 1].size());
cvm::real frame_rmsd = 0.0;
const size_t this_index = i_frame;
const size_t next_index = i_frame + 1;
// compute COM of two successive images, respectively
cvm::atom_pos reference_cog_this, reference_cog_next;
for (size_t i_atom = 0; i_atom < atoms->size(); ++i_atom) {
reference_cog_this += reference_frames[this_index][i_atom];
reference_cog_next += reference_frames[next_index][i_atom];
}
reference_cog_this /= reference_frames[this_index].size();
reference_cog_next /= reference_frames[next_index].size();
// move all atoms to COM
for (size_t i_atom = 0; i_atom < atoms->size(); ++i_atom) {
this_frame_atom_pos[i_atom] = reference_frames[this_index][i_atom] - reference_cog_this;
next_frame_atom_pos[i_atom] = reference_frames[next_index][i_atom] - reference_cog_next;
}
cvm::rotation rot_this_to_next;
// compute the optimal rotation
rot_this_to_next.calc_optimal_rotation(this_frame_atom_pos, next_frame_atom_pos);
// compute rmsd between reference frames
for (size_t i_atom = 0; i_atom < atoms->size(); ++i_atom) {
frame_rmsd += (rot_this_to_next.q.rotate(this_frame_atom_pos[i_atom]) - next_frame_atom_pos[i_atom]).norm2();
}
frame_rmsd /= cvm::real(atoms->size());
frame_rmsd = cvm::sqrt(frame_rmsd);
result[i_frame] = frame_rmsd;
}
}
void colvar::CartesianBasedPath::apply_force(colvarvalue const &force)
{
cvm::error("Error: using apply_force() in a component of type CartesianBasedPath, which is abstract.\n",
COLVARS_BUG_ERROR);
}
colvar::gspath::gspath()
{
set_function_type("gspath");
}
int colvar::gspath::init(std::string const &conf)
{
int error_code = CartesianBasedPath::init(conf);
if (error_code != COLVARS_OK) return error_code;
get_keyval(conf, "useSecondClosestFrame", use_second_closest_frame, true);
if (use_second_closest_frame == true) {
cvm::log(std::string("Geometric path s(σ) will use the second closest frame to compute s_(m-1)\n"));
} else {
cvm::log(std::string("Geometric path s(σ) will use the neighbouring frame to compute s_(m-1)\n"));
}
get_keyval(conf, "useThirdClosestFrame", use_third_closest_frame, false);
if (use_third_closest_frame == true) {
cvm::log(std::string("Geometric path s(σ) will use the third closest frame to compute s_(m+1)\n"));
} else {
cvm::log(std::string("Geometric path s(σ) will use the neighbouring frame to compute s_(m+1)\n"));
}
if (total_reference_frames < 2) {
return cvm::error("Error: you have specified " + cvm::to_str(total_reference_frames) +
" reference frames, but gspath requires at least 2 frames.\n",
COLVARS_INPUT_ERROR);
}
GeometricPathCV::GeometricPathBase<cvm::atom_pos, cvm::real, GeometricPathCV::path_sz::S>::initialize(atoms->size(), cvm::atom_pos(), total_reference_frames, use_second_closest_frame, use_third_closest_frame);
cvm::log(std::string("Geometric pathCV(s) is initialized.\n"));
cvm::log(std::string("Geometric pathCV(s) loaded ") + cvm::to_str(reference_frames.size()) + std::string(" frames.\n"));
return error_code;
}
void colvar::gspath::updateDistanceToReferenceFrames() {
computeDistanceToReferenceFrames(frame_distances);
}
void colvar::gspath::prepareVectors() {
size_t i_atom;
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
// v1 = s_m - z
v1[i_atom] = reference_frames[min_frame_index_1][i_atom] - (*(comp_atoms[min_frame_index_1]))[i_atom].pos;
// v2 = z - s_(m-1)
v2[i_atom] = (*(comp_atoms[min_frame_index_2]))[i_atom].pos - reference_frames[min_frame_index_2][i_atom];
}
if (min_frame_index_3 < 0 || min_frame_index_3 > M) {
cvm::atom_pos reference_cog_1, reference_cog_2;
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
reference_cog_1 += reference_frames[min_frame_index_1][i_atom];
reference_cog_2 += reference_frames[min_frame_index_2][i_atom];
}
reference_cog_1 /= cvm::real(reference_frames[min_frame_index_1].size());
reference_cog_2 /= cvm::real(reference_frames[min_frame_index_2].size());
std::vector<cvm::atom_pos> tmp_reference_frame_1(reference_frames[min_frame_index_1].size());
std::vector<cvm::atom_pos> tmp_reference_frame_2(reference_frames[min_frame_index_2].size());
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
tmp_reference_frame_1[i_atom] = reference_frames[min_frame_index_1][i_atom] - reference_cog_1;
tmp_reference_frame_2[i_atom] = reference_frames[min_frame_index_2][i_atom] - reference_cog_2;
}
if (has_user_defined_fitting) {
cvm::atom_pos reference_fitting_cog_1, reference_fitting_cog_2;
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
reference_fitting_cog_1 += reference_fitting_frames[min_frame_index_1][i_atom];
reference_fitting_cog_2 += reference_fitting_frames[min_frame_index_2][i_atom];
}
reference_fitting_cog_1 /= cvm::real(reference_fitting_frames[min_frame_index_1].size());
reference_fitting_cog_2 /= cvm::real(reference_fitting_frames[min_frame_index_2].size());
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_1(reference_fitting_frames[min_frame_index_1].size());
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_2(reference_fitting_frames[min_frame_index_2].size());
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
tmp_reference_fitting_frame_1[i_atom] = reference_fitting_frames[min_frame_index_1][i_atom] - reference_fitting_cog_1;
tmp_reference_fitting_frame_2[i_atom] = reference_fitting_frames[min_frame_index_2][i_atom] - reference_fitting_cog_2;
}
rot_v3.calc_optimal_rotation(tmp_reference_fitting_frame_1, tmp_reference_fitting_frame_2);
} else {
rot_v3.calc_optimal_rotation(tmp_reference_frame_1, tmp_reference_frame_2);
}
const auto rot_mat_v3 = rot_v3.matrix();
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
v3[i_atom] = rot_mat_v3 * tmp_reference_frame_1[i_atom] - tmp_reference_frame_2[i_atom];
}
} else {
cvm::atom_pos reference_cog_1, reference_cog_3;
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
reference_cog_1 += reference_frames[min_frame_index_1][i_atom];
reference_cog_3 += reference_frames[min_frame_index_3][i_atom];
}
reference_cog_1 /= cvm::real(reference_frames[min_frame_index_1].size());
reference_cog_3 /= cvm::real(reference_frames[min_frame_index_3].size());
std::vector<cvm::atom_pos> tmp_reference_frame_1(reference_frames[min_frame_index_1].size());
std::vector<cvm::atom_pos> tmp_reference_frame_3(reference_frames[min_frame_index_3].size());
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
tmp_reference_frame_1[i_atom] = reference_frames[min_frame_index_1][i_atom] - reference_cog_1;
tmp_reference_frame_3[i_atom] = reference_frames[min_frame_index_3][i_atom] - reference_cog_3;
}
if (has_user_defined_fitting) {
cvm::atom_pos reference_fitting_cog_1, reference_fitting_cog_3;
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
reference_fitting_cog_1 += reference_fitting_frames[min_frame_index_1][i_atom];
reference_fitting_cog_3 += reference_fitting_frames[min_frame_index_3][i_atom];
}
reference_fitting_cog_1 /= cvm::real(reference_fitting_frames[min_frame_index_1].size());
reference_fitting_cog_3 /= cvm::real(reference_fitting_frames[min_frame_index_3].size());
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_1(reference_fitting_frames[min_frame_index_1].size());
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_3(reference_fitting_frames[min_frame_index_3].size());
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
tmp_reference_fitting_frame_1[i_atom] = reference_fitting_frames[min_frame_index_1][i_atom] - reference_fitting_cog_1;
tmp_reference_fitting_frame_3[i_atom] = reference_fitting_frames[min_frame_index_3][i_atom] - reference_fitting_cog_3;
}
rot_v3.calc_optimal_rotation(tmp_reference_fitting_frame_1, tmp_reference_fitting_frame_3);
} else {
rot_v3.calc_optimal_rotation(tmp_reference_frame_1, tmp_reference_frame_3);
}
const auto rot_mat_v3 = rot_v3.matrix();
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
// v3 = s_(m+1) - s_m
v3[i_atom] = tmp_reference_frame_3[i_atom] - rot_mat_v3 * tmp_reference_frame_1[i_atom];
}
}
}
void colvar::gspath::calc_value() {
computeValue();
x = s;
}
void colvar::gspath::calc_gradients() {
computeDerivatives();
cvm::rvector tmp_atom_grad_v1, tmp_atom_grad_v2;
// dS(v1, v2(r), v3) / dr = ∂S/∂v1 * dv1/dr + ∂S/∂v2 * dv2/dr
// dv1/dr = [fitting matrix 1][-1, ..., -1]
// dv2/dr = [fitting matrix 2][1, ..., 1]
// ∂S/∂v1 = ± (∂f/∂v1) / (2M)
// ∂S/∂v2 = ± (∂f/∂v2) / (2M)
// dS(v1, v2(r), v3) / dr = -1.0 * ± (∂f/∂v1) / (2M) + ± (∂f/∂v2) / (2M)
for (size_t i_atom = 0; i_atom < atoms->size(); ++i_atom) {
tmp_atom_grad_v1[0] = -1.0 * sign * 0.5 * dfdv1[i_atom][0] / M;
tmp_atom_grad_v1[1] = -1.0 * sign * 0.5 * dfdv1[i_atom][1] / M;
tmp_atom_grad_v1[2] = -1.0 * sign * 0.5 * dfdv1[i_atom][2] / M;
tmp_atom_grad_v2[0] = sign * 0.5 * dfdv2[i_atom][0] / M;
tmp_atom_grad_v2[1] = sign * 0.5 * dfdv2[i_atom][1] / M;
tmp_atom_grad_v2[2] = sign * 0.5 * dfdv2[i_atom][2] / M;
(*(comp_atoms[min_frame_index_1]))[i_atom].grad += tmp_atom_grad_v1;
(*(comp_atoms[min_frame_index_2]))[i_atom].grad += tmp_atom_grad_v2;
}
}
void colvar::gspath::apply_force(colvarvalue const &force) {
// The force applied to this CV is scalar type
cvm::real const &F = force.real_value;
(*(comp_atoms[min_frame_index_1])).apply_colvar_force(F);
(*(comp_atoms[min_frame_index_2])).apply_colvar_force(F);
}
colvar::gzpath::gzpath()
{
set_function_type("gzpath");
}
int colvar::gzpath::init(std::string const &conf)
{
int error_code = CartesianBasedPath::init(conf);
if (error_code != COLVARS_OK) return error_code;
get_keyval(conf, "useSecondClosestFrame", use_second_closest_frame, true);
if (use_second_closest_frame == true) {
cvm::log(std::string("Geometric path z(σ) will use the second closest frame to compute s_(m-1)\n"));
} else {
cvm::log(std::string("Geometric path z(σ) will use the neighbouring frame to compute s_(m-1)\n"));
}
get_keyval(conf, "useThirdClosestFrame", use_third_closest_frame, false);
if (use_third_closest_frame == true) {
cvm::log(std::string("Geometric path z(σ) will use the third closest frame to compute s_(m+1)\n"));
} else {
cvm::log(std::string("Geometric path z(σ) will use the neighbouring frame to compute s_(m+1)\n"));
}
bool b_use_z_square = false;
get_keyval(conf, "useZsquare", b_use_z_square, false);
if (b_use_z_square == true) {
cvm::log(std::string("Geometric path z(σ) will use the square of distance from current frame to path compute z\n"));
}
if (total_reference_frames < 2) {
return cvm::error("Error: you have specified " + cvm::to_str(total_reference_frames) +
" reference frames, but gzpath requires at least 2 frames.\n",
COLVARS_INPUT_ERROR);
}
GeometricPathCV::GeometricPathBase<cvm::atom_pos, cvm::real, GeometricPathCV::path_sz::Z>::initialize(atoms->size(), cvm::atom_pos(), total_reference_frames, use_second_closest_frame, use_third_closest_frame, b_use_z_square);
// Logging
cvm::log(std::string("Geometric pathCV(z) is initialized.\n"));
cvm::log(std::string("Geometric pathCV(z) loaded ") + cvm::to_str(reference_frames.size()) + std::string(" frames.\n"));
return error_code;
}
void colvar::gzpath::updateDistanceToReferenceFrames() {
computeDistanceToReferenceFrames(frame_distances);
}
void colvar::gzpath::prepareVectors() {
cvm::atom_pos reference_cog_1, reference_cog_2;
size_t i_atom;
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
reference_cog_1 += reference_frames[min_frame_index_1][i_atom];
reference_cog_2 += reference_frames[min_frame_index_2][i_atom];
}
reference_cog_1 /= cvm::real(reference_frames[min_frame_index_1].size());
reference_cog_2 /= cvm::real(reference_frames[min_frame_index_2].size());
std::vector<cvm::atom_pos> tmp_reference_frame_1(reference_frames[min_frame_index_1].size());
std::vector<cvm::atom_pos> tmp_reference_frame_2(reference_frames[min_frame_index_2].size());
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
tmp_reference_frame_1[i_atom] = reference_frames[min_frame_index_1][i_atom] - reference_cog_1;
tmp_reference_frame_2[i_atom] = reference_frames[min_frame_index_2][i_atom] - reference_cog_2;
}
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_1;
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_2;
if (has_user_defined_fitting) {
cvm::atom_pos reference_fitting_cog_1, reference_fitting_cog_2;
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
reference_fitting_cog_1 += reference_fitting_frames[min_frame_index_1][i_atom];
reference_fitting_cog_2 += reference_fitting_frames[min_frame_index_2][i_atom];
}
reference_fitting_cog_1 /= cvm::real(reference_fitting_frames[min_frame_index_1].size());
reference_fitting_cog_2 /= cvm::real(reference_fitting_frames[min_frame_index_2].size());
tmp_reference_fitting_frame_1.resize(reference_fitting_frames[min_frame_index_1].size());
tmp_reference_fitting_frame_2.resize(reference_fitting_frames[min_frame_index_2].size());
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
tmp_reference_fitting_frame_1[i_atom] = reference_fitting_frames[min_frame_index_1][i_atom] - reference_fitting_cog_1;
tmp_reference_fitting_frame_2[i_atom] = reference_fitting_frames[min_frame_index_2][i_atom] - reference_fitting_cog_2;
}
rot_v4.calc_optimal_rotation(tmp_reference_fitting_frame_1, tmp_reference_fitting_frame_2);
} else {
rot_v4.calc_optimal_rotation(tmp_reference_frame_1, tmp_reference_frame_2);
}
const auto rot_mat_v4 = rot_v4.matrix();
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
v1[i_atom] = reference_frames[min_frame_index_1][i_atom] - (*(comp_atoms[min_frame_index_1]))[i_atom].pos;
v2[i_atom] = (*(comp_atoms[min_frame_index_2]))[i_atom].pos - reference_frames[min_frame_index_2][i_atom];
// v4 only computes in gzpath
// v4 = s_m - s_(m-1)
v4[i_atom] = rot_mat_v4 * tmp_reference_frame_1[i_atom] - tmp_reference_frame_2[i_atom];
}
if (min_frame_index_3 < 0 || min_frame_index_3 > M) {
v3 = v4;
} else {
cvm::atom_pos reference_cog_3;
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
reference_cog_3 += reference_frames[min_frame_index_3][i_atom];
}
reference_cog_3 /= cvm::real(reference_frames[min_frame_index_3].size());
std::vector<cvm::atom_pos> tmp_reference_frame_3(reference_frames[min_frame_index_3].size());
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
tmp_reference_frame_3[i_atom] = reference_frames[min_frame_index_3][i_atom] - reference_cog_3;
}
if (has_user_defined_fitting) {
cvm::atom_pos reference_fitting_cog_3;
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_3].size(); ++i_atom) {
reference_fitting_cog_3 += reference_fitting_frames[min_frame_index_3][i_atom];
}
reference_fitting_cog_3 /= cvm::real(reference_fitting_frames[min_frame_index_3].size());
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_3(reference_fitting_frames[min_frame_index_3].size());
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_3].size(); ++i_atom) {
tmp_reference_fitting_frame_3[i_atom] = reference_fitting_frames[min_frame_index_3][i_atom] - reference_fitting_cog_3;
}
rot_v3.calc_optimal_rotation(tmp_reference_fitting_frame_1, tmp_reference_fitting_frame_3);
} else {
rot_v3.calc_optimal_rotation(tmp_reference_frame_1, tmp_reference_frame_3);
}
const auto rot_mat_v3 = rot_v3.matrix();
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
// v3 = s_(m+1) - s_m
v3[i_atom] = tmp_reference_frame_3[i_atom] - rot_mat_v3 * tmp_reference_frame_1[i_atom];
}
}
}
void colvar::gzpath::calc_value() {
computeValue();
x = z;
}
void colvar::gzpath::calc_gradients() {
computeDerivatives();
cvm::rvector tmp_atom_grad_v1, tmp_atom_grad_v2;
for (size_t i_atom = 0; i_atom < atoms->size(); ++i_atom) {
tmp_atom_grad_v1 = -1.0 * dzdv1[i_atom];
tmp_atom_grad_v2 = dzdv2[i_atom];
(*(comp_atoms[min_frame_index_1]))[i_atom].grad += tmp_atom_grad_v1;
(*(comp_atoms[min_frame_index_2]))[i_atom].grad += tmp_atom_grad_v2;
}
}
void colvar::gzpath::apply_force(colvarvalue const &force) {
// The force applied to this CV is scalar type
cvm::real const &F = force.real_value;
(*(comp_atoms[min_frame_index_1])).apply_colvar_force(F);
(*(comp_atoms[min_frame_index_2])).apply_colvar_force(F);
}
colvar::CVBasedPath::CVBasedPath()
{
set_function_type("gspathCV");
x.type(colvarvalue::type_scalar);
}
int colvar::CVBasedPath::init(std::string const &conf)
{
int error_code = cvc::init(conf);
if (error_code != COLVARS_OK) return error_code;
// Lookup all available sub-cvcs
for (auto it_cv_map = colvar::get_global_cvc_map().begin(); it_cv_map != colvar::get_global_cvc_map().end(); ++it_cv_map) {
if (key_lookup(conf, it_cv_map->first.c_str())) {
std::vector<std::string> sub_cvc_confs;
get_key_string_multi_value(conf, it_cv_map->first.c_str(), sub_cvc_confs);
for (auto it_sub_cvc_conf = sub_cvc_confs.begin(); it_sub_cvc_conf != sub_cvc_confs.end(); ++it_sub_cvc_conf) {
cv.push_back((it_cv_map->second)());
cv.back()->init(*(it_sub_cvc_conf));
}
}
}
// Sort all sub CVs by their names
std::sort(cv.begin(), cv.end(), colvar::compare_cvc);
// Register atom groups and determine the colvar type for reference
std::vector<colvarvalue> tmp_cv;
for (auto it_sub_cv = cv.begin(); it_sub_cv != cv.end(); ++it_sub_cv) {
for (auto it_atom_group = (*it_sub_cv)->atom_groups.begin(); it_atom_group != (*it_sub_cv)->atom_groups.end(); ++it_atom_group) {
register_atom_group(*it_atom_group);
}
colvarvalue tmp_i_cv((*it_sub_cv)->value());
tmp_i_cv.reset();
tmp_cv.push_back(tmp_i_cv);
}
// Read path file
// Lookup all reference CV values
std::string path_filename;
get_keyval(conf, "pathFile", path_filename);
cvm::log(std::string("Reading path file: ") + path_filename + std::string("\n"));
auto &ifs_path = cvm::main()->proxy->input_stream(path_filename);
if (!ifs_path) {
return COLVARS_INPUT_ERROR;
}
std::string line;
const std::string token(" ");
total_reference_frames = 0;
while (std::getline(ifs_path, line)) {
std::vector<std::string> fields;
split_string(line, token, fields);
size_t num_value_required = 0;
cvm::log(std::string("Reading reference frame ") + cvm::to_str(total_reference_frames + 1) + std::string("\n"));
for (size_t i_cv = 0; i_cv < tmp_cv.size(); ++i_cv) {
const size_t value_size = tmp_cv[i_cv].size();
num_value_required += value_size;
cvm::log(std::string("Reading CV ") + cv[i_cv]->name + std::string(" with ") + cvm::to_str(value_size) + std::string(" value(s)\n"));
if (num_value_required <= fields.size()) {
size_t start_index = num_value_required - value_size;
for (size_t i = start_index; i < num_value_required; ++i) {
tmp_cv[i_cv][i - start_index] = std::atof(fields[i].c_str());
cvm::log(cvm::to_str(tmp_cv[i_cv][i - start_index]));
}
} else {
error_code = cvm::error("Error: incorrect format of path file.\n", COLVARS_INPUT_ERROR);
return error_code;
}
}
if (!fields.empty()) {
ref_cv.push_back(tmp_cv);
++total_reference_frames;
}
}
cvm::main()->proxy->close_input_stream(path_filename);
if (total_reference_frames <= 1) {
error_code = cvm::error(
"Error: there is only 1 or 0 reference frame, which doesn't constitute a path.\n",
COLVARS_INPUT_ERROR);
return error_code;
}
if (cv.size() == 0) {
error_code =
cvm::error("Error: the CV " + name + " expects one or more nesting components.\n",
COLVARS_INPUT_ERROR);
return error_code;
}
use_explicit_gradients = true;
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
if (!cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
use_explicit_gradients = false;
}
}
if (!use_explicit_gradients) {
disable(f_cvc_explicit_gradient);
}
return error_code;
}
void colvar::CVBasedPath::computeDistanceToReferenceFrames(std::vector<cvm::real>& result) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
cv[i_cv]->calc_value();
}
for (size_t i_frame = 0; i_frame < ref_cv.size(); ++i_frame) {
cvm::real rmsd_i = 0.0;
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
colvarvalue ref_cv_value(ref_cv[i_frame][i_cv]);
colvarvalue current_cv_value(cv[i_cv]->value());
// polynomial combination allowed
if (current_cv_value.type() == colvarvalue::type_scalar) {
// wrapping is already in dist2
rmsd_i += cv[i_cv]->dist2(cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np)), ref_cv_value.real_value);
} else {
rmsd_i += cv[i_cv]->dist2(cv[i_cv]->sup_coeff * current_cv_value, ref_cv_value);
}
}
rmsd_i /= cvm::real(cv.size());
rmsd_i = cvm::sqrt(rmsd_i);
result[i_frame] = rmsd_i;
}
}
void colvar::CVBasedPath::computeDistanceBetweenReferenceFrames(std::vector<cvm::real>& result) const {
if (ref_cv.size() < 2) return;
for (size_t i_frame = 1; i_frame < ref_cv.size(); ++i_frame) {
cvm::real dist_ij = 0.0;
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
colvarvalue ref_cv_value(ref_cv[i_frame][i_cv]);
colvarvalue prev_ref_cv_value(ref_cv[i_frame-1][i_cv]);
dist_ij += cv[i_cv]->dist2(ref_cv_value, prev_ref_cv_value);
}
dist_ij = cvm::sqrt(dist_ij);
result[i_frame-1] = dist_ij;
}
}
cvm::real colvar::CVBasedPath::getPolynomialFactorOfCVGradient(size_t i_cv) const {
cvm::real factor_polynomial = 1.0;
if (cv[i_cv]->value().type() == colvarvalue::type_scalar) {
factor_polynomial = cv[i_cv]->sup_coeff * cv[i_cv]->sup_np * cvm::pow(cv[i_cv]->value().real_value, cv[i_cv]->sup_np - 1);
} else {
factor_polynomial = cv[i_cv]->sup_coeff;
}
return factor_polynomial;
}
colvar::CVBasedPath::~CVBasedPath() {
// Recall the steps we initialize the sub-CVCs:
// 1. Lookup all sub-CVCs and then register the atom groups for sub-CVCs
// in their constructors;
// 2. Iterate over all sub-CVCs, get the pointers of their atom groups
// groups, and register again in the parent (current) CVC.
// That being said, the atom groups become children of the sub-CVCs at
// first, and then become children of the parent CVC.
// So, to destruct this class (parent CVC class), we need to remove the
// dependencies of the atom groups to the parent CVC at first.
remove_all_children();
// Then we remove the dependencies of the atom groups to the sub-CVCs
// in their destructors.
for (auto it = cv.begin(); it != cv.end(); ++it) {
delete (*it);
}
// The last step is cleaning up the list of atom groups.
atom_groups.clear();
}
void colvar::CVBasedPath::apply_force(colvarvalue const &force)
{
cvm::error("Error: using apply_force() in a component of type CVBasedPath, which is abstract.\n",
COLVARS_BUG_ERROR);
}
cvm::real colvar::CVBasedPath::dist2(colvarvalue const &x1, colvarvalue const &x2) const
{
return x1.dist2(x2);
}
colvarvalue colvar::CVBasedPath::dist2_lgrad(colvarvalue const &x1, colvarvalue const &x2) const
{
return x1.dist2_grad(x2);
}
colvarvalue colvar::CVBasedPath::dist2_rgrad(colvarvalue const &x1, colvarvalue const &x2) const
{
return x2.dist2_grad(x1);
}
void colvar::CVBasedPath::wrap(colvarvalue & /* x_unwrapped */) const {}
colvar::gspathCV::gspathCV()
{
set_function_type("gspathCV");
x.type(colvarvalue::type_scalar);
}
int colvar::gspathCV::init(std::string const &conf)
{
int error_code = CVBasedPath::init(conf);
if (error_code != COLVARS_OK) return error_code;
cvm::log(std::string("Total number of frames: ") + cvm::to_str(total_reference_frames) + std::string("\n"));
// Initialize variables for future calculation
get_keyval(conf, "useSecondClosestFrame", use_second_closest_frame, true);
if (use_second_closest_frame == true) {
cvm::log(std::string("Geometric path s(σ) will use the second closest frame to compute s_(m-1)\n"));
} else {
cvm::log(std::string("Geometric path s(σ) will use the neighbouring frame to compute s_(m-1)\n"));
}
get_keyval(conf, "useThirdClosestFrame", use_third_closest_frame, false);
if (use_third_closest_frame == true) {
cvm::log(std::string("Geometric path s(σ) will use the third closest frame to compute s_(m+1)\n"));
} else {
cvm::log(std::string("Geometric path s(σ) will use the neighbouring frame to compute s_(m+1)\n"));
}
if (total_reference_frames < 2) {
return cvm::error("Error: you have specified " + cvm::to_str(total_reference_frames) + " reference frames, but gspathCV requires at least 2 frames.\n", COLVARS_INPUT_ERROR);
}
GeometricPathCV::GeometricPathBase<colvarvalue, cvm::real, GeometricPathCV::path_sz::S>::initialize(cv.size(), ref_cv[0], total_reference_frames, use_second_closest_frame, use_third_closest_frame);
return error_code;
}
colvar::gspathCV::~gspathCV() {}
void colvar::gspathCV::updateDistanceToReferenceFrames() {
computeDistanceToReferenceFrames(frame_distances);
}
void colvar::gspathCV::prepareVectors() {
// Compute v1, v2 and v3
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
// values of sub-cvc are computed in update_distances
// cv[i_cv]->calc_value();
colvarvalue f1_ref_cv_i_value(ref_cv[min_frame_index_1][i_cv]);
colvarvalue f2_ref_cv_i_value(ref_cv[min_frame_index_2][i_cv]);
colvarvalue current_cv_value(cv[i_cv]->value());
// polynomial combination allowed
if (current_cv_value.type() == colvarvalue::type_scalar) {
v1[i_cv] = f1_ref_cv_i_value.real_value - cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np));
v2[i_cv] = cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np)) - f2_ref_cv_i_value.real_value;
} else {
v1[i_cv] = f1_ref_cv_i_value - cv[i_cv]->sup_coeff * current_cv_value;
v2[i_cv] = cv[i_cv]->sup_coeff * current_cv_value - f2_ref_cv_i_value;
}
cv[i_cv]->wrap(v1[i_cv]);
cv[i_cv]->wrap(v2[i_cv]);
}
if (min_frame_index_3 < 0 || min_frame_index_3 > M) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
v3[i_cv] = ref_cv[min_frame_index_1][i_cv] - ref_cv[min_frame_index_2][i_cv];
cv[i_cv]->wrap(v3[i_cv]);
}
} else {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
v3[i_cv] = ref_cv[min_frame_index_3][i_cv] - ref_cv[min_frame_index_1][i_cv];
cv[i_cv]->wrap(v3[i_cv]);
}
}
}
void colvar::gspathCV::calc_value() {
computeValue();
x = s;
}
void colvar::gspathCV::calc_gradients() {
computeDerivatives();
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
// No matter whether the i-th cv uses implicit gradient, compute it first.
cv[i_cv]->calc_gradients();
// If the gradient is not implicit, then add the gradients to its atom groups
if (cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
// Temporary variables storing gradients
colvarvalue tmp_cv_grad_v1(cv[i_cv]->value());
colvarvalue tmp_cv_grad_v2(cv[i_cv]->value());
// Compute factors for polynomial combinations
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
// Loop over all elements of the corresponding colvar value
for (size_t j_elem = 0; j_elem < cv[i_cv]->value().size(); ++j_elem) {
// ds/dz, z = vector of CVs
tmp_cv_grad_v1[j_elem] = -1.0 * sign * 0.5 * dfdv1[i_cv][j_elem] / M;
tmp_cv_grad_v2[j_elem] = sign * 0.5 * dfdv2[i_cv][j_elem] / M;
// Apply the gradients to the atom groups in i-th cv
// Loop over all atom groups
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
// Loop over all atoms in the k-th atom group
for (size_t l_atom = 0; l_atom < (cv[i_cv]->atom_groups)[k_ag]->size(); ++l_atom) {
// Chain rule
(*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad = factor_polynomial * ((*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad * tmp_cv_grad_v1[j_elem] + (*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad * tmp_cv_grad_v2[j_elem]);
}
}
}
}
}
}
void colvar::gspathCV::apply_force(colvarvalue const &force) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
// If this CV us explicit gradients, then atomic gradients is already calculated
// We can apply the force to atom groups directly
if (cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
(cv[i_cv]->atom_groups)[k_ag]->apply_colvar_force(force.real_value);
}
} else {
// Temporary variables storing gradients
colvarvalue tmp_cv_grad_v1(cv[i_cv]->value());
colvarvalue tmp_cv_grad_v2(cv[i_cv]->value());
// Compute factors for polynomial combinations
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
for (size_t j_elem = 0; j_elem < cv[i_cv]->value().size(); ++j_elem) {
// ds/dz, z = vector of CVs
tmp_cv_grad_v1[j_elem] = -1.0 * sign * 0.5 * dfdv1[i_cv][j_elem] / M;
tmp_cv_grad_v2[j_elem] = sign * 0.5 * dfdv2[i_cv][j_elem] / M;
}
colvarvalue cv_force = force.real_value * factor_polynomial * (tmp_cv_grad_v1 + tmp_cv_grad_v2);
cv[i_cv]->apply_force(cv_force);
}
}
}
colvar::gzpathCV::gzpathCV()
{
set_function_type("gzpathCV");
}
int colvar::gzpathCV::init(std::string const &conf) {
int error_code = CVBasedPath::init(conf);
if (error_code != COLVARS_OK) return error_code;
cvm::log(std::string("Total number of frames: ") + cvm::to_str(total_reference_frames) + std::string("\n"));
// Initialize variables for future calculation
M = cvm::real(total_reference_frames - 1);
m = 1.0;
get_keyval(conf, "useSecondClosestFrame", use_second_closest_frame, true);
if (use_second_closest_frame == true) {
cvm::log(std::string("Geometric path z(σ) will use the second closest frame to compute s_(m-1)\n"));
} else {
cvm::log(std::string("Geometric path z(σ) will use the neighbouring frame to compute s_(m-1)\n"));
}
get_keyval(conf, "useThirdClosestFrame", use_third_closest_frame, false);
if (use_third_closest_frame == true) {
cvm::log(std::string("Geometric path z(σ) will use the third closest frame to compute s_(m+1)\n"));
} else {
cvm::log(std::string("Geometric path z(σ) will use the neighbouring frame to compute s_(m+1)\n"));
}
bool b_use_z_square = false;
get_keyval(conf, "useZsquare", b_use_z_square, false);
if (b_use_z_square == true) {
cvm::log(std::string("Geometric path z(σ) will use the square of distance from current frame to path compute z\n"));
}
if (total_reference_frames < 2) {
return cvm::error("Error: you have specified " + cvm::to_str(total_reference_frames) +
" reference frames, but gzpathCV requires at least 2 frames.\n",
COLVARS_INPUT_ERROR);
}
GeometricPathCV::GeometricPathBase<colvarvalue, cvm::real, GeometricPathCV::path_sz::Z>::initialize(cv.size(), ref_cv[0], total_reference_frames, use_second_closest_frame, use_third_closest_frame, b_use_z_square);
return error_code;
}
colvar::gzpathCV::~gzpathCV() {
}
void colvar::gzpathCV::updateDistanceToReferenceFrames() {
computeDistanceToReferenceFrames(frame_distances);
}
void colvar::gzpathCV::prepareVectors() {
// Compute v1, v2 and v3
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
// values of sub-cvc are computed in update_distances
// cv[i_cv]->calc_value();
colvarvalue f1_ref_cv_i_value(ref_cv[min_frame_index_1][i_cv]);
colvarvalue f2_ref_cv_i_value(ref_cv[min_frame_index_2][i_cv]);
colvarvalue current_cv_value(cv[i_cv]->value());
// polynomial combination allowed
if (current_cv_value.type() == colvarvalue::type_scalar) {
v1[i_cv] = f1_ref_cv_i_value.real_value - cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np));
v2[i_cv] = cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np)) - f2_ref_cv_i_value.real_value;
} else {
v1[i_cv] = f1_ref_cv_i_value - cv[i_cv]->sup_coeff * current_cv_value;
v2[i_cv] = cv[i_cv]->sup_coeff * current_cv_value - f2_ref_cv_i_value;
}
v4[i_cv] = f1_ref_cv_i_value - f2_ref_cv_i_value;
cv[i_cv]->wrap(v1[i_cv]);
cv[i_cv]->wrap(v2[i_cv]);
cv[i_cv]->wrap(v4[i_cv]);
}
if (min_frame_index_3 < 0 || min_frame_index_3 > M) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
v3[i_cv] = ref_cv[min_frame_index_1][i_cv] - ref_cv[min_frame_index_2][i_cv];
cv[i_cv]->wrap(v3[i_cv]);
}
} else {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
v3[i_cv] = ref_cv[min_frame_index_3][i_cv] - ref_cv[min_frame_index_1][i_cv];
cv[i_cv]->wrap(v3[i_cv]);
}
}
}
void colvar::gzpathCV::calc_value() {
computeValue();
x = z;
}
void colvar::gzpathCV::calc_gradients() {
computeDerivatives();
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
// No matter whether the i-th cv uses implicit gradient, compute it first.
cv[i_cv]->calc_gradients();
// If the gradient is not implicit, then add the gradients to its atom groups
if (cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
// Temporary variables storing gradients
colvarvalue tmp_cv_grad_v1 = -1.0 * dzdv1[i_cv];
colvarvalue tmp_cv_grad_v2 = 1.0 * dzdv2[i_cv];
// Compute factors for polynomial combinations
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
for (size_t j_elem = 0; j_elem < cv[i_cv]->value().size(); ++j_elem) {
// Apply the gradients to the atom groups in i-th cv
// Loop over all atom groups
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
// Loop over all atoms in the k-th atom group
for (size_t l_atom = 0; l_atom < (cv[i_cv]->atom_groups)[k_ag]->size(); ++l_atom) {
// Chain rule
(*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad = factor_polynomial * ((*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad * tmp_cv_grad_v1[j_elem] + (*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad * tmp_cv_grad_v2[j_elem]);
}
}
}
}
}
}
void colvar::gzpathCV::apply_force(colvarvalue const &force) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
// If this CV us explicit gradients, then atomic gradients is already calculated
// We can apply the force to atom groups directly
if (cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
(cv[i_cv]->atom_groups)[k_ag]->apply_colvar_force(force.real_value);
}
} else {
colvarvalue tmp_cv_grad_v1 = -1.0 * dzdv1[i_cv];
colvarvalue tmp_cv_grad_v2 = 1.0 * dzdv2[i_cv];
// Temporary variables storing gradients
// Compute factors for polynomial combinations
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
colvarvalue cv_force = force.real_value * factor_polynomial * (tmp_cv_grad_v1 + tmp_cv_grad_v2);
cv[i_cv]->apply_force(cv_force);
}
}
}