359 lines
6.8 KiB
Plaintext
359 lines
6.8 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"<div style=\"text-align: center\"><a href=\"../index.ipynb\">LAMMPS Python Tutorials</a></div>"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Example 5: Monte Carlo Relaxation"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import matplotlib.pyplot as plt"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import random, math"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Setup perfect system"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from lammps import lammps"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"L = lammps()\n",
|
|
"cmd = L.cmd"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"cmd.units(\"lj\")\n",
|
|
"cmd.atom_style(\"atomic\")\n",
|
|
"cmd.atom_modify(\"map array sort\", 0, 0.0)\n",
|
|
"\n",
|
|
"cmd.dimension(2)\n",
|
|
"\n",
|
|
"cmd.lattice(\"hex\", 1.0)\n",
|
|
"cmd.region(\"box block\", 0, 10, 0, 5, -0.5, 0.5)\n",
|
|
"\n",
|
|
"cmd.create_box(1, \"box\")\n",
|
|
"cmd.create_atoms(1, \"box\")\n",
|
|
"cmd.mass(1, 1.0)\n",
|
|
"\n",
|
|
"cmd.pair_style(\"lj/cut\", 2.5)\n",
|
|
"cmd.pair_coeff(1, 1, 1.0, 1.0, 2.5)\n",
|
|
"cmd.pair_modify(\"shift\", \"yes\")\n",
|
|
"\n",
|
|
"cmd.neighbor(0.3, \"bin\")\n",
|
|
"cmd.neigh_modify(\"delay\", 0, \"every\", 1, \"check\", \"yes\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"L.ipython.image(zoom=1.6,size=[320,320])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"cmd.run(0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"emin = L.get_thermo(\"pe\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"cmd.dump(\"3 all movie 25 movie.mp4 type type zoom 1.6 adiam 1.0\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Disorder system"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"random.seed(27848)\n",
|
|
"deltaperturb = 0.2"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"pos = L.numpy.extract_atom(\"x\")\n",
|
|
"for i in range(len(pos)):\n",
|
|
" x, y = pos[i][0], pos[i][1]\n",
|
|
" dx = deltaperturb * random.uniform(-1, 1)\n",
|
|
" dy = deltaperturb * random.uniform(-1, 1)\n",
|
|
" pos[i] = (x+dx, y+dy, 0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"cmd.run(0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"L.ipython.image(zoom=1.6,size=[320,320])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Minimize using Monte Carlo moves"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"estart = L.get_thermo(\"pe\")\n",
|
|
"elast = estart"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"naccept = 0"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"energies = [estart]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"niterations = 3000\n",
|
|
"deltamove = 0.1\n",
|
|
"kT = 0.05"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"natoms = L.extract_global(\"natoms\")\n",
|
|
"\n",
|
|
"for i in range(niterations):\n",
|
|
" pos = L.numpy.extract_atom(\"x\")\n",
|
|
" iatom = random.randrange(0, natoms)\n",
|
|
" current_atom = pos[iatom]\n",
|
|
" \n",
|
|
" x0, y0 = current_atom[0], current_atom[1]\n",
|
|
" \n",
|
|
" dx = deltamove * random.uniform(-1, 1)\n",
|
|
" dy = deltamove * random.uniform(-1, 1)\n",
|
|
" \n",
|
|
" pos[iatom] = (x0+dx, y0+dy, 0)\n",
|
|
" \n",
|
|
" cmd.run(1, \"pre no post no\")\n",
|
|
" \n",
|
|
" e = L.get_thermo(\"pe\")\n",
|
|
" energies.append(e)\n",
|
|
" \n",
|
|
" if e <= elast:\n",
|
|
" naccept += 1\n",
|
|
" elast = e\n",
|
|
" elif random.random() <= math.exp(natoms*(elast-e)/kT):\n",
|
|
" naccept += 1\n",
|
|
" elast = e\n",
|
|
" else:\n",
|
|
" pos[iatom] = (x0, y0, 0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.xlabel('iteration')\n",
|
|
"plt.ylabel('potential energy')\n",
|
|
"plt.plot(energies)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"L.get_thermo(\"pe\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"emin"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"estart"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"naccept"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"L.ipython.image(zoom=1.6, size=[320,320])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# close dump file to access it\n",
|
|
"cmd.undump(3)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"L.ipython.video(\"movie.mp4\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.12.7"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|