Files
lammps-gran-kokkos/doc/src/Intro_features.txt
Ryan S. Elliott f2978475af Update docs
* bring homebrew install notes up-to-date
* update openkim docs
2019-07-21 15:17:53 -05:00

203 lines
8.3 KiB
Plaintext

"Higher level section"_Intro.html - "LAMMPS WWW Site"_lws - "LAMMPS
Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Commands_all.html)
:line
LAMMPS features :h3
LAMMPS is a classical molecular dynamics (MD) code with these general
classes of functionality:
"General features"_#general
"Particle and model types"_#particle
"Interatomic potentials (force fields)"_#ff
"Atom creation"_#create
"Ensembles, constraints, and boundary conditions"_#ensemble
"Integrators"_#integrate
"Diagnostics"_#diag
"Output"_#output
"Multi-replica models"_#replica1
"Pre- and post-processing"_#prepost
"Specialized features (beyond MD itself)"_#special :ul
:line
General features :h4,link(general)
runs on a single processor or in parallel
distributed-memory message-passing parallelism (MPI)
spatial-decomposition of simulation domain for parallelism
open-source distribution
highly portable C++
optional libraries used: MPI and single-processor FFT
GPU (CUDA and OpenCL), Intel Xeon Phi, and OpenMP support for many code features
easy to extend with new features and functionality
runs from an input script
syntax for defining and using variables and formulas
syntax for looping over runs and breaking out of loops
run one or multiple simulations simultaneously (in parallel) from one script
build as library, invoke LAMMPS through library interface or provided Python wrapper
couple with other codes: LAMMPS calls other code, other code calls LAMMPS, umbrella code calls both :ul
Particle and model types :h4,link(particle)
("atom style"_atom_style.html command)
atoms
coarse-grained particles (e.g. bead-spring polymers)
united-atom polymers or organic molecules
all-atom polymers, organic molecules, proteins, DNA
metals
granular materials
coarse-grained mesoscale models
finite-size spherical and ellipsoidal particles
finite-size line segment (2d) and triangle (3d) particles
point dipole particles
rigid collections of particles
hybrid combinations of these :ul
Interatomic potentials (force fields) :h4,link(ff)
("pair style"_pair_style.html, "bond style"_bond_style.html,
"angle style"_angle_style.html, "dihedral style"_dihedral_style.html,
"improper style"_improper_style.html, "kspace style"_kspace_style.html
commands)
pairwise potentials: Lennard-Jones, Buckingham, Morse, Born-Mayer-Huggins, \
Yukawa, soft, class 2 (COMPASS), hydrogen bond, tabulated
charged pairwise potentials: Coulombic, point-dipole
many-body potentials: EAM, Finnis/Sinclair EAM, modified EAM (MEAM), \
embedded ion method (EIM), EDIP, ADP, Stillinger-Weber, Tersoff, \
REBO, AIREBO, ReaxFF, COMB, SNAP, Streitz-Mintmire, 3-body polymorphic
long-range interactions for charge, point-dipoles, and LJ dispersion: \
Ewald, Wolf, PPPM (similar to particle-mesh Ewald)
polarization models: "QEq"_fix_qeq.html, \
"core/shell model"_Howto_coreshell.html, \
"Drude dipole model"_Howto_drude.html
charge equilibration (QEq via dynamic, point, shielded, Slater methods)
coarse-grained potentials: DPD, GayBerne, REsquared, colloidal, DLVO
mesoscopic potentials: granular, Peridynamics, SPH
electron force field (eFF, AWPMD)
bond potentials: harmonic, FENE, Morse, nonlinear, class 2, \
quartic (breakable)
angle potentials: harmonic, CHARMM, cosine, cosine/squared, cosine/periodic, \
class 2 (COMPASS)
dihedral potentials: harmonic, CHARMM, multi-harmonic, helix, \
class 2 (COMPASS), OPLS
improper potentials: harmonic, cvff, umbrella, class 2 (COMPASS)
polymer potentials: all-atom, united-atom, bead-spring, breakable
water potentials: TIP3P, TIP4P, SPC
implicit solvent potentials: hydrodynamic lubrication, Debye
force-field compatibility with common CHARMM, AMBER, DREIDING, \
OPLS, GROMACS, COMPASS options
access to the "OpenKIM Repository"_http://openkim.org of potentials via \
"kim_init, kim_interactions, and kim_query"_kim_commands.html commands
hybrid potentials: multiple pair, bond, angle, dihedral, improper \
potentials can be used in one simulation
overlaid potentials: superposition of multiple pair potentials :ul
Atom creation :h4,link(create)
("read_data"_read_data.html, "lattice"_lattice.html,
"create_atoms"_create_atoms.html, "delete_atoms"_delete_atoms.html,
"displace_atoms"_displace_atoms.html, "replicate"_replicate.html commands)
read in atom coords from files
create atoms on one or more lattices (e.g. grain boundaries)
delete geometric or logical groups of atoms (e.g. voids)
replicate existing atoms multiple times
displace atoms :ul
Ensembles, constraints, and boundary conditions :h4,link(ensemble)
("fix"_fix.html command)
2d or 3d systems
orthogonal or non-orthogonal (triclinic symmetry) simulation domains
constant NVE, NVT, NPT, NPH, Parrinello/Rahman integrators
thermostatting options for groups and geometric regions of atoms
pressure control via Nose/Hoover or Berendsen barostatting in 1 to 3 dimensions
simulation box deformation (tensile and shear)
harmonic (umbrella) constraint forces
rigid body constraints
SHAKE bond and angle constraints
Monte Carlo bond breaking, formation, swapping
atom/molecule insertion and deletion
walls of various kinds
non-equilibrium molecular dynamics (NEMD)
variety of additional boundary conditions and constraints :ul
Integrators :h4,link(integrate)
("run"_run.html, "run_style"_run_style.html, "minimize"_minimize.html commands)
velocity-Verlet integrator
Brownian dynamics
rigid body integration
energy minimization via conjugate gradient or steepest descent relaxation
rRESPA hierarchical timestepping
rerun command for post-processing of dump files :ul
Diagnostics :h4,link(diag)
see various flavors of the "fix"_fix.html and "compute"_compute.html commands :ul
Output :h4,link(output)
("dump"_dump.html, "restart"_restart.html commands)
log file of thermodynamic info
text dump files of atom coords, velocities, other per-atom quantities
binary restart files
parallel I/O of dump and restart files
per-atom quantities (energy, stress, centro-symmetry parameter, CNA, etc)
user-defined system-wide (log file) or per-atom (dump file) calculations
spatial and time averaging of per-atom quantities
time averaging of system-wide quantities
atom snapshots in native, XYZ, XTC, DCD, CFG formats :ul
Multi-replica models :h4,link(replica1)
"nudged elastic band"_neb.html
"parallel replica dynamics"_prd.html
"temperature accelerated dynamics"_tad.html
"parallel tempering"_temper.html :ul
Pre- and post-processing :h4,link(prepost)
A handful of pre- and post-processing tools are packaged with LAMMPS,
some of which can convert input and output files to/from formats used
by other codes; see the "Toos"_Tools.html doc page. :ulb,l
Our group has also written and released a separate toolkit called
"Pizza.py"_pizza which provides tools for doing setup, analysis,
plotting, and visualization for LAMMPS simulations. Pizza.py is
written in "Python"_python and is available for download from "the
Pizza.py WWW site"_pizza. :l,ule
:link(pizza,http://www.sandia.gov/~sjplimp/pizza.html)
:link(python,http://www.python.org)
Specialized features :h4,link(special)
LAMMPS can be built with optional packages which implement a variety
of additional capabilities. See the "Packages"_Packages.html doc
page for details.
These are LAMMPS capabilities which you may not think of as typical
classical MD options:
"static"_balance.html and "dynamic load-balancing"_fix_balance.html
"generalized aspherical particles"_Howto_body.html
"stochastic rotation dynamics (SRD)"_fix_srd.html
"real-time visualization and interactive MD"_fix_imd.html
calculate "virtual diffraction patterns"_compute_xrd.html
"atom-to-continuum coupling"_fix_atc.html with finite elements
coupled rigid body integration via the "POEMS"_fix_poems.html library
"QM/MM coupling"_fix_qmmm.html
Monte Carlo via "GCMC"_fix_gcmc.html and "tfMC"_fix_tfmc.html and "atom swapping"_fix_atom_swap.html
"path-integral molecular dynamics (PIMD)"_fix_ipi.html and "this as well"_fix_pimd.html
"Direct Simulation Monte Carlo"_pair_dsmc.html for low-density fluids
"Peridynamics mesoscale modeling"_pair_peri.html
"Lattice Boltzmann fluid"_fix_lb_fluid.html
"targeted"_fix_tmd.html and "steered"_fix_smd.html molecular dynamics
"two-temperature electron model"_fix_ttm.html :ul