Files
lammps-gran-kokkos/lib/kokkos/core/perf_test/PerfTestCuda.cpp

190 lines
5.6 KiB
C++

/*
//@HEADER
// ************************************************************************
//
// Kokkos v. 2.0
// Copyright (2014) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact H. Carter Edwards (hcedwar@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#include <iostream>
#include <iomanip>
#include <algorithm>
#include <gtest/gtest.h>
#include <Kokkos_Core.hpp>
#if defined( KOKKOS_HAVE_CUDA )
#include <impl/Kokkos_Timer.hpp>
#include <PerfTestHexGrad.hpp>
#include <PerfTestBlasKernels.hpp>
#include <PerfTestGramSchmidt.hpp>
#include <PerfTestDriver.hpp>
namespace Test {
class cuda : public ::testing::Test {
protected:
static void SetUpTestCase() {
Kokkos::HostSpace::execution_space::initialize();
Kokkos::Cuda::initialize( Kokkos::Cuda::SelectDevice(0) );
}
static void TearDownTestCase() {
Kokkos::Cuda::finalize();
Kokkos::HostSpace::execution_space::finalize();
}
};
TEST_F( cuda, hexgrad )
{
EXPECT_NO_THROW( run_test_hexgrad< Kokkos::Cuda >( 10 , 20, "Kokkos::Cuda" ) );
}
TEST_F( cuda, gramschmidt )
{
EXPECT_NO_THROW( run_test_gramschmidt< Kokkos::Cuda >( 10 , 20, "Kokkos::Cuda" ) );
}
namespace {
template <typename T>
struct TextureFetch
{
typedef Kokkos::View< T *, Kokkos::CudaSpace> array_type;
typedef Kokkos::View< const T *, Kokkos::CudaSpace, Kokkos::MemoryRandomAccess> const_array_type;
typedef Kokkos::View< int *, Kokkos::CudaSpace> index_array_type;
typedef Kokkos::View< const int *, Kokkos::CudaSpace> const_index_array_type;
struct FillArray
{
array_type m_array;
FillArray( const array_type & array )
: m_array(array)
{}
void apply() const
{
Kokkos::parallel_for( Kokkos::RangePolicy<Kokkos::Cuda,int>(0,m_array.dimension_0()), *this);
}
KOKKOS_INLINE_FUNCTION
void operator()(int i) const { m_array(i) = i; }
};
struct RandomIndexes
{
index_array_type m_indexes;
typename index_array_type::HostMirror m_host_indexes;
RandomIndexes( const index_array_type & indexes)
: m_indexes(indexes)
, m_host_indexes(Kokkos::create_mirror(m_indexes))
{}
void apply() const
{
Kokkos::parallel_for( Kokkos::RangePolicy<Kokkos::HostSpace::execution_space,int>(0,m_host_indexes.dimension_0()), *this);
//random shuffle
Kokkos::HostSpace::execution_space::fence();
std::random_shuffle(m_host_indexes.ptr_on_device(), m_host_indexes.ptr_on_device() + m_host_indexes.dimension_0());
Kokkos::deep_copy(m_indexes,m_host_indexes);
}
KOKKOS_INLINE_FUNCTION
void operator()(int i) const { m_host_indexes(i) = i; }
};
struct RandomReduce
{
const_array_type m_array;
const_index_array_type m_indexes;
RandomReduce( const const_array_type & array, const const_index_array_type & indexes)
: m_array(array)
, m_indexes(indexes)
{}
void apply(T & reduce) const
{
Kokkos::parallel_reduce( Kokkos::RangePolicy<Kokkos::Cuda,int>(0,m_array.dimension_0()), *this, reduce);
}
KOKKOS_INLINE_FUNCTION
void operator()(int i, T & reduce) const
{ reduce += m_array(m_indexes(i)); }
};
static void run(int size, double & reduce_time, T &reduce)
{
array_type array("array",size);
index_array_type indexes("indexes",size);
{ FillArray f(array); f.apply(); }
{ RandomIndexes f(indexes); f.apply(); }
Kokkos::Cuda::fence();
Kokkos::Impl::Timer timer;
for (int j=0; j<10; ++j) {
RandomReduce f(array,indexes);
f.apply(reduce);
}
Kokkos::Cuda::fence();
reduce_time = timer.seconds();
}
};
} // unnamed namespace
TEST_F( cuda, texture_double )
{
printf("Random reduce of double through texture fetch\n");
for (int i=1; i<=26; ++i) {
int size = 1<<i;
double time = 0;
double reduce = 0;
TextureFetch<double>::run(size,time,reduce);
printf(" time = %1.3e size = 2^%d\n", time, i);
}
}
} // namespace Test
#endif /* #if defined( KOKKOS_HAVE_CUDA ) */