Merge branch 'develop' into feature/openfoam6

Just resolve merge conflicts, does not yet compile with OF6 !

applications/solvers/rcfdemSolverRhoSteadyPimple/rcfdemSolverRhoSteadyPimple.C
This commit is contained in:
danielque
2019-11-12 10:06:50 +01:00
901 changed files with 2376979 additions and 1157 deletions

72
.circleci/config.yml Normal file
View File

@ -0,0 +1,72 @@
version: 2
jobs:
build:
branches:
only:
- master
- develop
docker:
- image: ubuntu:trusty
environment:
WM_NCOMPPROCS: 2
working_directory: /root/CFDEM/CFDEMcoupling
steps:
- run:
name: Install package dependencies
command: sudo apt-get update && sudo apt-get install -y build-essential cmake openmpi-bin libopenmpi-dev python-dev git bc
- run:
name: Make project and user dir
command: mkdir -p /root/CFDEM/CFDEMcoupling && mkdir -p /root/CFDEM/-4.1
- checkout:
path: /root/CFDEM/CFDEMcoupling
- run:
name: Add OpenFOAM package repository
command: sudo apt-get install -y software-properties-common wget apt-transport-https && sudo add-apt-repository http://dl.openfoam.org/ubuntu && sudo sh -c "wget -O - http://dl.openfoam.org/gpg.key | apt-key add -"
- run:
name: Install OpenFOAM 4.1
command: sudo apt-get update && sudo apt-get -y install openfoam4
- run:
name: Clone LIGGGHTS repository
command: git clone https://github.com/ParticulateFlow/LIGGGHTS-PFM.git /root/CFDEM/LIGGGHTS
- run:
name: Build LIGGGHTS
command: >
shopt -s expand_aliases &&
source /opt/openfoam4/etc/bashrc &&
source /root/CFDEM/CFDEMcoupling/etc/bashrc &&
bash /root/CFDEM/CFDEMcoupling/etc/compileLIGGGHTS.sh
no_output_timeout: 30m
- run:
name: Build CFDEMcoupling library
command: >
shopt -s expand_aliases &&
source /opt/openfoam4/etc/bashrc &&
source /root/CFDEM/CFDEMcoupling/etc/bashrc &&
bash /root/CFDEM/CFDEMcoupling/etc/compileCFDEMcoupling_src.sh
- run:
name: Build CFDEMcoupling solvers
command: >
shopt -s expand_aliases &&
source /opt/openfoam4/etc/bashrc &&
source /root/CFDEM/CFDEMcoupling/etc/bashrc &&
bash /root/CFDEM/CFDEMcoupling/etc/compileCFDEMcoupling_sol.sh
- run:
name: Build CFDEMcoupling utilities
command: >
shopt -s expand_aliases &&
source /opt/openfoam4/etc/bashrc &&
source /root/CFDEM/CFDEMcoupling/etc/bashrc &&
bash /root/CFDEM/CFDEMcoupling/etc/compileCFDEMcoupling_uti.sh

2
.gitignore vendored
View File

@ -5,6 +5,8 @@
log_*
log.*
*~
*.swp
*.swo
**/linux*Gcc*/
**/.vscode

674
LICENSE Normal file
View File

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

80
README
View File

@ -1,80 +0,0 @@
/*---------------------------------------------------------------------------*\
CFDEMcoupling - Open Source CFD-DEM coupling
CFDEMcoupling is part of the CFDEMproject
www.cfdem.com
Christoph Goniva, christoph.goniva@cfdem.com
Copyright 2009-2012 JKU Linz
Copyright 2012-2015 DCS Computing GmbH, Linz
Copyright 2015- JKU Linz
-------------------------------------------------------------------------------
License
This file is part of CFDEMcoupling.
CFDEMcoupling is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
CFDEMcoupling is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with CFDEMcoupling; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Description
This code provides models and solvers to realize coupled CFD-DEM simulations
using LIGGGHTS and OpenFOAM.
Note: this code is not part of OpenFOAM (see DISCLAIMER).
\*---------------------------------------------------------------------------*/
CFDEM(R) coupling provides an open source parallel coupled CFD-DEM framework
combining the strengths of the LIGGGHTS(R) DEM code and the Open Source
CFD package OpenFOAM(R)(*). The CFDEM(R)coupling toolbox allows to expand
standard CFD solvers of OpenFOAM(R)(*) to include a coupling to the DEM
code LIGGGHTS(R). In this toolbox the particle representation within the
CFD solver is organized by "cloud" classes. Key functionalities are organised
in sub-models (e.g. force models, data exchange models, etc.) which can easily
be selected and combined by dictionary settings.
The coupled solvers run fully parallel on distributed-memory clusters.
Features are:
- its modular approach allows users to easily implement new models
- its MPI parallelization enables to use it for large scale problems
- the use of GIT allows to easily update to the latest version
- basic documentation is provided
The file structure:
- "src" directory including the source files of the coupling toolbox and models
- "applications" directory including the solver files for coupled CFD-DEM simulations
- "doc" directory including the documentation of CFDEM(R)coupling
- "tutorials" directory including basic tutorial cases showing the functionality
Details on installation are given on the "www.cfdem.com"
The functionality of this CFD-DEM framwork is described via "tutorial cases" showing
how to use different solvers and models.
CFDEM(R)coupling stands for Computational Fluid Dynamics (CFD) -
Discrete Element Method (DEM) coupling.
CFDEM(R)coupling is an open-source code, distributed freely under the terms of the
GNU Public License (GPL).
Core development of CFDEM(R)coupling is done by
Christoph Goniva and Christoph Kloss, both at DCS Computing GmbH, 2012
/*---------------------------------------------------------------------------*\
(*) "OpenFOAM(R)" is a registered trade mark of OpenCFD Limited, a wholly owned subsidiary of the ESI Group.
This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.
\*---------------------------------------------------------------------------*/

33
README.md Executable file
View File

@ -0,0 +1,33 @@
# CFDEMcoupling
CFDEM®coupling stands for Computational Fluid Dynamics (CFD) - Discrete Element Method (DEM) coupling. It combines the open source packages OpenFOAM® (CFD) and LIGGGHTS® (DEM) to simulate particle-laden flows. CFDEM®coupling is part of the [CFDEM®project](https://www.cfdem.com).
[![CircleCI](https://circleci.com/gh/ParticulateFlow/CFDEMcoupling.svg?style=shield&circle-token=e4b6af30d3aa7aee109d206116f01600bf9ee9c6)](https://circleci.com/gh/ParticulateFlow/CFDEMcoupling)
[![License: GPL v3](https://img.shields.io/badge/License-GPL%20v3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0.html)
## Disclaimer
> This is an academic adaptation of the CFDEM®coupling software package, released by the
[Department of Particulate Flow Modelling at Johannes Kepler University in Linz, Austria.](https://www.jku.at/pfm)
> LIGGGHTS® and CFDEM® are registered trademarks, and this offering is not approved or
endorsed by DCS Computing GmbH, the official producer of the LIGGGHTS® and CFDEM®coupling software.
> This offering is not approved or endorsed by OpenCFD Limited, producer and distributor of the OpenFOAM software via www.openfoam.com, and owner of the OPENFOAM® and OpenCFD® trade marks.
## Features
- Documentation and tutorials to get started
- A modular approach that allows for easy implementation of new models
- MPI parallelization for large scale problems
## License
[![License: GPL v3](https://img.shields.io/badge/License-GPL%20v3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0.html)
- This software is distributed under the [GNU General Public License](https://opensource.org/licenses/GPL-3.0).
- Copyright © 2009- JKU Linz
- Copyright © 2012-2015 DCS Computing GmbH, Linz
- Some parts of CFDEM®coupling are based on OpenFOAM® and Copyright on these
parts is held by the OpenFOAM® Foundation (www.openfoam.org)
and potentially other parties.
- Some parts of CFDEM®coupling are contributed by other parties, which are
holding the Copyright. This is listed in each file of the distribution.

View File

@ -6,9 +6,6 @@
particleCloud.energyContributions(Qsource);
particleCloud.energyCoefficients(QCoeff);
//thDiff=particleCloud.thermCondM().thermDiff();
thCond=particleCloud.thermCondM().thermCond();
addSource = fvc::ddt(rhoeps, K) + fvc::div(phi, K)
+ (
he.name() == "e"
@ -35,7 +32,6 @@
- Qsource
- fvm::Sp(QCoeff/Cpv, he)
// thermal conduction of the fluid with effective conductivity
// - fvm::laplacian(rhoeps*thDiff,he)
- fvm::laplacian(voidfraction*thCond/Cpv,he)
// + particle-fluid energy transfer due to work
// + fluid energy dissipation due to shearing

View File

@ -58,10 +58,11 @@ Info<< "Reading thermophysical properties\n" << endl;
"addSource",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh
mesh,
dimensionedScalar("zero", dimensionSet(1,-1,-3,0,0,0,0), 0.0)
);
Info<< "\nCreating fluid-particle heat flux field\n" << endl;
@ -94,21 +95,6 @@ Info<< "Reading thermophysical properties\n" << endl;
dimensionedScalar("zero", dimensionSet(1,-1,-3,-1,0,0,0), 0.0)
);
/* Info<< "\nCreating thermal diffusivity field\n" << endl;
volScalarField thDiff
(
IOobject
(
"thDiff",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(0,2,-1,0,0,0,0), 0.0)
);
*/
Info<< "\nCreating thermal conductivity field\n" << endl;
volScalarField thCond
(
@ -117,11 +103,12 @@ Info<< "Reading thermophysical properties\n" << endl;
"thCond",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1,1,-3,-1,0,0,0), 0.0)
dimensionedScalar("zero", dimensionSet(1,1,-3,-1,0,0,0), 0.0),
"zeroGradient"
);
Info<< "\nCreating heat capacity field\n" << endl;

View File

@ -6,12 +6,11 @@ volScalarField& he = thermo.he();
particleCloud.energyContributions(Qsource);
particleCloud.energyCoefficients(QCoeff);
thCond=particleCloud.thermCondM().thermCond();
Cpv = he.name() == "e" ? thermo.Cv() : thermo.Cp();
// correct source for the thermodynamic reference temperature
dimensionedScalar Tref("Tref", dimTemperature, T[0]-he[0]/(Cpv[0]+SMALL));
Qsource += QCoeff*Tref;
// dimensionedScalar Tref("Tref", dimTemperature, T[0]-he[0]/(Cpv[0]+SMALL));
// Qsource += QCoeff*Tref;
fvScalarMatrix EEqn
(
@ -49,7 +48,13 @@ fvScalarMatrix EEqn
thermo.correct();
Info << "Qsource :" << max(Qsource).value() << " " << min(Qsource).value() << endl;
Info << "QCoeff :" << max(QCoeff).value() << " " << min(QCoeff).value() << endl;
Info << "Cpv :" << max(Cpv).value() << " " << min(Cpv).value() << endl;
Info<< "T max/min : " << max(T).value() << " " << min(T).value() << endl;
Info << "he min/max : " << max(he).value() << " " << min(he).value() << endl;
Info << "he max/min : " << max(he).value() << " " << min(he).value() << endl;
particleCloud.clockM().start(31,"energySolve");
particleCloud.solve();
particleCloud.clockM().stop("energySolve");
}

View File

@ -53,7 +53,6 @@ Description
int main(int argc, char *argv[])
{
// #include "postProcess.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
@ -62,7 +61,6 @@ int main(int argc, char *argv[])
#include "createRDeltaT.H"
#include "createFields.H"
#include "createFieldRefs.H"
#include "createFvOptions.H"
#include "initContinuityErrs.H"

View File

@ -28,6 +28,8 @@
}
volScalarField& p = thermo.p();
const volScalarField& T = thermo.T();
const volScalarField& psi = thermo.psi();
multivariateSurfaceInterpolationScheme<scalar>::fieldTable fields;
@ -51,9 +53,6 @@
);
// kinematic fields
Info<< "Reading field U\n" << endl;
volVectorField U
(
@ -82,18 +81,8 @@
mesh
);
volScalarField rhoeps
(
IOobject
(
"rhoeps",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
rho*voidfraction
);
volScalarField rhoeps ("rhoeps", rho*voidfraction);
Info<< "\nCreating fluid-particle heat flux field\n" << endl;
volScalarField Qsource
@ -133,11 +122,12 @@
"thCond",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1,1,-3,-1,0,0,0), 0.0)
dimensionedScalar("zero", dimensionSet(1,1,-3,-1,0,0,0), 0.0),
"zeroGradient"
);
Info<< "\nCreating heat capacity field\n" << endl;
@ -282,9 +272,18 @@
mesh,
dimensionedScalar("zero",dimensionSet(0, -3, 0, 0, 1),0)
);
volScalarField dSauter
(
IOobject
(
"dSauter",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero",dimensionSet(0, 1, 0, 0, 0,0,0),0)
);
//===============================
// singlePhaseTransportModel laminarTransport(U, phi);

View File

@ -1,3 +0,0 @@
cfdemSolverRhoSimple.C
EXE=$(CFDEM_APP_DIR)/cfdemSolverRhoSimple

View File

@ -0,0 +1,3 @@
rStatAnalysis.C
EXE=$(CFDEM_APP_DIR)/rStatAnalysis

View File

@ -0,0 +1,26 @@
include $(CFDEM_ADD_LIBS_DIR)/additionalLibs
EXE_INC = \
-I$(CFDEM_OFVERSION_DIR) \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/lnInclude \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/cfdTools \
-I$(CFDEM_SRC_DIR)/recurrence/lnInclude \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/derived/cfdemCloudRec \
EXE_LIBS = \
-L$(CFDEM_LIB_DIR)\
-lrecurrence \
-lturbulenceModels \
-lincompressibleTurbulenceModels \
-lincompressibleTransportModels \
-lfiniteVolume \
-lmeshTools \
-l$(CFDEM_LIB_NAME) \
$(CFDEM_ADD_LIB_PATHS) \
$(CFDEM_ADD_LIBS)

View File

@ -0,0 +1,67 @@
/*---------------------------------------------------------------------------*\
CFDEMcoupling academic - Open Source CFD-DEM coupling
Contributing authors:
Thomas Lichtenegger
Copyright (C) 2015- Johannes Kepler University, Linz
-------------------------------------------------------------------------------
License
This file is part of CFDEMcoupling academic.
CFDEMcoupling academic is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
CFDEMcoupling academic is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with CFDEMcoupling academic. If not, see <http://www.gnu.org/licenses/>.
Application
rStatAnalysis
Description
Creates and analyzes a recurrence statistics
\*---------------------------------------------------------------------------*/
// #include "fvCFD.H"
// #include "singlePhaseTransportModel.H"
// #include "turbulentTransportModel.H"
// #include "fvOptions.H"
#include "recBase.H"
#include "recStatAnalysis.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "postProcess.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
recBase recurrenceBase(mesh);
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info << "\nAnalyzing recurrence statistics\n" << endl;
recurrenceBase.recStatA().init();
recurrenceBase.recStatA().statistics();
Info << "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
rcfdemSolverBase.C
EXE=$(CFDEM_APP_DIR)/rcfdemSolverBase

View File

@ -0,0 +1,27 @@
include $(CFDEM_ADD_LIBS_DIR)/additionalLibs
EXE_INC = \
-I$(CFDEM_OFVERSION_DIR) \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/lnInclude \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/cfdTools \
-I$(CFDEM_SRC_DIR)/recurrence/lnInclude \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/derived/cfdemCloudRec \
EXE_LIBS = \
-L$(CFDEM_LIB_DIR)\
-lrecurrence \
-lturbulenceModels \
-lincompressibleTurbulenceModels \
-lincompressibleTransportModels \
-lfiniteVolume \
-lmeshTools \
-lfvOptions \
-l$(CFDEM_LIB_NAME) \
$(CFDEM_ADD_LIB_PATHS) \
$(CFDEM_ADD_LIBS)

View File

@ -0,0 +1,125 @@
// dummy fields
Info << "\nCreating dummy pressure and density fields\n" << endl;
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("p", dimensionSet(1, 2, -2, 0, 0), 1.0)
);
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("rho", dimensionSet(1, -3, 0, 0, 0), 1.0)
);
// recurrence fields
Info << "\nCreating recurrence fields.\n" << endl;
volVectorField URec
(
IOobject
(
"URec",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
volScalarField voidfractionRec
(
IOobject
(
"voidfractionRec",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
volVectorField UsRec
(
IOobject
(
"UsRec",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
// calculated fields
Info << "\nCreating fields subject to calculation\n" << endl;
volScalarField voidfraction
(
IOobject
(
"voidfraction",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
voidfractionRec
);
volVectorField Us
(
IOobject
(
"Us",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
UsRec
);
// write fields for t=t_start
voidfraction.write();
Us.write();
//===============================
Info << "Calculating face flux field phi\n" << endl;
surfaceScalarField phiRec
(
IOobject
(
"phiRec",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
linearInterpolate(URec*voidfractionRec) & mesh.Sf()
);
phiRec.write();
singlePhaseTransportModel laminarTransport(URec, phiRec);
autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(URec, phiRec, laminarTransport)
);

View File

@ -0,0 +1,114 @@
/*---------------------------------------------------------------------------*\
CFDEMcoupling academic - Open Source CFD-DEM coupling
Contributing authors:
Thomas Lichtenegger, Gerhard Holzinger
Copyright (C) 2015- Johannes Kepler University, Linz
-------------------------------------------------------------------------------
License
This file is part of CFDEMcoupling academic.
CFDEMcoupling academic is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
CFDEMcoupling academic is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with CFDEMcoupling academic. If not, see <http://www.gnu.org/licenses/>.
Application
cfdemSolverRecurrence
Description
Solves a transport equation for a passive scalar on a two-phase solution
Test-bed for a solver based on recurrence statistics
Rules
Solution data to compute the recurrence statistics from, needs to
reside in $CASE_ROOT/dataBase
Time step data in dataBase needs to be evenly spaced in time
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "fvOptions.H"
#include "cfdemCloudRec.H"
#include "recBase.H"
#include "recModel.H"
#include "cfdemCloud.H"
#include "clockModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "postProcess.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createFields.H"
#include "createFvOptions.H"
cfdemCloudRec<cfdemCloud> particleCloud(mesh);
recBase recurrenceBase(mesh);
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info << "\nCalculating particle trajectories based on recurrence statistics\n" << endl;
label recTimeIndex = 0;
scalar recTimeStep = recurrenceBase.recM().recTimeStep();
scalar startTime = runTime.startTime().value();
while (runTime.run())
{
runTime++;
// do stuff (every lagrangian time step)
particleCloud.clockM().start(1,"Global");
Info << "Time = " << runTime.timeName() << nl << endl;
particleCloud.clockM().start(2,"Coupling");
particleCloud.evolve(voidfraction,Us,URec);
particleCloud.clockM().stop("Coupling");
if ( runTime.timeOutputValue() - startTime - (recTimeIndex+1)*recTimeStep + 1.0e-5 > 0.0 )
{
recurrenceBase.updateRecFields();
#include "readFields.H"
recTimeIndex++;
}
particleCloud.clockM().start(27,"Output");
runTime.write();
particleCloud.clockM().stop("Output");
particleCloud.clockM().stop("Global");
Info << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info << "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,4 @@
recurrenceBase.recM().exportVolScalarField("voidfraction",voidfractionRec);
recurrenceBase.recM().exportVolVectorField("U",URec);
recurrenceBase.recM().exportVolVectorField("Us",UsRec);
recurrenceBase.recM().exportSurfaceScalarField("phi",phiRec);

View File

@ -0,0 +1,3 @@
rcfdemSolverCoupledHeattransfer.C
EXE=$(CFDEM_APP_DIR)/rcfdemSolverCoupledHeattransfer

View File

@ -0,0 +1,27 @@
include $(CFDEM_ADD_LIBS_DIR)/additionalLibs
EXE_INC = \
-I$(CFDEM_OFVERSION_DIR) \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/lnInclude \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/cfdTools \
-I$(CFDEM_SRC_DIR)/recurrence/lnInclude \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/derived/cfdemCloudRec \
EXE_LIBS = \
-L$(CFDEM_LIB_DIR)\
-lrecurrence \
-lturbulenceModels \
-lincompressibleTurbulenceModels \
-lincompressibleTransportModels \
-lfiniteVolume \
-lmeshTools \
-lfvOptions \
-l$(CFDEM_LIB_NAME) \
$(CFDEM_ADD_LIB_PATHS) \
$(CFDEM_ADD_LIBS)

View File

@ -0,0 +1,35 @@
volScalarField rhoeps = rhoRec*voidfractionRec;
particleCloud.energyContributions(Qsource);
particleCloud.energyCoefficients(QCoeff);
//K = 0.5*magSqr(URec);
addSource = fvc::div(phiRec/fvc::interpolate(rhoRec), pRec);
// main contribution due to gas expansion, not due to transport of kinetic energy
// fvc::ddt(rhoeps, K) + fvc::div(phiRec, K)
fvScalarMatrix TEqn =
(
fvm::ddt(rhoeps, T)
+ fvm::div(phiRec, T)
+ addSource/Cv
- fvm::laplacian(voidfractionRec*thCond/Cv, T)
- Qsource/Cv
- fvm::Sp(QCoeff/Cv, T)
==
fvOptions(rhoeps, T) // no fvOptions support yet
);
fvOptions.constrain(TEqn); // no fvOptions support yet
TEqn.solve();
particleCloud.clockM().start(31,"postFlow");
counter++;
if((counter - couplingSubStep) % dtDEM2dtCFD == 0)
particleCloud.postFlow();
particleCloud.clockM().stop("postFlow");

View File

@ -0,0 +1,230 @@
// dummy fields
Info << "\nCreating dummy pressure field\n" << endl;
volScalarField pRec
(
IOobject
(
"pRec",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1,-1,-2,0,0,0,0), 0.0)
);
// recurrence fields
Info << "\nCreating recurrence fields.\n" << endl;
volScalarField rhoRec
(
IOobject
(
"rhoRec",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1, -3, 0, 0, 0), 1.0)
);
volVectorField URec
(
IOobject
(
"URec",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedVector("zero", dimensionSet(0, 1, -1, 0, 0), vector::zero)
);
volScalarField voidfractionRec
(
IOobject
(
"voidfractionRec",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(0,0,0,0,0,0,0), 0.0)
);
volVectorField UsRec
(
IOobject
(
"UsRec",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedVector("zero", dimensionSet(0, 1, -1, 0, 0), vector::zero)
);
// heat transfer fields
Info << "\nCreating heat transfer fields.\n" << endl;
volScalarField Qsource
(
IOobject
(
"Qsource",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1,-1,-3,0,0,0,0), 0.0)
);
volScalarField QCoeff
( IOobject
(
"QCoeff",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1,-1,-3,-1,0,0,0), 0.0)
);
volScalarField thCond
(
IOobject
(
"thCond",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1,1,-3,-1,0,0,0), 0.0),
"zeroGradient"
);
volScalarField T
(
IOobject
(
"T",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
// calculated fields
Info << "\nCreating fields subject to calculation\n" << endl;
volScalarField voidfraction
(
IOobject
(
"voidfraction",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
voidfractionRec
);
volVectorField Us
(
IOobject
(
"Us",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
UsRec
);
// write fields for t=t_start
voidfraction.write();
Us.write();
//===============================
Info << "Calculating face flux field phiRec\n" << endl;
surfaceScalarField phiRec
(
IOobject
(
"phiRec",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1,0,-1,0,0,0,0), 0.0)
);
phiRec.write();
Info << "Creating dummy turbulence model\n" << endl;
singlePhaseTransportModel laminarTransport(URec, phiRec);
autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(URec, phiRec, laminarTransport)
);
const IOdictionary& transportProps = mesh.lookupObject<IOdictionary>("transportProperties");
dimensionedScalar molMass(transportProps.lookup("molM"));
// need to scale R down with 1e3 because return value of RR in g, not kg
dimensionedScalar R("R",dimensionSet(0,2,-2,-1,0,0,0),Foam::constant::thermodynamic::RR / (1e3*molMass.value()));
Info << "specific gas constant R = " << R << endl;
dimensionedScalar Cv(transportProps.lookup("Cv"));
volScalarField addSource
(
IOobject
(
"addSource",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1,-1,-3,0,0,0,0), 0.0)
);
// place to put weight functions
IOdictionary weightDict
(
IOobject
(
"weightDict",
runTime.constant(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
)
);
weightDict.add("weights",scalarList(1,1.0));

View File

@ -0,0 +1,131 @@
/*---------------------------------------------------------------------------*\
CFDEMcoupling academic - Open Source CFD-DEM coupling
Contributing authors:
Thomas Lichtenegger
Copyright (C) 2015- Johannes Kepler University, Linz
-------------------------------------------------------------------------------
License
This file is part of CFDEMcoupling academic.
CFDEMcoupling academic is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
CFDEMcoupling academic is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with CFDEMcoupling academic. If not, see <http://www.gnu.org/licenses/>.
Application
rcfdemSolverHeattransfer
Description
Solves heat transfer between fluid and particles based on rCFD
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "fvOptions.H"
#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "cfdemCloudRec.H"
#include "recBase.H"
#include "recModel.H"
#include "recPath.H"
#include "cfdemCloudEnergy.H"
#include "clockModel.H"
#include "thermCondModel.H"
#include "energyModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "postProcess.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createFields.H"
#include "createFvOptions.H"
cfdemCloudRec<cfdemCloudEnergy> particleCloud(mesh);
recBase recurrenceBase(mesh);
#include "updateFields.H"
#include "updateRho.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info << "\nCalculating particle trajectories based on recurrence statistics\n" << endl;
label recTimeIndex = 0;
scalar recTimeStep = recurrenceBase.recM().recTimeStep();
scalar startTime = runTime.startTime().value();
// control coupling behavior in case of substepping
// assumes constant timestep size
label counter = 0;
label couplingSubStep = recurrenceBase.couplingSubStep();
double dtProp = particleCloud.dataExchangeM().couplingTime() / runTime.deltaTValue();
label dtDEM2dtCFD = int(dtProp + 0.5);
Info << "deltaT_DEM / deltaT_CFD = " << dtDEM2dtCFD << endl;
if (dtDEM2dtCFD > 1)
Info << "coupling at substep " << couplingSubStep << endl;
while (runTime.run())
{
runTime++;
// do stuff (every lagrangian time step)
particleCloud.clockM().start(1,"Global");
Info << "Time = " << runTime.timeName() << nl << endl;
particleCloud.clockM().start(2,"Coupling");
particleCloud.evolve(voidfraction,Us,URec);
particleCloud.clockM().stop("Coupling");
particleCloud.clockM().start(26,"Flow");
#include "updateRho.H"
#include "TEqImp.H"
particleCloud.clockM().stop("Flow");
particleCloud.clockM().start(32,"ReadFields");
if ( runTime.timeOutputValue() - startTime - (recTimeIndex+1)*recTimeStep + 1.0e-5 > 0.0 )
{
recurrenceBase.updateRecFields();
#include "updateFields.H"
recTimeIndex++;
}
particleCloud.clockM().stop("ReadFields");
particleCloud.clockM().start(33,"Output");
runTime.write();
particleCloud.clockM().stop("Output");
particleCloud.clockM().stop("Global");
Info << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info << "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,38 @@
// get current weights for various databases
// A: triggered over current value of boundary field
// word boundaryName = "inlet";
// label myinlet = mesh.boundary().findPatchID(boundaryName);
// label startIndex = mesh.boundary()[boundaryName].start();
// B: explicitly define weights
scalarList wList(weightDict.lookupOrDefault("weights",scalarList(1,0.0)));
recurrenceBase.recP().updateIntervalWeights(wList);
// is it neccessary to extend recurrence path?
if(recurrenceBase.recM().endOfPath())
{
recurrenceBase.extendPath();
}
recurrenceBase.recM().exportVolScalarField("voidfraction",voidfractionRec);
recurrenceBase.recM().exportVolScalarField("p",pRec);
recurrenceBase.recM().exportVolVectorField("Us",UsRec);
recurrenceBase.recM().exportSurfaceScalarField("phi",phiRec);
Info << "current database weights: = " << wList << endl;
Info << "current database: " << recurrenceBase.recM().currDataBase() << endl;
for(int i=0;i<wList.size();i++)
{
scalar w = wList[i];
if (recurrenceBase.recM().currDataBase() == i) w -= 1.0;
phiRec += w*recurrenceBase.recM().exportSurfaceScalarFieldAve("phi",i)();
}
{
volScalarField& NuField(const_cast<volScalarField&>(mesh.lookupObject<volScalarField> ("NuField")));
recurrenceBase.recM().exportVolScalarField("NuField",NuField);
}

View File

@ -0,0 +1 @@
rhoRec = pRec / (T * R);

View File

@ -0,0 +1,3 @@
rcfdemSolverHeattransfer.C
EXE=$(CFDEM_APP_DIR)/rcfdemSolverHeattransfer

View File

@ -0,0 +1,27 @@
include $(CFDEM_ADD_LIBS_DIR)/additionalLibs
EXE_INC = \
-I$(CFDEM_OFVERSION_DIR) \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/lnInclude \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/cfdTools \
-I$(CFDEM_SRC_DIR)/recurrence/lnInclude \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/derived/cfdemCloudRec \
EXE_LIBS = \
-L$(CFDEM_LIB_DIR)\
-lrecurrence \
-lturbulenceModels \
-lincompressibleTurbulenceModels \
-lincompressibleTransportModels \
-lfiniteVolume \
-lmeshTools \
-lfvOptions \
-l$(CFDEM_LIB_NAME) \
$(CFDEM_ADD_LIB_PATHS) \
$(CFDEM_ADD_LIBS)

View File

@ -0,0 +1,40 @@
volScalarField rhoeps = rhoRec*voidfractionRec;
particleCloud.energyContributions(Qsource);
particleCloud.energyCoefficients(QCoeff);
K = 0.5*magSqr(URec);
addSource = fvc::ddt(rhoeps, K) + fvc::div(phiRec, K) +
fvc::div
(
fvc::absolute(phiRec/fvc::interpolate(rhoRec), voidfractionRec*URec), pRec
);
fvScalarMatrix TEqn =
(
fvm::ddt(rhoeps, T)
+ fvm::div(phiRec, T)
+ addSource/Cv
- fvm::laplacian(voidfractionRec*thCond/Cv, T)
- Qsource/Cv
- fvm::Sp(QCoeff/Cv, T)
==
fvOptions(rhoeps, T) // no fvOptions support yet
);
//TEqn.relax(relaxCoeff);
fvOptions.constrain(TEqn); // no fvOptions support yet
TEqn.solve();
particleCloud.clockM().start(31,"postFlow");
counter++;
if((counter - couplingSubStep) % dtDEM2dtCFD == 0)
particleCloud.postFlow();
particleCloud.clockM().stop("postFlow");

View File

@ -0,0 +1,206 @@
// dummy fields
Info << "\nCreating dummy pressure field\n" << endl;
volScalarField pRec
(
IOobject
(
"pRec",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
// recurrence fields
Info << "\nCreating recurrence fields.\n" << endl;
volScalarField rhoRec
(
IOobject
(
"rhoRec",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh//,
//dimensionedScalar("rhoRec", dimensionSet(1, -3, 0, 0, 0), 1.0)
);
volVectorField URec
(
IOobject
(
"URec",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
volScalarField voidfractionRec
(
IOobject
(
"voidfractionRec",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
volVectorField UsRec
(
IOobject
(
"UsRec",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
// heat transfer fields
Info << "\nCreating heat transfer fields.\n" << endl;
volScalarField Qsource
(
IOobject
(
"Qsource",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1,-1,-3,0,0,0,0), 0.0)
);
volScalarField QCoeff
(
IOobject
(
"QCoeff",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1,-1,-3,-1,0,0,0), 0.0)
);
volScalarField thCond
(
IOobject
(
"thCond",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1,1,-3,-1,0,0,0), 0.0),
"zeroGradient"
);
volScalarField T
(
IOobject
(
"T",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
// calculated fields
Info << "\nCreating fields subject to calculation\n" << endl;
volScalarField voidfraction
(
IOobject
(
"voidfraction",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
voidfractionRec
);
volVectorField Us
(
IOobject
(
"Us",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
UsRec
);
// write fields for t=t_start
voidfraction.write();
Us.write();
//===============================
Info << "Calculating face flux field phiRec\n" << endl;
surfaceScalarField phiRec
(
IOobject
(
"phiRec",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
linearInterpolate(URec*voidfractionRec*rhoRec) & mesh.Sf()
);
phiRec.write();
singlePhaseTransportModel laminarTransport(URec, phiRec);
autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(URec, phiRec, laminarTransport)
);
const IOdictionary& transportProps = mesh.lookupObject<IOdictionary>("transportProperties");
dimensionedScalar Cv(transportProps.lookup("Cv"));
volScalarField addSource
(
IOobject
(
"addSource",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1,-1,-3,0,0,0,0), 0.0)
);
Info << "Creating field kinetic energy K\n" << endl;
volScalarField K("K", 0.5*magSqr(URec));

View File

@ -0,0 +1,128 @@
/*---------------------------------------------------------------------------*\
CFDEMcoupling academic - Open Source CFD-DEM coupling
Contributing authors:
Thomas Lichtenegger
Copyright (C) 2015- Johannes Kepler University, Linz
-------------------------------------------------------------------------------
License
This file is part of CFDEMcoupling academic.
CFDEMcoupling academic is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
CFDEMcoupling academic is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with CFDEMcoupling academic. If not, see <http://www.gnu.org/licenses/>.
Application
rcfdemSolverHeattransfer
Description
Solves heat transfer between fluid and particles based on rCFD
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "fvOptions.H"
#include "cfdemCloudRec.H"
#include "recBase.H"
#include "recModel.H"
#include "cfdemCloudEnergy.H"
#include "clockModel.H"
#include "thermCondModel.H"
#include "energyModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "postProcess.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createFields.H"
#include "createFvOptions.H"
cfdemCloudRec<cfdemCloudEnergy> particleCloud(mesh);
recBase recurrenceBase(mesh);
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info << "\nCalculating particle trajectories based on recurrence statistics\n" << endl;
label recTimeIndex = 0;
scalar recTimeStep = recurrenceBase.recM().recTimeStep();
scalar startTime = runTime.startTime().value();
// control coupling behavior in case of substepping
// assumes constant timestep size
label counter = 0;
label couplingSubStep = recurrenceBase.couplingSubStep();//5;//3;
double dtProp = particleCloud.dataExchangeM().couplingTime() / runTime.deltaTValue();
label dtDEM2dtCFD = int(dtProp + 0.5);
Info << "deltaT_DEM / deltaT_CFD = " << dtDEM2dtCFD << endl;
if (dtDEM2dtCFD > 1)
Info << "coupling at substep " << couplingSubStep << endl;
while (runTime.run())
{
runTime++;
// do stuff (every lagrangian time step)
particleCloud.clockM().start(1,"Global");
Info << "Time = " << runTime.timeName() << nl << endl;
particleCloud.clockM().start(2,"Coupling");
particleCloud.evolve(voidfraction,Us,URec);
particleCloud.clockM().stop("Coupling");
particleCloud.clockM().start(26,"Flow");
#include "TEqImp.H"
particleCloud.clockM().stop("Flow");
particleCloud.clockM().start(32,"ReadFields");
if ( runTime.timeOutputValue() - startTime - (recTimeIndex+1)*recTimeStep + 1.0e-5 > 0.0 )
{
recurrenceBase.updateRecFields();
#include "updateFields.H"
recTimeIndex++;
}
particleCloud.clockM().stop("ReadFields");
particleCloud.clockM().start(33,"Output");
runTime.write();
particleCloud.clockM().stop("Output");
particleCloud.clockM().stop("Global");
Info << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info << "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,14 @@
recurrenceBase.recM().exportVolScalarField("voidfraction",voidfractionRec);
recurrenceBase.recM().exportVolScalarField("rho",rhoRec);
recurrenceBase.recM().exportVolScalarField("p",pRec);
recurrenceBase.recM().exportVolVectorField("Us",UsRec);
recurrenceBase.recM().exportVolVectorField("U",URec);
recurrenceBase.recM().exportSurfaceScalarField("phi",phiRec);
{
volScalarField& NuField(const_cast<volScalarField&>(mesh.lookupObject<volScalarField> ("NuField")));
recurrenceBase.recM().exportVolScalarField("NuField",NuField);
}
#include "updateRho.H"

View File

@ -0,0 +1,32 @@
// work-around for transient properties
// needs to be specified for each case
// case 1
forAll(rhoRec,cellI)
{
if (mesh.C()[cellI].z() < 0.00228)
rhoRec[cellI] = 1.18+(1.085-1.18)*Foam::exp(-0.065*runTime.timeOutputValue());
else if (mesh.C()[cellI].z() < 0.00456)
rhoRec[cellI] = 1.18+(1.01-1.18)*Foam::exp(-0.05*runTime.timeOutputValue());
else if (mesh.C()[cellI].z() < 0.00684)
rhoRec[cellI] = 1.18+(0.98-1.18)*Foam::exp(-0.0425*runTime.timeOutputValue());
else
rhoRec[cellI] = 1.18+(0.955-1.18)*Foam::exp(-0.0425*runTime.timeOutputValue());
}
// case 2
/*
forAll(rhoRec,cellI)
{
if (mesh.C()[cellI].z() < 0.00228)
rhoRec[cellI] = 1.18+(1.115-1.18)*Foam::exp(-0.065*runTime.timeOutputValue());
else if (mesh.C()[cellI].z() < 0.00456)
rhoRec[cellI] = 1.18+(1.04-1.18)*Foam::exp(-0.05*runTime.timeOutputValue());
else if (mesh.C()[cellI].z() < 0.00684)
rhoRec[cellI] = 1.18+(1.005-1.18)*Foam::exp(-0.0425*runTime.timeOutputValue());
else
rhoRec[cellI] = 1.18+(0.96-1.18)*Foam::exp(-0.0425*runTime.timeOutputValue());
}
*/

View File

@ -6,9 +6,6 @@
particleCloud.energyContributions(Qsource);
particleCloud.energyCoefficients(QCoeff);
//thDiff=particleCloud.thermCondM().thermDiff();
thCond=particleCloud.thermCondM().thermCond();
addSource =
(
he.name() == "e"
@ -16,7 +13,7 @@
fvc::div(phi, K) +
fvc::div
(
fvc::absolute(phi/fvc::interpolate(rho), voidfraction*U),
fvc::absolute(phi/fvc::interpolate(rho), voidfractionRec*U),
p,
"div(phiv,p)"
)
@ -25,9 +22,6 @@
Cpv = he.name() == "e" ? thermo.Cv() : thermo.Cp();
// correct source for the thermodynamic reference temperature
dimensionedScalar Tref("Tref", dimTemperature, T[0]-he[0]/(Cpv[0]+SMALL));
Qsource += QCoeff*Tref;
fvScalarMatrix EEqn
(
@ -35,12 +29,12 @@
+ addSource
- Qsource
- fvm::Sp(QCoeff/Cpv, he)
- fvm::laplacian(voidfraction*thCond/Cpv,he)
// - fvm::laplacian(voidfractionRec*kf/Cpv,he)
- fvm::laplacian(voidfractionRec*thCond/Cpv,he)
==
fvOptions(rho, he)
);
EEqn.relax();
fvOptions.constrain(EEqn);

View File

@ -0,0 +1,3 @@
rcfdemSolverRhoSteadyPimple.C
EXE=$(CFDEM_APP_DIR)/rcfdemSolverRhoSteadyPimple

View File

@ -15,9 +15,11 @@ EXE_INC = \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/lnInclude \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/cfdTools \
-I$(CFDEM_SRC_DIR)/recurrence/lnInclude \
EXE_LIBS = \
-L$(CFDEM_LIB_DIR)\
-lrecurrence \
-lcompressibleTransportModels \
-lfluidThermophysicalModels \
-lspecie \

View File

@ -4,7 +4,7 @@ particleCloud.otherForces(fOther);
tmp<fvVectorMatrix> tUEqn
(
fvm::div(phi, U)
+ particleCloud.divVoidfractionTau(U, voidfraction)
+ particleCloud.divVoidfractionTau(U, voidfractionRec)
+ fvm::Sp(Ksl,U)
- fOther
==
@ -18,13 +18,16 @@ fvOptions.constrain(UEqn);
if (modelType=="B" || modelType=="Bfull")
{
solve(UEqn == -fvc::grad(p)+ Ksl*Us);
solve(UEqn == -fvc::grad(p)+ Ksl*UsRec);
}
else
{
solve(UEqn == -voidfraction*fvc::grad(p)+ Ksl*Us);
solve(UEqn == -voidfractionRec*fvc::grad(p)+ Ksl*UsRec);
}
//U.relax();
#include "limitU.H"
fvOptions.correct(U);
K = 0.5*magSqr(U);

View File

@ -51,6 +51,19 @@ Info<< "Reading thermophysical properties\n" << endl;
mesh
);
volScalarField voidfractionRec
(
IOobject
(
"voidfractionRec",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
voidfraction
);
volScalarField addSource
(
IOobject
@ -58,10 +71,11 @@ Info<< "Reading thermophysical properties\n" << endl;
"addSource",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh
mesh,
dimensionedScalar("zero", dimensionSet(1,-1,-3,0,0,0,0), 0.0)
);
Info<< "\nCreating fluid-particle heat flux field\n" << endl;
@ -102,11 +116,12 @@ Info<< "Reading thermophysical properties\n" << endl;
"thCond",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1,1,-3,-1,0,0,0), 0.0)
dimensionedScalar("zero", dimensionSet(1,1,-3,-1,0,0,0), 0.0),
"zeroGradient"
);
Info<< "\nCreating heat capacity field\n" << endl;
@ -158,7 +173,7 @@ Info<< "Reading thermophysical properties\n" << endl;
dimensionedScalar::lookupOrDefault
(
"rhoMax",
simple.dict(),
pimple.dict(),
dimDensity,
GREAT
)
@ -169,12 +184,45 @@ Info<< "Reading thermophysical properties\n" << endl;
dimensionedScalar::lookupOrDefault
(
"rhoMin",
simple.dict(),
pimple.dict(),
dimDensity,
0
)
);
dimensionedScalar pMax
(
dimensionedScalar::lookupOrDefault
(
"pMax",
pimple.dict(),
dimPressure,
GREAT
)
);
dimensionedScalar pMin
(
dimensionedScalar::lookupOrDefault
(
"pMin",
pimple.dict(),
dimPressure,
-GREAT
)
);
dimensionedScalar UMax
(
dimensionedScalar::lookupOrDefault
(
"UMax",
pimple.dict(),
dimVelocity,
-1.0
)
);
Info<< "Creating turbulence model\n" << endl;
autoPtr<compressible::turbulenceModel> turbulence
(
@ -189,7 +237,7 @@ Info<< "Reading thermophysical properties\n" << endl;
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, simple.dict(), pRefCell, pRefValue);
setRefCell(p, pimple.dict(), pRefCell, pRefValue);
mesh.setFluxRequired(p.name());
@ -217,11 +265,11 @@ Info<< "Reading thermophysical properties\n" << endl;
"Ksl",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh
//dimensionedScalar("0", dimensionSet(1, -3, -1, 0, 0), 1.0)
mesh,
dimensionedScalar("0", dimensionSet(1, -3, -1, 0, 0), 0.0)
);
@ -239,4 +287,20 @@ Info<< "Reading thermophysical properties\n" << endl;
mesh
);
volVectorField UsRec
(
IOobject
(
"UsRec",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
Us
);
dimensionedScalar kf("0", dimensionSet(1, 1, -3, -1, 0, 0, 0), 0.026);
//===============================

View File

@ -0,0 +1,2 @@
p = max(p, pMin);
p = min(p, pMax);

View File

@ -0,0 +1,11 @@
if (UMax.value() > 0)
{
forAll(U,cellI)
{
scalar mU(mag(U[cellI]));
if (mU > UMax.value())
{
U[cellI] *= UMax.value() / mU;
}
}
}

View File

@ -7,14 +7,15 @@ volScalarField rAU(1.0/UEqn.A());
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rhoeps*rAU));
if (modelType=="A")
{
rhorAUf *= fvc::interpolate(voidfraction);
rhorAUf *= fvc::interpolate(voidfractionRec);
}
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
//tUEqn.clear();
surfaceScalarField phiUs("phiUs", fvc::interpolate(rhoeps*rAU*Ksl*Us)& mesh.Sf());
surfaceScalarField phiUs("phiUs", fvc::interpolate(rhoeps*rAU*Ksl*UsRec)& mesh.Sf());
if (simple.transonic())
if (pimple.transonic())
{
// transonic version not implemented yet
}
@ -34,7 +35,7 @@ else
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rhoeps, U, phi, rhorAUf);
while (simple.correctNonOrthogonal())
while (pimple.correctNonOrthogonal())
{
// Pressure corrector
fvScalarMatrix pEqn
@ -49,7 +50,7 @@ else
pEqn.solve();
if (simple.finalNonOrthogonalIter())
if (pimple.finalNonOrthogonalIter())
{
phi += pEqn.flux();
}
@ -59,6 +60,8 @@ else
// Explicitly relax pressure for momentum corrector
p.relax();
#include "limitP.H"
// Recalculate density from the relaxed pressure
rho = thermo.rho();
rho = max(rho, rhoMin);
@ -69,13 +72,15 @@ Info<< "rho max/min : " << max(rho).value()
if (modelType=="A")
{
U = HbyA - rAU*(voidfraction*fvc::grad(p)-Ksl*Us);
U = HbyA - rAU*(voidfractionRec*fvc::grad(p)-Ksl*UsRec);
}
else
{
U = HbyA - rAU*(fvc::grad(p)-Ksl*Us);
U = HbyA - rAU*(fvc::grad(p)-Ksl*UsRec);
}
#include "limitU.H"
U.correctBoundaryConditions();
fvOptions.correct(U);
K = 0.5*magSqr(U);

View File

@ -17,23 +17,31 @@ License
Copyright (C) 2015- Thomas Lichtenegger, JKU Linz, Austria
Application
cfdemSolverRhoSimple
rcfdemSolverRhoSteadyPimple
Description
Steady-state solver for turbulent flow of compressible fluids based on
rhoSimpleFoam where functionality for CFD-DEM coupling has been added.
Transient (DEM) + steady-state (CFD) solver for compressible flow using the
flexible PIMPLE (PISO-SIMPLE) algorithm. Particle-motion is obtained from
a recurrence process.
Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.
The code is an evolution of the solver rhoPimpleFoam in OpenFOAM(R) 4.x,
where additional functionality for CFD-DEM coupling is added.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "psiThermo.H"
#include "turbulentFluidThermoModel.H"
#include "bound.H"
#include "simpleControl.H"
#include "pimpleControl.H"
#include "fvOptions.H"
#include "localEulerDdtScheme.H"
#include "fvcSmooth.H"
#include "cfdemCloudRec.H"
#include "recBase.H"
#include "recModel.H"
#include "recPath.H"
#include "cfdemCloudEnergy.H"
#include "implicitCouple.H"
#include "clockModel.H"
@ -60,18 +68,37 @@ int main(int argc, char *argv[])
#include "createFvOptions.H"
// create cfdemCloud
#include "readGravitationalAcceleration.H"
cfdemCloudEnergy particleCloud(mesh);
//#include "readGravitationalAcceleration.H"
cfdemCloudRec<cfdemCloudEnergy> particleCloud(mesh);
#include "checkModelType.H"
recBase recurrenceBase(mesh);
#include "updateFields.H"
turbulence->validate();
//#include "compressibleCourantNo.H"
//#include "setInitialDeltaT.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
label recTimeIndex = 0;
scalar recTimeStep = recurrenceBase.recM().recTimeStep();
scalar startTime = runTime.startTime().value();
const IOdictionary& couplingProps = particleCloud.couplingProperties();
label nEveryFlow(couplingProps.lookupOrDefault<label>("nEveryFlow",1));
Info << "Solving flow equations every " << nEveryFlow << " steps.\n" << endl;
label stepcounter = 0;
Info<< "\nStarting time loop\n" << endl;
while (simple.loop(runTime))
while (runTime.run())
{
#include "readTimeControls.H"
#include "compressibleCourantNo.H"
#include "setDeltaT.H"
runTime++;
particleCloud.clockM().start(1,"Global");
Info<< "Time = " << runTime.timeName() << nl << endl;
@ -80,6 +107,9 @@ int main(int argc, char *argv[])
particleCloud.clockM().start(2,"Coupling");
bool hasEvolved = particleCloud.evolve(voidfraction,Us,U);
//voidfraction = voidfractionRec;
//Us = UsRec;
if(hasEvolved)
{
particleCloud.smoothingM().smoothen(particleCloud.forceM(0).impParticleForces());
@ -100,25 +130,52 @@ int main(int argc, char *argv[])
particleCloud.clockM().stop("Coupling");
particleCloud.clockM().start(26,"Flow");
volScalarField rhoeps("rhoeps",rho*voidfractionRec);
if (stepcounter%nEveryFlow==0)
{
while (pimple.loop())
{
// if needed, perform drag update here
if (pimple.nCorrPIMPLE() <= 1)
{
#include "rhoEqn.H"
}
volScalarField rhoeps("rhoeps",rho*voidfraction);
// Pressure-velocity SIMPLE corrector
// --- Pressure-velocity PIMPLE corrector loop
#include "UEqn.H"
// besides this pEqn, OF offers a "simple consistent"-option
#include "pEqn.H"
rhoeps=rho*voidfraction;
#include "EEqn.H"
turbulence->correct();
// --- Pressure corrector loop
while (pimple.correct())
{
// besides this pEqn, OF offers a "pimple consistent"-option
#include "pEqn.H"
rhoeps=rho*voidfractionRec;
}
particleCloud.clockM().start(32,"postFlow");
if(hasEvolved) particleCloud.postFlow();
if (pimple.turbCorr())
{
turbulence->correct();
}
}
}
stepcounter++;
particleCloud.clockM().stop("Flow");
particleCloud.clockM().start(31,"postFlow");
particleCloud.postFlow();
particleCloud.clockM().stop("postFlow");
particleCloud.clockM().start(32,"ReadFields");
if ( runTime.timeOutputValue() - startTime - (recTimeIndex+1)*recTimeStep + 1.0e-5 > 0.0 )
{
recurrenceBase.updateRecFields();
#include "updateFields.H"
recTimeIndex++;
}
particleCloud.clockM().stop("ReadFields");
runTime.write();
@ -126,7 +183,7 @@ int main(int argc, char *argv[])
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
particleCloud.clockM().stop("Flow");
particleCloud.clockM().stop("Global");
}

View File

@ -0,0 +1,8 @@
// is it neccessary to extend recurrence path?
if(recurrenceBase.recM().endOfPath())
{
recurrenceBase.extendPath();
}
recurrenceBase.recM().exportVolScalarField("voidfraction",voidfractionRec);
recurrenceBase.recM().exportVolVectorField("Us",UsRec);

View File

@ -0,0 +1,3 @@
recSolverTurbTransport.C
EXE=$(CFDEM_APP_DIR)/recSolverTurbTransport

View File

@ -0,0 +1,27 @@
include $(CFDEM_ADD_LIBS_DIR)/additionalLibs
EXE_INC = \
-I$(CFDEM_OFVERSION_DIR) \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/lnInclude \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/cfdTools \
-I$(CFDEM_SRC_DIR)/recurrence/lnInclude \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/derived/cfdemCloudRec \
EXE_LIBS = \
-L$(CFDEM_LIB_DIR)\
-lrecurrence \
-lturbulenceModels \
-lincompressibleTurbulenceModels \
-lincompressibleTransportModels \
-lfiniteVolume \
-lmeshTools \
-lfvOptions \
-l$(CFDEM_LIB_NAME) \
$(CFDEM_ADD_LIB_PATHS) \
$(CFDEM_ADD_LIBS)

View File

@ -0,0 +1,17 @@
volScalarField alphaEff("alphaEff", turbulence->nu()/Sc + dU2/Sct);
TEqn =
(
fvm::ddt(T)
+ fvm::div(phiRec, T)
- fvm::laplacian(alphaEff, T)
==
fvOptions(T)
);
TEqn.relax(relaxCoeff);
fvOptions.constrain(TEqn);
TEqn.solve();

View File

@ -0,0 +1,174 @@
// dummy fields
Info<< "\nCreating dummy pressure and density fields\n" << endl;
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("p", dimensionSet(1, 2, -2, 0, 0), 1.0)
);
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("rho", dimensionSet(1, -3, 0, 0, 0), 1.0)
);
// recurrence fields
Info<< "\nCreating recurrence fields.\n" << endl;
volVectorField URec
(
IOobject
(
"URec",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
volScalarField U2Rec
(
IOobject
(
"U2Rec",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
// calculated fields
Info<< "\nCreating fields subject to calculation\n" << endl;
volScalarField delta
(
IOobject
(
"delta",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("delta", dimLength, 0.0)
);
delta.primitiveFieldRef()=pow(mesh.V(),1.0/3.0);
delta.write();
Info<< "\ncreating dU2\n" << endl;
volScalarField dU2
(
IOobject
(
"dU2",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt(0.5*mag(U2Rec - magSqr(URec)))*delta*0.094
);
forAll(dU2, cellI)
{
if (U2Rec[cellI]-magSqr(URec[cellI]) < 0.0)
{
dU2[cellI] = 0.0;
}
}
dU2.write();
Info<< "Calculating face flux field phiRec\n" << endl;
surfaceScalarField phiRec
(
IOobject
(
"phiRec",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
linearInterpolate(URec) & mesh.Sf()
);
phiRec.write();
singlePhaseTransportModel laminarTransport(URec, phiRec);
autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(URec, phiRec, laminarTransport)
);
dimensionedScalar Sc("Sc", dimless, laminarTransport);
dimensionedScalar Sct("Sct", dimless, laminarTransport);
// create concentration field
Info<< "Creating scalar transport field\n" << endl;
volScalarField T
(
IOobject
(
"T",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
fvScalarMatrix TEqn(T, dimless*dimVolume/(dimTime));
scalar relaxCoeff(0.0);
Info<< "reading clockProperties\n" << endl;
IOdictionary clockProperties
(
IOobject
(
"clockProperties",
mesh.time().constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
autoPtr<clockModel> myClock
(
clockModel::New
(
clockProperties,
mesh.time()
)
);

View File

@ -0,0 +1,14 @@
recurrenceBase.recM().exportVolScalarField("U2Mean",U2Rec);
recurrenceBase.recM().exportVolVectorField("UMean",URec);
phiRec=linearInterpolate(URec) & mesh.Sf();
dU2=sqrt(0.5*mag(U2Rec - magSqr(URec)))*delta*0.094;
forAll(dU2, cellI)
{
if (U2Rec[cellI]-magSqr(URec[cellI]) < 0.0)
{
dU2[cellI] = 0.0;
}
}

View File

@ -0,0 +1,113 @@
/*---------------------------------------------------------------------------*\
CFDEMcoupling academic - Open Source CFD-DEM coupling
Contributing authors:
Thomas Lichtenegger, Gerhard Holzinger
Copyright (C) 2015- Johannes Kepler University, Linz
-------------------------------------------------------------------------------
License
This file is part of CFDEMcoupling academic.
CFDEMcoupling academic is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
CFDEMcoupling academic is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with CFDEMcoupling academic. If not, see <http://www.gnu.org/licenses/>.
Application
Turbulent Transport Solver Recurrence
Description
Solves a transport equation for a passive scalar on a single-phase solution
for a solver based on recurrence statistics
Rules
Solution data to compute the recurrence statistics from, needs to
reside in $CASE_ROOT/dataBase
Time step data in dataBase needs to be evenly spaced in time
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "fvOptions.H"
#include "recBase.H"
#include "recModel.H"
#include "clockModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "postProcess.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createFields.H"
#include "createFvOptions.H"
recBase recurrenceBase(mesh);
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nCalculating particle trajectories based on recurrence statistics\n" << endl;
label recTimeIndex(0);
scalar recTimeStep_=recurrenceBase.recM().recTimeStep();
while (runTime.run())
{
myClock().start(1,"Global");
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
myClock().start(2,"fieldUpdate");
if ( runTime.timeOutputValue() - (recTimeIndex+1)*recTimeStep_ + 1.0e-5 > 0.0 )
{
Info << "Updating fields at run time " << runTime.timeOutputValue()
<< " corresponding to recurrence time " << (recTimeIndex+1)*recTimeStep_ << ".\n" << endl;
recurrenceBase.updateRecFields();
#include "readFields.H"
recTimeIndex++;
}
myClock().stop("fieldUpdate");
myClock().start(3,"speciesEqn");
#include "TEq.H"
myClock().stop("speciesEqn");
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
myClock().stop("Global");
}
myClock().evalPar();
myClock().normHist();
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
rtfmSolverSpecies.C
EXE=$(CFDEM_APP_DIR)/rtfmSolverSpecies

View File

@ -0,0 +1,27 @@
include $(CFDEM_ADD_LIBS_DIR)/additionalLibs
EXE_INC = \
-I$(CFDEM_OFVERSION_DIR) \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/lnInclude \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/cfdTools \
-I$(CFDEM_SRC_DIR)/recurrence/lnInclude \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/derived/cfdemCloudRec \
EXE_LIBS = \
-L$(CFDEM_LIB_DIR)\
-lrecurrence \
-lturbulenceModels \
-lincompressibleTurbulenceModels \
-lincompressibleTransportModels \
-lfiniteVolume \
-lmeshTools \
-lfvOptions \
-l$(CFDEM_LIB_NAME) \
$(CFDEM_ADD_LIB_PATHS) \
$(CFDEM_ADD_LIBS)

View File

@ -0,0 +1,14 @@
TEqn =
(
fvm::ddt(alpha2Rec, T)
+ fvm::div(phi2Rec, T)
- fvm::laplacian(alpha2Rec*turbulence->nu(), T)
==
fvOptions(alpha2Rec, T) // no fvOptions support yet
);
TEqn.relax(relaxCoeff);
fvOptions.constrain(TEqn); // no fvOptions support yet
TEqn.solve();

View File

@ -0,0 +1,135 @@
// dummy fields
Info << "\nCreating dummy pressure and density fields\n" << endl;
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("p", dimensionSet(1, 2, -2, 0, 0), 1.0)
);
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("rho", dimensionSet(1, -3, 0, 0, 0), 1.0)
);
// recurrence fields
Info << "\nCreating recurrence fields.\n" << endl;
volVectorField U1Rec
(
IOobject
(
"U1Rec",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
volScalarField alpha1Rec
(
IOobject
(
"alpha1Rec",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
volVectorField U2Rec
(
IOobject
(
"U2Rec",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
// calculated fields
Info << "\nCreating fields subject to calculation\n" << endl;
volScalarField alpha2Rec
(
IOobject
(
"alpha2Rec",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
1-alpha1Rec
);
// write fields for t=t_start
alpha2Rec.write();
//===============================
Info << "Calculating face flux field phi\n" << endl;
surfaceScalarField phi2Rec
(
IOobject
(
"phi2Rec",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
linearInterpolate(U2Rec*alpha2Rec) & mesh.Sf()
);
phi2Rec.write();
singlePhaseTransportModel laminarTransport(U2Rec, phi2Rec);
autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(U2Rec, phi2Rec, laminarTransport)
);
// transport stuff
// create concentration field
volScalarField T
(
IOobject
(
"T",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
fvScalarMatrix TEqn(T, dimless*dimVolume/(dimTime));
T.write();
scalar relaxCoeff(0.0);

View File

@ -0,0 +1,6 @@
recurrenceBase.recM().exportVolScalarField("alpha.air",alpha1Rec);
alpha2Rec=1-alpha1Rec;
recurrenceBase.recM().exportVolVectorField("U.air",U1Rec);
recurrenceBase.recM().exportVolVectorField("U.water",U2Rec);
recurrenceBase.recM().exportSurfaceScalarField("phi.water",phi2Rec);

View File

@ -0,0 +1,112 @@
/*---------------------------------------------------------------------------*\
CFDEMcoupling academic - Open Source CFD-DEM coupling
Contributing authors:
Thomas Lichtenegger, Gerhard Holzinger
Copyright (C) 2015- Johannes Kepler University, Linz
-------------------------------------------------------------------------------
License
This file is part of CFDEMcoupling academic.
CFDEMcoupling academic is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
CFDEMcoupling academic is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with CFDEMcoupling academic. If not, see <http://www.gnu.org/licenses/>.
Application
cfdemSolverRecurrence
Description
Solves a transport equation for a passive scalar on a two-phase solution
Test-bed for a solver based on recurrence statistics
Rules
Solution data to compute the recurrence statistics from, needs to
reside in $CASE_ROOT/dataBase
Time step data in dataBase needs to be evenly spaced in time
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "fvOptions.H"
#include "cfdemCloudRec.H"
#include "recBase.H"
#include "recModel.H"
#include "cfdemCloud.H"
#include "clockModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "postProcess.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createFields.H"
#include "createFvOptions.H"
cfdemCloudRec<cfdemCloud> particleCloud(mesh);
recBase recurrenceBase(mesh);
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info << "\nCalculating particle trajectories based on recurrence statistics\n" << endl;
label recTimeIndex(0);
scalar recTimeStep_=recurrenceBase.recM().recTimeStep();
while (runTime.run())
{
runTime++;
// do stuff (every lagrangian time step)
particleCloud.clockM().start(1,"Global");
Info << "Time = " << runTime.timeName() << nl << endl;
particleCloud.clockM().start(2,"Flow");
#include "TEq.H"
particleCloud.clockM().stop("Flow");
if ( runTime.timeOutputValue() - (recTimeIndex+1)*recTimeStep_ + 1.0e-5 > 0.0 )
{
Info << "Updating fields at run time " << runTime.timeOutputValue()
<< " corresponding to recurrence time " << (recTimeIndex+1)*recTimeStep_ << ".\n" << endl;
recurrenceBase.updateRecFields();
#include "readFields.H"
recTimeIndex++;
}
particleCloud.clockM().start(27,"Output");
runTime.write();
particleCloud.clockM().stop("Output");
particleCloud.clockM().stop("Global");
Info << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info << "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,9 @@
#!/bin/sh
cd ${0%/*} || exit 1 # Run from this directory
set -x
wclean libso recurrenceTurbulence
wclean
# ----------------------------------------------------------------- end-of-file

View File

@ -0,0 +1,9 @@
#!/bin/sh
cd ${0%/*} || exit 1 # Run from this directory
set -x
wmake libso recurrenceTurbulence
wmake
# ----------------------------------------------------------------- end-of-file

View File

@ -0,0 +1,29 @@
// build equation system
/*
Note the use of the effective viscosity, which is provided by the turbulence model
The recurrence-based turbulence models are derived from the standard base classes
of OpenFOAM, thus they behave as a normal turbulence model would.
*/
alphaRhoPhiCarrier = linearInterpolate(alpha2*rhoCarrier)*phi2;
fvScalarMatrix CEqn
(
fvm::ddt(alphaCarrier*rhoCarrier, C)
+ fvm::div(alphaRhoPhiCarrier, C, "div(alphaRhoPhi,C)")
- fvm::Sp(fvc::div(alphaRhoPhiCarrier), C)
- fvm::laplacian
(
fvc::interpolate(alpha2)
*fvc::interpolate(carrierPhase.turbulence().muEff()/Sc),
C
)
==
fvm::SuSp(alphaCarrier*(1.0 - alphaCarrier)*rhoCarrier*K, C)
+ fvOptions(alphaCarrier*rhoCarrier, C)
);
// solve equations
fvOptions.constrain(CEqn);
CEqn.solve();

View File

@ -0,0 +1,3 @@
testTwoFluidRecurrenceTurbulence.C
EXE = $(FOAM_USER_APPBIN)/testTwoFluidRecurrenceTurbulence

View File

@ -0,0 +1,31 @@
EXE_INC = \
-I$(FOAM_SOLVERS)/multiphase/reactingEulerFoam/reactingTwoPhaseEulerFoam \
-I$(FOAM_SOLVERS)/multiphase/reactingEulerFoam/reactingTwoPhaseEulerFoam/twoPhaseSystem/lnInclude \
-I$(FOAM_SOLVERS)/multiphase/reactingEulerFoam/phaseSystems/lnInclude \
-I$(FOAM_SOLVERS)/multiphase/reactingEulerFoam/interfacialModels/lnInclude \
-I$(FOAM_SOLVERS)/multiphase/reactingEulerFoam/interfacialCompositionModels/lnInclude \
-I$(FOAM_SOLVERS)/multiphase/reactingEulerFoam/twoPhaseCompressibleTurbulenceModels/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/phaseCompressible/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I../../../src/recurrence/lnInclude \
-IrecurrenceTurbulence/lnInclude
EXE_LIBS = \
-lreactingPhaseSystem \
-lreactingTwoPhaseSystem \
-lreactingEulerianInterfacialModels \
-lreactingEulerianInterfacialCompositionModels \
-ltwoPhaseReactingTurbulenceModels \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-lsampling \
-L$(FOAM_USER_LIBBIN) \
-lrecurrence \
-lrecurrenceTwoPhaseTurbulenceModels

View File

@ -0,0 +1,70 @@
//===============================
// recurrence turbulence
//===============================
// check both phases for turbulence models
forAllIter(PtrListDictionary<phaseModel>, fluid.phases(), iter)
{
phaseModel& phase = iter();
Info << "Checking phase " << phase.name() << "'s turbulence model: "
<< phase.turbulence().type() << endl;
/*
Check for laminar turbulence. This works with OpenFOAM-4.0 and OpenFOAM-5.0,
as the laminar, multi-phase turbulence model is named "laminar" in OF-4.0
and "Stokes" in OF-5.0
*/
if (phase.turbulence().type() == "laminar" || phase.turbulence().type() == "Stokes")
{
// do nothing
}
else if (isA<Foam::recurrenceTurbulenceModel>(phase.turbulence()))
{
/*
create a reference of the type recurrenceTurbulenceModel
register the recurrence model with the recurrenceTurbulenceModel
*/
// get const-reference to the turbulence model
const phaseCompressibleTurbulenceModel& turbConstRef = phase.turbulence();
// cast away const-ness, the underlying turbulence model is not a const object, so this is bad but fine
phaseCompressibleTurbulenceModel& turbRef = const_cast<phaseCompressibleTurbulenceModel&>(turbConstRef);
// cast away the wrapper class, to get a reference to the turbulence models' base class
PhaseCompressibleTurbulenceModel<phaseModel>& baseTurbRef
(
static_cast<PhaseCompressibleTurbulenceModel<phaseModel>&>(turbRef)
);
// casting down the family tree
Foam::recurrenceTurbulenceModel& recTurbRef
(
dynamic_cast<Foam::recurrenceTurbulenceModel&>(baseTurbRef)
);
// set recurrenceBase pointer
recTurbRef.setRecurrenceBasePtr(&recurrenceBase);
// check model settings
turbRef.validate();
}
else
{
/*
In a recurrence run, we do not compute any turbulence as we do not solve the fluid flow
At this point, the phase is not laminar (i.e. not using turbulence) or
using recurrenceTurbulence (i.e. taking turbulent quantities from the data base).
Hence, abort!
*/
FatalError
<< "Wrong turbulence model type "
<< phase.turbulence().type() << " for phase " << phase.name() << nl << nl
<< "Valid turbulence model types are types derived from recurrenceTurbulenceModel or laminar" << endl
<< exit(FatalError);
}
}

View File

@ -0,0 +1,79 @@
/* --------------------------------------------------------------------------------- */
/* read flotation properties */
/* --------------------------------------------------------------------------------- */
Info<< "Reading scalarTransportProperties\n" << endl;
IOdictionary scalarTransportProperties
(
IOobject
(
"scalarTransportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
);
const scalar Sc(scalarTransportProperties.lookupOrDefault<scalar>("Sc",scalar(1.0)));
const word carrierPhaseName(scalarTransportProperties.lookup("carrierPhase"));
if (carrierPhaseName != phase1.name() && carrierPhaseName != phase2.name())
{
FatalError << "No valid carrier phase specified" << nl
<< "Valid phase names are: " << nl
<< phase1.name() << ", " << phase2.name()
<< abort(FatalError);
}
phaseModel& carrierPhase = (carrierPhaseName == phase1.name()) ? phase1 : phase2;
const word dispersePhaseName = (carrierPhaseName == phase1.name()) ? phase2.name() : phase1.name();
volScalarField& rhoCarrier = carrierPhase.thermo().rho();
volScalarField& alphaCarrier = carrierPhase;
surfaceScalarField& alphaRhoPhiCarrier = carrierPhase.alphaRhoPhi();
volScalarField contErrCarrier
(
"contErrCarrier",
fvc::ddt(alphaCarrier, rhoCarrier)
);
Info<< "Reading field C\n" << endl;
volScalarField C
(
IOobject
(
"C",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
volScalarField K
(
IOobject
(
"K",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
mesh
);

View File

@ -0,0 +1,9 @@
// update flow fields
recurrenceBase.recM().exportVolScalarField("alpha."+carrierPhaseName,alpha2);
recurrenceBase.recM().exportVolScalarField("alpha."+dispersePhaseName,alpha1);
recurrenceBase.recM().exportVolVectorField("U."+carrierPhaseName,U2);
// update turbulence models
phase1.correctTurbulence();
phase2.correctTurbulence();

View File

@ -0,0 +1,7 @@
#!/bin/sh
cd ${0%/*} || exit 1 # Run from this directory
wclean libso
#------------------------------------------------------------------------------

View File

@ -0,0 +1,9 @@
#!/bin/sh
cd ${0%/*} || exit 1 # Run from this directory
# Parse arguments for library compilation
. $WM_PROJECT_DIR/wmake/scripts/AllwmakeParseArguments
wmake $targetType
#------------------------------------------------------------------------------

View File

@ -0,0 +1,10 @@
recurrenceTurbulenceModel/recurrenceTurbulenceModel.C
recurrenceTurbulenceModels.C
recurrenceKEpsilon/recurrenceKEpsilon.C
recurrenceKOmega/recurrenceKOmega.C
recurrenceSmagorinsky/recurrenceSmagorinsky.C
LIB = $(FOAM_USER_LIBBIN)/librecurrenceTwoPhaseTurbulenceModels

View File

@ -0,0 +1,27 @@
EXE_INC = \
-I$(FOAM_SOLVERS)/multiphase/reactingEulerFoam/reactingTwoPhaseEulerFoam/twoPhaseSystem/lnInclude \
-I$(FOAM_SOLVERS)/multiphase/reactingEulerFoam/phaseSystems/lnInclude \
-I$(FOAM_SOLVERS)/multiphase/reactingEulerFoam/interfacialModels/lnInclude\
-I$(FOAM_SOLVERS)/multiphase/reactingEulerFoam/interfacialCompositionModels/lnInclude \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/transportModels/incompressible/transportModel \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/phaseCompressible/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I../recurrenceTurbulenceModel/lnInclude \
-I../../../../src/recurrence/lnInclude
LIB_LIBS = \
-lreactingPhaseSystem \
-lreactingTwoPhaseSystem \
-lreactingEulerianInterfacialModels \
-lreactingEulerianInterfacialCompositionModels \
-lfiniteVolume \
-lfvOptions \
-lmeshTools \
-L$(FOAM_USER_LIBBIN) \
-lrecurrence \
-lreactingTwoPhaseSystem

View File

@ -0,0 +1,107 @@
# Recurrence-based, multi-phase turbulence modelling
This model implements recurrence-based turbulence models, i.e. the fundamental
turbulent field quantities are read from the data base and are not solved for.
All derived field quantities are computed just in the same way as the proper
turbulence models do. By deriving the recurrence-based turbulence models from
somewhere up the family tree of OpenFOAM's turbulence model class hierarchy,
the recurrence-based turbulence models are fully compatible with OpenFOAM's
generic treatment of turbulence modelling, i.e. solvers and libraries interact
with references to a generic base type of the actual turbulence model. Hence,
solvers and libraries may remain blissfully ignorant of the actual turbulence
model in use.
For laminar phases no special treatment is necessary, as the *laminar*
turbulence model does not compute any fields.
## Development notes
The initial development covers only a small number of turbulence models.
## Notes on usage
The turbulence model in use for the recurrence run must be the recurrence-based
equivalent of the turbulence model used for generating the data base, i.e. if
the data base was computed using the *kEpsilon* model, then the recurrence solver
is to employ the *recurrenceKEpsilon* turbulence model. This model will read
the relevant model coefficients from the *turbulenceProperties* dictionary, and
make sure that the turbulent fields `k` and `epsilon` are contained in the data
base.
Whenever, the solver or a library calls `turbulence->nut()` to access the
turbulent viscosity, the recurrence-based kEpsilon model will compute `nut`
according to kEpsilon's relations `nut = Cmu*sqr(k)/epsilon`, with the fields
`k` and `epsilon` being from the current snapshot provided by the recurrence model.
Thus, the fundamental turbulent field quantities of the employed turbulence model
have to be added to the *volScalarFields* list in the `recProperties` dictionary
controlling the recurrence model. This will ensure that the turbulent field
quantities are read from the data base.
## Notes on the implementation
The base class implements the method `void setRecurrenceBasePtr(recBase*)`, which
is used to give the recurrence-based turbulence models a reference (technically
a pointer) to the recurrence model. Thus, after construction of the turbulence
models and the recurrence model, `setRecurrenceBasePtr()` needs to be called as
the pointer to the recurrence model is initialized by the constructor with `NULL`.
Trying to access the recurrence model from within the recurrence-based turbulence
model prior to setting the pointer to the recurrence model with
`setRecurrenceBasePtr()` will result in a segmentation fault.
In order to be able to call `setRecurrenceBasePtr()`, the generic reference to
the turbulence model needs to be converted into a reference of the base class'
type, i.e. `recurrenceTurbulenceModel`.
This unfortunate deviation from good standards, i.e. making full use of C++'s
polymorphism, should be the only instance of having to use non-pretty hacks.
However, apart from initialisation, i.e. setting the pointer to the recurrence
model, the recurrence-based turbulence models adhere to the generic interface of
OpenFOAM's turbulence models, and can be used as any other turbulence model.
The concrete implementations, e.g. *recurrenceKEpsilon*, use the method
`validate()` to check whether the underlying turbulent quantities are specified
for use in the data base in the *volScalarFields* list in the `recProperties`
dictionary. This method is part of the signature of the class `Foam::turbulenceModel`,
which is the very base class of all turbulence models in OpenFOAM.
In proper turbulence models, this method is used to check whether the internal
fields are properly initialized and to update all derived quantities.
In the solver, `validate()` must not be called prior to `setRecurrenceBasePtr()`,
as validate accesses the recurrence model. The wrong order of function calls will
result in a segmentation fault, as the pointer to the recurrence model is
initialized by the constructor with `NULL`.
The concrete implementations, e.g. *recurrenceKEpsilon*, use the method
`correct()` to update the turbulent field quantities from the data base,
and in turn update the derived quantities, such as `nut`.
This method is part of the signature of the class `Foam::turbulenceModel`,
which is the very base class of all turbulence models in OpenFOAM.
In proper turbulence models, this method is used to solve for the next time step.
## Compilation
Source OpenFOAM and simply compile with
```bash
./Allwclean
./Allwmake
```
The script `Allwclean` will clear all previous builds. This step is not needed for
first-time compilation. It is, however, recommended for subsequent compilations, as
it completely clears the slate. The script `Allwmake` will run the compilation for
the passive particle model.
## Required software
This model has been tested with the following versions of OpenFOAM:
* OpenFOAM-4.0
* OpenFOAM-5.0

View File

@ -0,0 +1,193 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "recurrenceKEpsilon.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
void Foam::RASModels::recurrenceKEpsilon::correctNut()
{
this->nut_ = Cmu_*sqr(k_)/epsilon_;
this->nut_.correctBoundaryConditions();
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::RASModels::recurrenceKEpsilon::recurrenceKEpsilon
(
const volScalarField& alpha,
const volScalarField& rho,
const volVectorField& U,
const surfaceScalarField& alphaRhoPhi,
const surfaceScalarField& phi,
const transportModel& phase,
const word& propertiesName,
const word& type
)
:
eddyViscosity<RASModel<EddyDiffusivity<phaseCompressibleTurbulenceModel>>>
(
type,
alpha,
rho,
U,
alphaRhoPhi,
phi,
phase,
propertiesName
),
recurrenceTurbulenceModel(U.group()),
Cmu_
(
dimensioned<scalar>::lookupOrAddToDict
(
"Cmu",
this->coeffDict_,
0.09
)
),
k_
(
IOobject
(
IOobject::groupName("k", U.group()),
this->runTime_.timeName(),
this->mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
this->mesh_,
dimensionedScalar("k0", dimensionSet(0,2,-2,0,0), 0.0)
),
epsilon_
(
IOobject
(
IOobject::groupName("epsilon", U.group()),
this->runTime_.timeName(),
this->mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
this->mesh_,
dimensionedScalar("eps0", dimensionSet(0,2,-3,0,0), 0.0)
)
{
if (type == typeName)
{
printCoeffs(type);
}
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::RASModels::recurrenceKEpsilon::~recurrenceKEpsilon()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool Foam::RASModels::recurrenceKEpsilon::read()
{
if
(
eddyViscosity<RASModel<EddyDiffusivity<phaseCompressibleTurbulenceModel>>>::read()
)
{
Cmu_.readIfPresent(this->coeffDict());
return true;
}
else
{
return false;
}
}
void Foam::RASModels::recurrenceKEpsilon::correct()
{
// update turbulence fields
recurrenceBasePtr_->recM().exportVolScalarField("k."+group_, this->k_);
recurrenceBasePtr_->recM().exportVolScalarField("epsilon."+group_, this->epsilon_);
// update nut
correctNut();
}
void Foam::RASModels::recurrenceKEpsilon::validate()
{
/*
Check whether k and epsilon are included in the dataBase.
The check only makes sure that these fields are included in the
volScalarFields list of recProperties.
Whether the fields are actually contained in the dataBase is
done by the recurrenceModel itself.
*/
bool foundK(false);
bool foundEpsilon(false);
wordList fieldNames(recurrenceBasePtr_->recM().volScalarFieldNames());
forAll(fieldNames, i)
{
word curFieldName = fieldNames[i];
if (curFieldName == k_.name())
{
foundK = true;
}
if (curFieldName == epsilon_.name())
{
foundEpsilon = true;
}
}
if (not (foundK and foundEpsilon))
{
FatalError
<< "Fields " << k_.name() << " and " << epsilon_.name()
<< " not specified in the volScalarFields list of recProperties!" << nl
<< "volScalarFields : " << fieldNames << nl
<< "Add these fields and make sure they are contained in the dataBase." << nl
<< exit(FatalError);
}
}
// ************************************************************************* //

View File

@ -0,0 +1,161 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::recurrenceKEpsilon
Description
recurrence-based kEpsilon turbulence model
This model provides kEpslion's turbulence quantities that were computed
elsewhere, i.e. taken from the recurrence dataBase.
To be used by recurrence solvers.
SourceFiles
recurrenceKEpsilon.C
\*---------------------------------------------------------------------------*/
#ifndef recurrenceKEpsilon_H
#define recurrenceKEpsilon_H
#include "RASModel.H"
#include "eddyViscosity.H"
#include "phaseCompressibleTurbulenceModel.H"
#include "EddyDiffusivity.H"
#include "recurrenceTurbulenceModel.H"
#include "autoPtr.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
namespace RASModels
{
/*---------------------------------------------------------------------------*\
Class recurrenceKEpsilon Declaration
\*---------------------------------------------------------------------------*/
class recurrenceKEpsilon
:
public eddyViscosity<RASModel<EddyDiffusivity<phaseCompressibleTurbulenceModel>>>,
public recurrenceTurbulenceModel
{
// Private data
// Private Member Functions
//- Disallow default bitwise copy construct
recurrenceKEpsilon(const recurrenceKEpsilon&);
//- Disallow default bitwise assignment
void operator=(const recurrenceKEpsilon&);
protected:
// Protected data
// Model coefficients
dimensionedScalar Cmu_;
// Fields
volScalarField k_;
volScalarField epsilon_;
// Protected Member Functions
virtual void correctNut();
public:
//- Runtime type information
TypeName("recurrenceKEpsilon");
// Constructors
//- Construct from components
recurrenceKEpsilon
(
const volScalarField& alpha,
const volScalarField& rho,
const volVectorField& U,
const surfaceScalarField& alphaRhoPhi,
const surfaceScalarField& phi,
const phaseModel& transport,
const word& propertiesName = turbulenceModel::propertiesName,
const word& type = typeName
);
//- Destructor
virtual ~recurrenceKEpsilon();
// Member Functions
//- Re-read model coefficients if they have changed
virtual bool read();
//- Return the turbulence kinetic energy
virtual tmp<volScalarField> k() const
{
return k_;
}
//- Return the turbulence kinetic energy dissipation rate
virtual tmp<volScalarField> epsilon() const
{
return epsilon_;
}
//- Update the turbulent fields
virtual void correct();
//- Check model settings
virtual void validate();
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace RASModels
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,193 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "recurrenceKOmega.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
void Foam::RASModels::recurrenceKOmega::correctNut()
{
this->nut_ = k_/omega_;
this->nut_.correctBoundaryConditions();
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::RASModels::recurrenceKOmega::recurrenceKOmega
(
const volScalarField& alpha,
const volScalarField& rho,
const volVectorField& U,
const surfaceScalarField& alphaRhoPhi,
const surfaceScalarField& phi,
const transportModel& phase,
const word& propertiesName,
const word& type
)
:
eddyViscosity<RASModel<EddyDiffusivity<phaseCompressibleTurbulenceModel>>>
(
type,
alpha,
rho,
U,
alphaRhoPhi,
phi,
phase,
propertiesName
),
recurrenceTurbulenceModel(U.group()),
Cmu_
(
dimensioned<scalar>::lookupOrAddToDict
(
"Cmu",
this->coeffDict_,
0.09
)
),
k_
(
IOobject
(
IOobject::groupName("k", U.group()),
this->runTime_.timeName(),
this->mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
this->mesh_,
dimensionedScalar("k0", dimensionSet(0,2,-2,0,0), 0.0)
),
omega_
(
IOobject
(
IOobject::groupName("omega", U.group()),
this->runTime_.timeName(),
this->mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
this->mesh_,
dimensionedScalar("om0", dimensionSet(0,0,-1,0,0), 0.0)
)
{
if (type == typeName)
{
printCoeffs(type);
}
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::RASModels::recurrenceKOmega::~recurrenceKOmega()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool Foam::RASModels::recurrenceKOmega::read()
{
if
(
eddyViscosity<RASModel<EddyDiffusivity<phaseCompressibleTurbulenceModel>>>::read()
)
{
Cmu_.readIfPresent(this->coeffDict());
return true;
}
else
{
return false;
}
}
void Foam::RASModels::recurrenceKOmega::correct()
{
// update turbulence fields
recurrenceBasePtr_->recM().exportVolScalarField("k."+group_, this->k_);
recurrenceBasePtr_->recM().exportVolScalarField("omega."+group_, this->omega_);
// update nut
correctNut();
}
void Foam::RASModels::recurrenceKOmega::validate()
{
/*
Check whether k and omega are included in the dataBase.
The check only makes sure that these fields are included in the
volScalarFields list of recProperties.
Whether the fields are actually contained in the dataBase is
done by the recurrenceModel itself.
*/
bool foundK(false);
bool foundOmega(false);
wordList fieldNames(recurrenceBasePtr_->recM().volScalarFieldNames());
forAll(fieldNames, i)
{
word curFieldName = fieldNames[i];
if (curFieldName == k_.name())
{
Info << "Found " << k_.name()<< endl;
foundK = true;
}
if (curFieldName == omega_.name())
{
Info << "Found " << omega_.name()<< endl;
foundOmega = true;
}
}
if (not (foundK and foundOmega))
{
FatalError
<< "Fields " << k_.name() << " and " << omega_.name()
<< " not specified in the volScalarFields list of recProperties!" << nl
<< "volScalarFields : " << fieldNames << nl
<< "Add these fields and make sure they are contained in the dataBase." << nl
<< exit(FatalError);
}
}
// ************************************************************************* //

View File

@ -0,0 +1,188 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::recurrenceKOmega
Description
recurrence-based kOmega turbulence model
This model provides kOmega's turbulence quantities that were computed
elsewhere, i.e. taken from the recurrence dataBase
To be used by recurrence solvers
SourceFiles
recurrenceKOmega.C
\*---------------------------------------------------------------------------*/
#ifndef recurrenceKOmega_H
#define recurrenceKOmega_H
#include "RASModel.H"
#include "eddyViscosity.H"
#include "phaseCompressibleTurbulenceModel.H"
#include "EddyDiffusivity.H"
#include "recurrenceTurbulenceModel.H"
#include "autoPtr.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
namespace RASModels
{
/*---------------------------------------------------------------------------*\
Class recurrenceKOmega Declaration
\*---------------------------------------------------------------------------*/
class recurrenceKOmega
:
public eddyViscosity<RASModel<EddyDiffusivity<phaseCompressibleTurbulenceModel>>>,
public recurrenceTurbulenceModel
{
// Private data
// Private Member Functions
//- Disallow default bitwise copy construct
recurrenceKOmega(const recurrenceKOmega&);
//- Disallow default bitwise assignment
void operator=(const recurrenceKOmega&);
protected:
// Protected data
// Model coefficients
dimensionedScalar Cmu_;
// Fields
volScalarField k_;
volScalarField omega_;
// Protected Member Functions
virtual void correctNut();
public:
//- Runtime type information
TypeName("recurrenceKOmega");
// Constructors
//- Construct from components
recurrenceKOmega
(
const volScalarField& alpha,
const volScalarField& rho,
const volVectorField& U,
const surfaceScalarField& alphaRhoPhi,
const surfaceScalarField& phi,
const phaseModel& transport,
const word& propertiesName = turbulenceModel::propertiesName,
const word& type = typeName
);
//- Destructor
virtual ~recurrenceKOmega();
// Member Functions
//- Re-read model coefficients if they have changed
virtual bool read();
//- Return the turbulence kinetic energy
virtual tmp<volScalarField> k() const
{
return k_;
}
//- Return the turbulence specific dissipation rate
virtual tmp<volScalarField> omega() const
{
return omega_;
}
//- Return the turbulence kinetic energy dissipation rate
virtual tmp<volScalarField> epsilon() const
{
return tmp<volScalarField>
(
new volScalarField
(
IOobject
(
"epsilon",
this->mesh_.time().timeName(),
this->mesh_
),
Cmu_*k_*omega_,
omega_.boundaryField().types()
)
);
}
//- Update the turbulent fields
virtual void correct();
//- Check model settings
virtual void validate();
// Setters
void setRecurrenceBasePtr(recBase* recurrenceBasePtr)
{
recurrenceBasePtr_ = recurrenceBasePtr;
}
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace RASModels
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,158 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "recurrenceSmagorinsky.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
Foam::tmp<Foam::volScalarField> Foam::LESModels::recurrenceSmagorinsky::k
(
const tmp<volTensorField>& gradU
) const
{
volSymmTensorField D(symm(gradU));
volScalarField a(this->Ce_/this->delta());
volScalarField b((2.0/3.0)*tr(D));
volScalarField c(2*Ck_*this->delta()*(dev(D) && D));
return tmp<volScalarField>
(
new volScalarField
(
IOobject
(
IOobject::groupName("k", this->U_.group()),
this->runTime_.timeName(),
this->mesh_
),
sqr((-b + sqrt(sqr(b) + 4*a*c))/(2*a))
)
);
}
void Foam::LESModels::recurrenceSmagorinsky::correctNut()
{
volScalarField k(this->k(fvc::grad(this->U_)));
this->nut_ = Ck_*this->delta()*sqrt(k);
this->nut_.correctBoundaryConditions();
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::LESModels::recurrenceSmagorinsky::recurrenceSmagorinsky
(
const volScalarField& alpha,
const volScalarField& rho,
const volVectorField& U,
const surfaceScalarField& alphaRhoPhi,
const surfaceScalarField& phi,
const transportModel& phase,
const word& propertiesName,
const word& type
)
:
LESeddyViscosity<EddyDiffusivity<phaseCompressibleTurbulenceModel>>
(
type,
alpha,
rho,
U,
alphaRhoPhi,
phi,
phase,
propertiesName
),
recurrenceTurbulenceModel(U.group()),
Ck_
(
dimensioned<scalar>::lookupOrAddToDict
(
"Ck",
this->coeffDict_,
0.094
)
)
{
if (type == typeName)
{
this->printCoeffs(type);
}
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool Foam::LESModels::recurrenceSmagorinsky::read()
{
if (LESeddyViscosity<EddyDiffusivity<phaseCompressibleTurbulenceModel>>::read())
{
Ck_.readIfPresent(this->coeffDict());
return true;
}
else
{
return false;
}
}
Foam::tmp<Foam::volScalarField> Foam::LESModels::recurrenceSmagorinsky::epsilon() const
{
volScalarField k(this->k(fvc::grad(this->U_)));
return tmp<volScalarField>
(
new volScalarField
(
IOobject
(
IOobject::groupName("epsilon", this->U_.group()),
this->runTime_.timeName(),
this->mesh_
),
this->Ce_*k*sqrt(k)/this->delta()
)
);
}
void Foam::LESModels::recurrenceSmagorinsky::correct()
{
// update nut
correctNut();
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// ************************************************************************* //

View File

@ -0,0 +1,146 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::LESModels::recurrenceSmagorinsky
Description
The recurrenceSmagorinsky SGS model.
This model provides Smagorinsky's turbulence quantities.
To be used by recurrence solvers.
SourceFiles
recurrenceSmagorinsky.C
\*---------------------------------------------------------------------------*/
#ifndef recurrenceSmagorinsky_H
#define recurrenceSmagorinsky_H
#include "LESModel.H"
#include "LESeddyViscosity.H"
#include "phaseCompressibleTurbulenceModel.H"
#include "EddyDiffusivity.H"
#include "recurrenceTurbulenceModel.H"
#include "autoPtr.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
namespace LESModels
{
/*---------------------------------------------------------------------------*\
Class recurrenceSmagorinsky Declaration
\*---------------------------------------------------------------------------*/
class recurrenceSmagorinsky
:
public LESeddyViscosity<EddyDiffusivity<phaseCompressibleTurbulenceModel>>,
public recurrenceTurbulenceModel
{
// Private Member Functions
// Disallow default bitwise copy construct and assignment
recurrenceSmagorinsky(const recurrenceSmagorinsky&);
void operator=(const recurrenceSmagorinsky&);
protected:
// Protected data
dimensionedScalar Ck_;
// Protected Member Functions
//- Return SGS kinetic energy
// calculated from the given velocity gradient
tmp<volScalarField> k(const tmp<volTensorField>& gradU) const;
//- Update the SGS eddy viscosity
virtual void correctNut();
public:
//- Runtime type information
TypeName("recurrenceSmagorinsky");
// Constructors
//- Construct from components
recurrenceSmagorinsky
(
const volScalarField& alpha,
const volScalarField& rho,
const volVectorField& U,
const surfaceScalarField& alphaRhoPhi,
const surfaceScalarField& phi,
const phaseModel& transport,
const word& propertiesName = turbulenceModel::propertiesName,
const word& type = typeName
);
//- Destructor
virtual ~recurrenceSmagorinsky()
{}
// Member Functions
//- Read model coefficients if they have changed
virtual bool read();
//- Return SGS kinetic energy
virtual tmp<volScalarField> k() const
{
return k(fvc::grad(this->U_));
}
//- Return sub-grid disipation rate
virtual tmp<volScalarField> epsilon() const;
//- Correct Eddy-Viscosity and related properties
virtual void correct();
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace LESModels
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,63 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "recurrenceTurbulenceModel.H"
namespace Foam
{
defineTypeNameAndDebug(recurrenceTurbulenceModel, 0);
}
// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::recurrenceTurbulenceModel::recurrenceTurbulenceModel
(
const word group
)
:
recurrenceBasePtr_(NULL),
group_(group)
{
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::recurrenceTurbulenceModel::~recurrenceTurbulenceModel()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
// ************************************************************************* //

View File

@ -0,0 +1,124 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::recurrenceTurbulenceModel
Description
recurrence-based turbulence model base class
This turbulence model class provides a framework for derived turbulence
models to provide turbulence quantities that were computed elsewhere,
i.e. taken from the recurrence dataBase.
A concrete recurrence-based turbulence model implementation, e.g. recurrenceKEpsilon,
needs to be derived from the base class of the original turbulence model
and this class. This class provides the link to the recurrence model. The original
base class provides the proper turbulence modelling interfaces of OpenFOAM's
turbulence modelling framework.
To be used by recurrence solvers.
SourceFiles
recurrenceTurbulenceModel.C
\*---------------------------------------------------------------------------*/
#ifndef recurrenceTurbulenceModel_H
#define recurrenceTurbulenceModel_H
#include "recBase.H"
#include "recModel.H"
#include "autoPtr.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
/*---------------------------------------------------------------------------*\
Class recurrenceTurbulenceModel Declaration
\*---------------------------------------------------------------------------*/
class recurrenceTurbulenceModel
{
// Private Member Functions
//- Disallow default bitwise copy construct
recurrenceTurbulenceModel(const recurrenceTurbulenceModel&);
//- Disallow default bitwise assignment
void operator=(const recurrenceTurbulenceModel&);
protected:
// Protected data
recBase* recurrenceBasePtr_;
const word group_;
// Protected Member Functions
public:
//- Runtime type information
TypeName("recurrenceTurbulenceModel");
// Constructors
//- Construct from components
recurrenceTurbulenceModel
(
const word group
);
//- Destructor
virtual ~recurrenceTurbulenceModel();
// Member Functions
void setRecurrenceBasePtr(recBase* recurrenceBasePtr)
{
recurrenceBasePtr_ = recurrenceBasePtr;
}
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //

View File

@ -0,0 +1,89 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2014-2015 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "phaseCompressibleTurbulenceModel.H"
#include "addToRunTimeSelectionTable.H"
#include "makeTurbulenceModel.H"
#include "laminar.H"
#include "RASModel.H"
#include "LESModel.H"
#include "recurrenceKEpsilon.H"
#include "recurrenceKOmega.H"
#include "recurrenceSmagorinsky.H"
// Instructions for OpenFOAM-5.0
/*makeTurbulenceModelTypes
(
volScalarField,
volScalarField,
compressibleTurbulenceModel,
PhaseCompressibleTurbulenceModel,
ThermalDiffusivity,
phaseModel
);
makeTurbulenceModel
(phaseModelPhaseCompressibleTurbulenceModel, RAS, recurrenceKEpsilon);
makeTurbulenceModel
(phaseModelPhaseCompressibleTurbulenceModel, RAS, recurrenceKOmega);
makeTurbulenceModel
(phaseModelPhaseCompressibleTurbulenceModel, LES, recurrenceSmagorinsky);
*/
// Instructions for OpenFOAM-4.0
makeBaseTurbulenceModel
(
volScalarField,
volScalarField,
compressibleTurbulenceModel,
PhaseCompressibleTurbulenceModel,
ThermalDiffusivity,
phaseModel
);
#define makeRASModel(Type) \
makeTurbulenceModel \
(phaseModelPhaseCompressibleTurbulenceModel, RAS, Type)
#define makeLESModel(Type) \
makeTurbulenceModel \
(phaseModelPhaseCompressibleTurbulenceModel, LES, Type)
makeRASModel(recurrenceKEpsilon);
makeRASModel(recurrenceKOmega);
makeLESModel(recurrenceSmagorinsky);
// ************************************************************************* //

View File

@ -0,0 +1,165 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
testTwoFluidRecurrenceTurbulence
Description
A modified variant of the two-fluid, recurrence model A solver
with the extension of recurrence-based, multi-phase turbulence modelling.
This application is used to test whether turbulent fields can be provided
by the recurrence-based turbulence models.
Run this test application in a recurrence case, with turbulence enabled and
the necessary turbulent field quantities present in the data base.
Note the initialisation in checkTurbulenceModels.H
Updating the turbulence model is done by calling phaseX.correctTurbulence()
in the file readFields.H
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "twoPhaseSystem.H"
#include "phaseCompressibleTurbulenceModel.H"
#include "pimpleControl.H"
#include "localEulerDdtScheme.H"
#include "fvcSmooth.H"
#include "recBase.H"
#include "recModel.H"
#include "recurrenceTurbulenceModel.H"
/* // uncomment for OpenFOAM-5.0
namespace Foam
{
tmp<volScalarField> byDt(const volScalarField& vf)
{
if (fv::localEulerDdt::enabled(vf.mesh()))
{
return fv::localEulerDdt::localRDeltaT(vf.mesh())*vf;
}
else
{
return vf/vf.mesh().time().deltaT();
}
}
tmp<surfaceScalarField> byDt(const surfaceScalarField& sf)
{
if (fv::localEulerDdt::enabled(sf.mesh()))
{
return fv::localEulerDdt::localRDeltaTf(sf.mesh())*sf;
}
else
{
return sf/sf.mesh().time().deltaT();
}
}
}
*/
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "postProcess.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createTimeControls.H"
#include "createRDeltaT.H" // remove for OpenFOAM-5.0
#include "createFields.H"
#include "createFieldRefs.H"
#include "createTransportFields.H"
if (!LTS)
{
#include "CourantNo.H"
#include "setInitialDeltaT.H"
}
Switch faceMomentum
(
pimple.dict().lookupOrDefault<Switch>("faceMomentum", false)
);
recBase recurrenceBase(mesh);
#include "checkTurbulenceModels.H"
#include "pUf/createDDtU.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting recurrence-based time loop\n" << endl;
label recTimeIndex(0);
scalar recTimeStep_=recurrenceBase.recM().recTimeStep();
while (runTime.run())
{
#include "readTimeControls.H"
#include "CourantNos.H"
#include "setDeltaT.H"
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
#include "CEqn.H"
if ( runTime.timeOutputValue() - (recTimeIndex+1)*recTimeStep_ + 1.0e-5 > 0.0 )
{
Info << "Updating fields at run time " << runTime.timeOutputValue()
<< " corresponding to recurrence time " << (recTimeIndex+1)*recTimeStep_ << ".\n" << endl;
recurrenceBase.updateRecFields();
#include "readFields.H"
recTimeIndex++;
}
runTime.write();
#include "writeCField.H"
Info<< "ExecutionTime = "
<< runTime.elapsedCpuTime()
<< " s\n\n" << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,12 @@
/* ----------------------------------------------
Write averaged particle volume fraction
---------------------------------------------- */
// essential information
Info << "Total mass :";
Info << tab << sum(C*rhoCarrier*alphaCarrier*mesh.V());
Info << endl;
Info << "Total Carrier mass :";
Info << tab << sum(rhoCarrier*alphaCarrier*mesh.V());
Info << endl;

View File

@ -0,0 +1,30 @@
#!/bin/sh
# Source run functions
. $WM_PROJECT_DIR/bin/tools/RunFunctions
# to be executed from one level above the source directory
if [ $# -eq 0 ]
then
sourceName="dataBase"
targetName="dataBaseCoarse"
else
sourceName=$1
targetName=$2
fi
cd $sourceName
for time in *
do
if [ $time != "system" ] && [ $time != "constant" ];
then
cd ../$targetName
echo "Found $time."
sed -i "/^startTime/c\startTime \t$time;" ./system/controlDict
grep 'startTime' ./system/controlDict
mapFields ../$sourceName -sourceTime $time -consistent
cd ../$sourceName
fi
done

View File

@ -0,0 +1,39 @@
/*---------------------------------------------------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.4 |
| \\ / A nd | Web: http://www.openfoam.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
root "";
case "";
instance "";
local "";
class dictionary;
object mirrorProperties;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
//===========================================================================//
// sub-models & settings
refPoint (0 0 0);
refDirection (1 0 0);
fieldName U;
dataBaseName dataBase;
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
rBaseMirrorScalar.C
EXE=$(CFDEM_APP_DIR)/rBaseMirrorScalar

View File

@ -0,0 +1,16 @@
include $(CFDEM_ADD_LIBS_DIR)/additionalLibs
EXE_INC = \
$(PFLAGS) \
-I$(LIB_SRC)/finiteVolume/cfdTools \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/fvOptions/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lmeshTools \
-lsampling \
-lfvOptions

View File

@ -0,0 +1,17 @@
IOdictionary mirrorProperties
(
IOobject
(
"mirrorProperties",
mesh.time().constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
vector refPoint(mirrorProperties.lookup("refPoint"));
vector refDirection(mirrorProperties.lookup("refDirection"));
word fieldName(mirrorProperties.lookup("fieldName"));
word dataBaseName(mirrorProperties.lookup("dataBaseName"));

View File

@ -0,0 +1,136 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Application
rBaseMirror
Description
Read time series and extend it by mirrored fields if geometry possesses
the same symmetry
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Main program:
int main(int argc, char *argv[])
{
argList::noParallel();
timeSelector::addOptions();
#include "setRootCase.H"
#include "createTime.H"
// read in start and end time from controlDict
scalar startTime=runTime.startTime().value();
scalar endTime=runTime.endTime().value();
scalar origTimeRange = endTime - startTime;
Info << "start time = " << runTime.startTime() << endl;
Info << "end time = " << runTime.endTime() << endl;
// check which time directories are present
// instantList timeDirs = timeSelector::select0(runTime, args);
// runTime.setTime(timeDirs[0], 0);
#include "createMesh.H"
#include "createFields.H"
Foam::Time recTime(fileName(dataBaseName), "", "../system", "../constant", false);
instantList timeDirs(recTime.times());
recTime.setTime(timeDirs[0],0);
#include "readFields.H"
Info << fieldName << endl;
volScalarField transformedField = origField;
scalar t;
label shiftedTimeI = 0;
// check number of time directories
label shift = 0;
forAll(timeDirs, timeI)
{
if (recTime.timeName() == "constant") continue;
recTime.setTime(timeDirs[timeI], timeI);
t = recTime.value();
if(t < startTime) continue;
if(t > endTime) continue;
shift++;
}
scalar dt = origTimeRange / (shift - 1.0);
recTime.setEndTime(startTime + 2 * origTimeRange + dt);
label cellI_transformed = -1;
forAll(timeDirs, timeI)
{
recTime.setTime(timeDirs[timeI], timeI);
t = recTime.value();
if(t < startTime) continue;
if(t > endTime) continue;
Info << "time = " << t << ", time index = " << timeI << endl;
#include "readFields.H"
forAll(transformedField, cellI)
{
vector position = mesh.C()[cellI];
vector transformedPosition = 2 * ((refPoint - position) & refDirection) * refDirection / (refDirection & refDirection) + position;
cellI_transformed = mesh.findCell(transformedPosition);
if(cellI_transformed < 0)
{
Info << "Couldn't find transformed cell. Stopping." << endl;
return 0;
}
scalar value = origField[cellI_transformed];
scalar transformedValue = value;
transformedField[cellI] = transformedValue;
}
shiftedTimeI = timeI + shift;
t = recTime.value() + origTimeRange + dt;
runTime.setTime(t, shiftedTimeI);
Info << "creating transformed fields for time = " << t << ", time index = " << shiftedTimeI << endl;
transformedField.write();
}
Info << "\nEnd" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,13 @@
volScalarField origField
(
IOobject
(
fieldName,
recTime.timePath(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
mesh
);

View File

@ -0,0 +1,3 @@
rBaseMirrorVec.C
EXE=$(CFDEM_APP_DIR)/rBaseMirrorVec

View File

@ -0,0 +1,16 @@
include $(CFDEM_ADD_LIBS_DIR)/additionalLibs
EXE_INC = \
$(PFLAGS) \
-I$(LIB_SRC)/finiteVolume/cfdTools \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/fvOptions/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lmeshTools \
-lsampling \
-lfvOptions

View File

@ -0,0 +1,17 @@
IOdictionary mirrorProperties
(
IOobject
(
"mirrorProperties",
mesh.time().constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
vector refPoint(mirrorProperties.lookup("refPoint"));
vector refDirection(mirrorProperties.lookup("refDirection"));
word fieldName(mirrorProperties.lookup("fieldName"));
word dataBaseName(mirrorProperties.lookup("dataBaseName"));

View File

@ -0,0 +1,134 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Application
rBaseMirror
Description
Read time series and extend it by mirrored fields if geometry possesses
the same symmetry
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Main program:
int main(int argc, char *argv[])
{
argList::noParallel();
timeSelector::addOptions();
#include "setRootCase.H"
#include "createTime.H"
// read in start and end time from controlDict
scalar startTime=runTime.startTime().value();
scalar endTime=runTime.endTime().value();
scalar origTimeRange = endTime - startTime;
Info << "start time = " << runTime.startTime() << endl;
Info << "end time = " << runTime.endTime() << endl;
// check which time directories are present
//instantList timeDirs = timeSelector::select0(runTime, args);
//runTime.setTime(timeDirs[0], 0);
#include "createMesh.H"
#include "createFields.H"
Foam::Time recTime(fileName(dataBaseName), "", "../system", "../constant", false);
instantList timeDirs(recTime.times());
recTime.setTime(timeDirs[0],0);
#include "readFields.H"
Info << fieldName << endl;
volVectorField transformedField = origField;
scalar t;
label shiftedTimeI = 0;
// check number of time directories
label shift = 0;
forAll(timeDirs, timeI)
{
if (recTime.timeName() == "constant") continue;
recTime.setTime(timeDirs[timeI], timeI);
t = recTime.value();
if(t < startTime) continue;
if(t > endTime) continue;
shift++;
}
scalar dt = origTimeRange / (shift - 1.0);
recTime.setEndTime(startTime + 2 * origTimeRange + dt);
label cellI_transformed = -1;
forAll(timeDirs, timeI)
{
recTime.setTime(timeDirs[timeI], timeI);
t = recTime.value();
if(t < startTime) continue;
if(t > endTime) continue;
Info << "time = " << t << ", time index = " << timeI << endl;
#include "readFields.H"
forAll(transformedField, cellI)
{
vector position = mesh.C()[cellI];
vector transformedPosition = 2 * ((refPoint - position) & refDirection) * refDirection / (refDirection & refDirection) + position;
cellI_transformed = mesh.findCell(transformedPosition);
if(cellI_transformed < 0)
{
Info << "Couldn't find transformed cell. Stopping." << endl;
return 0;
}
vector value = origField[cellI_transformed];
vector transformedValue = -2 * (value & refDirection) * refDirection / (refDirection & refDirection) + value;
transformedField[cellI] = transformedValue;
}
shiftedTimeI = timeI + shift;
t = recTime.value() + origTimeRange + dt;
runTime.setTime(t, shiftedTimeI);
Info << "creating transformed fields for time = " << t << ", time index = " << shiftedTimeI << endl;
transformedField.write();
}
Info << "\nEnd" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,14 @@
volVectorField origField
(
IOobject
(
fieldName,
recTime.timePath(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
mesh
);

View File

@ -0,0 +1,3 @@
rSmoother.C
EXE=$(CFDEM_APP_DIR)/rSmoother

View File

@ -0,0 +1,18 @@
include $(CFDEM_ADD_LIBS_DIR)/additionalLibs
EXE_INC = \
-I$(CFDEM_OFVERSION_DIR) \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(CFDEM_SRC_DIR)/recurrence/lnInclude \
EXE_LIBS = \
-L$(CFDEM_LIB_DIR)\
-lrecurrence \
-lfiniteVolume \
-lmeshTools \
-l$(CFDEM_LIB_NAME) \
$(CFDEM_ADD_LIB_PATHS) \
-lsampling \
-lfvOptions \
$(CFDEM_ADD_LIBS)

View File

@ -0,0 +1,28 @@
IOdictionary recProperties
(
IOobject
(
"recProperties",
mesh.time().constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
scalar threshold(readScalar(recProperties.lookup("threshold")));
volVectorField U_smooth
(
IOobject
(
"U_smooth",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedVector("zero", dimensionSet(0,1,-1,0,0,0,0), vector(0.0, 0.0, 0.0))
);

View File

@ -0,0 +1,90 @@
/*---------------------------------------------------------------------------*\
CFDEMcoupling academic - Open Source CFD-DEM coupling
Contributing authors:
Thomas Lichtenegger
Copyright (C) 2015- Johannes Kepler University, Linz
-------------------------------------------------------------------------------
License
This file is part of CFDEMcoupling academic.
CFDEMcoupling academic is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
CFDEMcoupling academic is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with CFDEMcoupling academic. If not, see <http://www.gnu.org/licenses/>.
Application
rSmoother
Description
Loops over all recurrence times and averages fields over given similarity range
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "fvOptions.H"
#include "recBase.H"
#include "recModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "postProcess.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createFields.H"
recBase recurrenceBase(mesh);
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// set time step to that of recurrence database
runTime.setDeltaT(recurrenceBase.recM().recTimeStep());
// check start and end time
if (abs(runTime.startTime().value() - recurrenceBase.recM().recStartTime()) > 1e-5)
{
Info << "Stopping. Start time and database start time are different." << endl;
Info << "Start time = " << runTime.startTime().value() << endl;
Info << "Database start time = " << recurrenceBase.recM().recStartTime() << endl;
return 0;
}
if (runTime.endTime().value() > recurrenceBase.recM().recEndTime())
{
runTime.setEndTime(recurrenceBase.recM().recEndTime());
Info << "End time set to database end time." << endl;
}
label index = -1;
Info << "\nSmoothing recurrence statistics\n" << endl;
while (runTime.run())
{
// runtime can't be larger than recurrence database size
index = runTime.timeIndex();
#include "updateFields.H"
runTime++;
}
Info << "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,4 @@
Info << "averaging fields for time = " << runTime.value() << ", time index = " << index << endl;
recurrenceBase.recM().exportAveragedVolVectorField(U_smooth, "UMean", threshold, index);
U_smooth.write();

View File

@ -0,0 +1,34 @@
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="{{ pathto(master_doc) }}">Docs</a> &raquo;</li>
{% for doc in parents %}
<li><a href="{{ doc.link|e }}">{{ doc.title }}</a> &raquo;</li>
{% endfor %}
<li>{{ title }}</li>
<li class="wy-breadcrumbs-aside">
{% if pagename != "search" %}
{% if display_github %}
<a href="https://{{ github_host|default("github.com") }}/{{ github_user }}/{{ github_repo }}/blob/{{ github_version }}{{ conf_py_path }}{{ pagename }}{{ source_suffix }}" class="fa fa-github"> Edit on GitHub</a>
{% elif display_bitbucket %}
<a href="https://bitbucket.org/{{ bitbucket_user }}/{{ bitbucket_repo }}/src/{{ bitbucket_version}}{{ conf_py_path }}{{ pagename }}{{ source_suffix }}" class="fa fa-bitbucket"> Edit on Bitbucket</a>
{% elif show_source and source_url_prefix %}
<a href="{{ source_url_prefix }}{{ pagename }}{{ source_suffix }}">View page source</a>
{% elif show_source and has_source and sourcename %}
<a href="{{ pathto('_sources/' + sourcename, true)|e }}" rel="nofollow"> View page source</a>
{% endif %}
<a href="https://www.cfdem.com">Website</a>
{% endif %}
</li>
</ul>
<hr/>
{% if next or prev %}
<div class="rst-footer-buttons" style="margin-bottom: 1em" role="navigation" aria-label="footer navigation">
{% if next %}
<a href="{{ next.link|e }}" class="btn btn-neutral float-right" title="{{ next.title|striptags|e }}" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
{% endif %}
{% if prev %}
<a href="{{ prev.link|e }}" class="btn btn-neutral" title="{{ prev.title|striptags|e }}" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
{% endif %}
</div>
{% endif %}
</div>

36
doc/_themes/lammps_theme/footer.html vendored Normal file
View File

@ -0,0 +1,36 @@
<footer>
{% if next or prev %}
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
{% if next %}
<a href="{{ next.link|e }}" class="btn btn-neutral float-right" title="{{ next.title|striptags|e }}" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
{% endif %}
{% if prev %}
<a href="{{ prev.link|e }}" class="btn btn-neutral" title="{{ prev.title|striptags|e }}" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
{% endif %}
</div>
{% endif %}
<hr/>
<div role="contentinfo">
<p>
{%- if show_copyright %}
{%- if hasdoc('copyright') %}
{% trans path=pathto('copyright'), copyright=copyright|e %}&copy; <a href="{{ path }}">Copyright</a> {{ copyright }}.{% endtrans %}
{%- else %}
{% trans copyright=copyright|e %}&copy; Copyright {{ copyright }}.{% endtrans %}
{%- endif %}
{%- endif %}
{%- if last_updated %}
{% trans last_updated=last_updated|e %}Last updated on {{ last_updated }}.{% endtrans %}
{%- endif %}
</p>
</div>
{%- if show_sphinx %}
{% trans %}Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>{% endtrans %}.
{%- endif %}
</footer>

Some files were not shown because too many files have changed in this diff Show More