cfdemSolverPimple for incompressible flows

This commit is contained in:
BehradEsg
2023-03-16 17:16:50 +01:00
parent 86753f2823
commit 930dcdaa39
6 changed files with 423 additions and 0 deletions

View File

@ -0,0 +1,3 @@
cfdemSolverPimple.C
EXE=$(CFDEM_APP_DIR)/cfdemSolverPimpleRadl

View File

@ -0,0 +1,25 @@
include $(CFDEM_ADD_LIBS_DIR)/additionalLibs
EXE_INC = \
-I$(CFDEM_OFVERSION_DIR) \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/lnInclude \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/cfdTools \
-Wno-deprecated-copy
EXE_LIBS = \
-L$(CFDEM_LIB_DIR)\
-lturbulenceModels \
-lincompressibleTurbulenceModels \
-lincompressibleTransportModels \
-lfiniteVolume \
-lmeshTools \
-lfvOptions \
-l$(CFDEM_LIB_NAME) \
$(CFDEM_ADD_LIB_PATHS) \
$(CFDEM_ADD_LIBS)

View File

@ -0,0 +1,40 @@
particleCloud.otherForces(fOther);
tmp<fvVectorMatrix> tUEqn
(
fvm::ddt(voidfraction,U) - fvm::Sp(fvc::ddt(voidfraction),U)
+ fvm::div(phi,U) - fvm::Sp(fvc::div(phi),U)
- fOther/rho
==
fvOptions(U)
- fvm::Sp(Ksl/rho,U)
);
fvVectorMatrix& UEqn = tUEqn.ref();
UEqn.relax();
fvOptions.constrain(UEqn);
volScalarField rUA = 1.0/UEqn.A();
surfaceScalarField rUAf("(1|A(U))", fvc::interpolate(rUA));
surfaceScalarField voidfractionf = fvc::interpolate(voidfraction);
surfaceScalarField phicForces
(
fvc::interpolate(rUA*(Ksl*Us)/rho) & mesh.Sf()
);
if (pimple.momentumPredictor() && (modelType=="B" || modelType=="Bfull"))
{
solve(UEqn == fvc::reconstruct(phicForces/rUAf - fvc::snGrad(p)*mesh.magSf()));
fvOptions.correct(U);
}
else if (pimple.momentumPredictor())
{
solve(UEqn == fvc::reconstruct(phicForces/rUAf - fvc::snGrad(p)*voidfractionf*mesh.magSf()));
fvOptions.correct(U);
}

View File

@ -0,0 +1,141 @@
/*---------------------------------------------------------------------------*\
CFDEMcoupling - Open Source CFD-DEM coupling
CFDEMcoupling is part of the CFDEMproject
www.cfdem.com
Christoph Goniva, christoph.goniva@cfdem.com
Copyright (C) 1991-2009 OpenCFD Ltd.
Copyright (C) 2009-2012 JKU, Linz
Copyright (C) 2012- DCS Computing GmbH,Linz
-------------------------------------------------------------------------------
License
This file is part of CFDEMcoupling.
CFDEMcoupling is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
CFDEMcoupling is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with CFDEMcoupling. If not, see <http://www.gnu.org/licenses/>.
Application
cfdemSolverPimple
Description
Transient solver for incompressible flow.
Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.
The code is an evolution of the solver pimpleFoam in OpenFOAM(R) 6.0,
where additional functionality for CFD-DEM coupling is added.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "pimpleControl.H"
#include "fvOptions.H"
#include "cfdemCloud.H"
#include "implicitCouple.H"
#include "clockModel.H"
#include "smoothingModel.H"
#include "forceModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createFields.H"
#include "createFvOptions.H"
#include "initContinuityErrs.H"
// create cfdemCloud
#include "readGravitationalAcceleration.H"
cfdemCloud particleCloud(mesh);
#include "checkModelType.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.loop())
{
particleCloud.clockM().start(1,"Global");
Info<< "Time = " << runTime.timeName() << nl << endl;
#include "CourantNo.H"
// do particle stuff
particleCloud.clockM().start(2,"Coupling");
bool hasEvolved = particleCloud.evolve(voidfraction,Us,U);
if(hasEvolved)
{
particleCloud.smoothingM().smoothen(particleCloud.forceM(0).impParticleForces());
}
Info << "update Ksl.internalField()" << endl;
Ksl = particleCloud.momCoupleM(0).impMomSource();
Ksl.correctBoundaryConditions();
//Force Checks
vector fTotal(0,0,0);
vector fImpTotal = sum(mesh.V()*Ksl.internalField()*(Us.internalField()-U.internalField())).value();
reduce(fImpTotal, sumOp<vector>());
Info << "TotalForceExp: " << fTotal << endl;
Info << "TotalForceImp: " << fImpTotal << endl;
#include "solverDebugInfo.H"
particleCloud.clockM().stop("Coupling");
particleCloud.clockM().start(26,"Flow");
if(particleCloud.solveFlow())
{
// Pressure-velocity PIMPLE corrector
while (pimple.loop())
{
// Momentum predictor
#include "UEqn.H"
// --- Inner PIMPLE loop
while (pimple.correct())
{
#include "pEqn.H"
}
}
laminarTransport.correct();
turbulence->correct();
}
else
{
Info << "skipping flow solution." << endl;
}
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
particleCloud.clockM().stop("Flow");
particleCloud.clockM().stop("Global");
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,155 @@
//===============================
// Fluid Fields
//===============================
Info<< "Reading field p\n" << endl;
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading physical velocity field U" << endl;
Info<< "Note: only if voidfraction at boundary is 1, U is superficial velocity!!!\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
//===============================
// particle interaction modelling
//===============================
Info<< "\nReading momentum exchange field Ksl\n" << endl;
volScalarField Ksl
(
IOobject
(
"Ksl",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "\nCreating body force field\n" << endl;
volVectorField fOther
(
IOobject
(
"fOther",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimensionSet(1,-2,-2,0,0,0,0), vector::zero)
);
Info<< "\nReading voidfraction field voidfraction = (Vgas/Vparticle)\n" << endl;
volScalarField voidfraction
(
IOobject
(
"voidfraction",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "\nCreating dummy density field rho\n" << endl;
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading particle velocity field Us\n" << endl;
volVectorField Us
(
IOobject
(
"Us",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
//===============================
#ifndef createPhi_H
#define createPhi_H
Info<< "Reading/calculating face flux field phi\n" << endl;
surfaceScalarField phi
(
IOobject
(
"phi",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
linearInterpolate(U*voidfraction) & mesh.Sf()
);
#endif
Info<< "Generating interstitial flux field phiByVoidfraction (this is the INTERSTITIAL field!)\n" << endl;
surfaceScalarField phiByVoidfraction
(
IOobject
(
"phiByVoidfraction",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
linearInterpolate(U) & mesh.Sf()
);
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, mesh.solutionDict().subDict("PIMPLE"), pRefCell, pRefValue);
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(U, phi, laminarTransport)
);
#include "createMRF.H"

View File

@ -0,0 +1,59 @@
volScalarField rUAvoidfraction("(voidfraction2|A(U))",rUA*voidfraction);
surfaceScalarField rUAfvoidfraction("(voidfraction2|A(U)F)", fvc::interpolate(rUAvoidfraction));
volVectorField HbyA("HbyA", U);
HbyA = rUA*UEqn.H();
phi = voidfractionf*phiByVoidfraction;
surfaceScalarField phiHbyA
(
"phiHbyA",
(
(fvc::interpolate(HbyA) & mesh.Sf() )
+ phicForces //explicit contribution
+ rUAfvoidfraction*fvc::ddtCorr(U, phiByVoidfraction) //correction
)
);
if (modelType=="A")
rUAvoidfraction = volScalarField("(voidfraction2|A(U))",rUA*voidfraction*voidfraction);
// Update the fixedFluxPressure BCs to ensure flux consistency
if (modelType=="A")
{
volScalarField rUsed = rUA*voidfraction;
constrainPressure(p, U, phiHbyA, rUsed,MRF);
}
else constrainPressure(p, U, phiHbyA, rUA,MRF);
while (pimple.correctNonOrthogonal())
{
// Pressure corrector
fvScalarMatrix pEqn
(
fvm::laplacian(rUAvoidfraction, p) == fvc::div(voidfractionf*phiHbyA) + particleCloud.ddtVoidfraction()
);
pEqn.setReference(pRefCell, pRefValue);
pEqn.solve(mesh.solver(p.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
phiByVoidfraction = phiHbyA - pEqn.flux()/voidfractionf;
phi = voidfractionf*phiByVoidfraction;
#include "continuityErrorPhiPU.H"
// Explicitly relax pressure for momentum corrector
p.relax();
U = fvc::reconstruct(phiHbyA)
- rUA*fvc::reconstruct(pEqn.flux()/voidfractionf/rUAf);
U.correctBoundaryConditions();
fvOptions.correct(U);
}
}