Files
CFDEMcoupling-PFM/src/recurrence/recStatAnalysis/autocorrelation/autocorrelation.C

211 lines
5.8 KiB
C

/*---------------------------------------------------------------------------*\
CFDEMcoupling academic - Open Source CFD-DEM coupling
Contributing authors:
Thomas Lichtenegger, Gerhard Holzinger
Copyright (C) 2015- Johannes Kepler University, Linz
-------------------------------------------------------------------------------
License
This file is part of CFDEMcoupling academic.
CFDEMcoupling academic is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
CFDEMcoupling academic is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with CFDEMcoupling academic. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "error.H"
#include "Random.H"
#include "autocorrelation.H"
#include "recModel.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
defineTypeNameAndDebug(autocorrelation, 0);
addToRunTimeSelectionTable
(
recStatAnalysis,
autocorrelation,
dictionary
);
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
// Construct from components
autocorrelation::autocorrelation
(
const dictionary& dict,
recBase& base
)
:
recStatAnalysis(dict,base),
propsDict_(dict.subDict(typeName + "Props")),
fieldname_(propsDict_.lookup("fieldname")),
fieldtype_(propsDict_.lookup("fieldtype")),
delaySteps_(propsDict_.lookupOrDefault<label>("delaysteps",0)),
refCell_(0),
refPoint_(propsDict_.lookup("refPoint")),
normalize_(propsDict_.lookupOrDefault<bool>("normalize",true)),
autoCorrField_
( IOobject
(
"autoCorrField",
base.mesh().time().timeName(),
base.mesh(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
base.mesh(),
dimensionedScalar("zero", dimensionSet(0,0,0,0,0), 0.0)
),
suppressMatrixAndPath_(propsDict_.lookupOrDefault<bool>("suppressMatrixAndPath",false))
{
if (fieldtype_ != "scalar" && fieldtype_ != "vector")
{
FatalError <<"fieldtype needs to be either scalar or vector.\n" << abort(FatalError);
}
scalar delayTime = delaySteps_ * base.recM().recTimeStep();
autoCorrField_.rename("autoCorrField"+name(delayTime));
refCell_ = base.mesh().findCell(refPoint_);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
autocorrelation::~autocorrelation()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void autocorrelation::init()
{
}
void autocorrelation::statistics()
{
autocorr();
}
void autocorrelation::autocorr()
{
if (fieldtype_ == "scalar") scalarFieldList_.transfer(base_.recM().exportVolScalarFieldList(fieldname_));
else vectorFieldList_.transfer(base_.recM().exportVolVectorFieldList(fieldname_));
label tmax = base_.recM().totRecSteps();
for (label ti = delaySteps_; ti < tmax; ti++)
{
forAll(autoCorrField_, cellI)
{
autoCorrField_[cellI] += autocorrSummand(ti-delaySteps_,ti,refCell_,cellI);
}
}
autoCorrField_ /= (tmax - delaySteps_);
autoCorrField_ -= meanProd();
if (normalize_)
{
volScalarField meanProd(autoCorrField_);
if (fieldtype_ == "scalar")
{
volScalarField aveField = base_.recM().exportVolScalarFieldAve(fieldname_);
forAll(meanProd, cellI)
{
meanProd[cellI] = aveField()[cellI] * aveField()[refCell_];
}
}
else
{
volVectorField aveField = base_.recM().exportVolVectorFieldAve(fieldname_);
forAll(meanProd, cellI)
{
meanProd[cellI] = aveField()[cellI] & aveField()[refCell_];
}
}
autoCorrField_ /= meanProd;
}
else
{
dimensionSet fieldDim(0,0,0,0,0);
if (fieldtype_ == "scalar")
{
fieldDim.reset(scalarFieldList_[0].dimensions());
}
else
{
fieldDim.reset(vectorFieldList_[0].dimensions());
}
fieldDim.reset(fieldDim * fieldDim);
autoCorrField_.dimensions().reset(fieldDim);
}
autoCorrField_.write();
}
scalar autocorrelation::autocorrSummand(label t1, label t2, label c1, label c2)
{
scalar res;
if (fieldtype_ == "scalar")
{
res = scalarFieldList_[t1][c1] * scalarFieldList_[t2][c2];
}
else
{
res = vectorFieldList_[t1][c1] & vectorFieldList_[t2][c2];
}
return res;
}
volScalarField autocorrelation::meanProd()
{
volScalarField meanProd(autoCorrField_);
if (fieldtype_ == "scalar")
{
volScalarField aveField = base_.recM().exportVolScalarFieldAve(fieldname_);
forAll(meanProd, cellI)
{
meanProd[cellI] = aveField()[cellI] * aveField()[refCell_];
}
}
else
{
volVectorField aveField = base_.recM().exportVolVectorFieldAve(fieldname_);
forAll(meanProd, cellI)
{
meanProd[cellI] = aveField()[cellI] & aveField()[refCell_];
}
}
return meanProd;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //