Files
CFDEMcoupling-PFM/applications/solvers/rcfdemSolverRhoSteadyPimpleChem/createFields.H

446 lines
10 KiB
C

Info<< "Reading thermophysical properties\n" << endl;
#if OPENFOAM_VERSION_MAJOR < 6
Info<< "Creating combustion model\n" << endl;
autoPtr<combustionModels::rhoCombustionModel> combustion
(
combustionModels::rhoCombustionModel::New(mesh)
);
rhoReactionThermo& thermo = combustion->thermo();
#else
Info<< "Reading thermophysical properties\n" << endl;
autoPtr<rhoReactionThermo> pThermo(rhoReactionThermo::New(mesh));
rhoReactionThermo& thermo = pThermo();
#endif
thermo.validate(args.executable(), "h", "e");
basicSpecieMixture& composition = thermo.composition();
PtrList<volScalarField>& Y = composition.Y();
// read molecular weight
#if OPENFOAM_VERSION_MAJOR < 6
volScalarField W(composition.W());
#else
volScalarField W(thermo.W());
#endif
Switch propagateInertSpecie(thermo.lookupOrDefault<bool>("propagateInertSpecie",true));
const word inertSpecie(thermo.lookupOrDefault<word>("inertSpecie","none"));
const scalar inertLowerBound(thermo.lookupOrDefault<scalar>("inertLowerBound",0.0));
const scalar inertUpperBound(thermo.lookupOrDefault<scalar>("inertUpperBound",1.0));
if (!composition.contains(inertSpecie) && inertSpecie != "none")
{
FatalErrorIn(args.executable())
<< "Specified inert specie '" << inertSpecie << "' not found in "
<< "species list. Available species:" << composition.species()
<< exit(FatalError);
}
Info<< "inert will be bounded in [" << inertLowerBound << "," << inertUpperBound << "]" << endl;
#include "OFstream.H"
OFstream Hf("Hf");
Hf << "# species Hf (J/kg)" << endl;
Info << "\nspecies-specific heat of formation (J/kg):" << endl;
forAll(composition.species(),i)
{
Info << composition.species()[i] << " " << composition.Hc(i) << endl;
Hf << composition.species()[i] << " " << composition.Hc(i) << endl;
}
Info << "\n" << endl;
volScalarField& p = thermo.p();
multivariateSurfaceInterpolationScheme<scalar>::fieldTable fields;
forAll(Y, i)
{
fields.add(Y[i]);
}
fields.add(thermo.he());
Info<< "Reading field rho\n" << endl;
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
thermo.rho()
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "\nReading voidfraction field voidfraction = (Vgas/Vparticle)\n" << endl;
volScalarField voidfraction
(
IOobject
(
"voidfraction",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
volScalarField voidfractionRec
(
IOobject
(
"voidfractionRec",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
voidfraction
);
volScalarField addSource
(
IOobject
(
"addSource",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1,-1,-3,0,0,0,0), 0.0)
);
volScalarField Sm
(
IOobject
(
"Sm",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("zero",dimMass/(dimVol*dimTime),0.0)
);
Info<< "\nCreating fluid-particle heat flux field\n" << endl;
volScalarField Qsource
(
IOobject
(
"Qsource",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1,-1,-3,0,0,0,0), 0.0)
);
Info<< "\nCreating fluid-particle heat flux coefficient field\n" << endl;
volScalarField QCoeff
(
IOobject
(
"QCoeff",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1,-1,-3,-1,0,0,0), 0.0)
);
Info<< "\nCreating fluid thermal conduction field\n" << endl;
volScalarField QFluidCond
(
IOobject
(
"QFluidCond",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1,-1,-3,0,0,0,0), 0.0)
);
Info<< "\nCreating thermal conductivity field\n" << endl;
volScalarField thCond
(
IOobject
(
"thCond",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1,1,-3,-1,0,0,0), 0.0),
"zeroGradient"
);
Info<< "\nCreating heat capacity field\n" << endl;
volScalarField Cpv
(
IOobject
(
"Cpv",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(0,2,-2,-1,0,0,0), 0.0)
);
Info<< "\nCreating body force field\n" << endl;
volVectorField fOther
(
IOobject
(
"fOther",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimensionSet(1,-2,-2,0,0,0,0), vector::zero)
);
Info<< "Reading/calculating face flux field phi\n" << endl;
surfaceScalarField phi
(
IOobject
(
"phi",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
linearInterpolate(rho*U*voidfraction) & mesh.Sf()
);
Switch transientEEqn(pimple.dict().lookupOrDefault<bool>("transientEEqn",false));
dimensionedScalar rhoMax
(
dimensionedScalar::lookupOrDefault
(
"rhoMax",
pimple.dict(),
dimDensity,
GREAT
)
);
dimensionedScalar rhoMin
(
dimensionedScalar::lookupOrDefault
(
"rhoMin",
pimple.dict(),
dimDensity,
0
)
);
dimensionedScalar pMax
(
dimensionedScalar::lookupOrDefault
(
"pMax",
pimple.dict(),
dimPressure,
GREAT
)
);
dimensionedScalar pMin
(
dimensionedScalar::lookupOrDefault
(
"pMin",
pimple.dict(),
dimPressure,
-GREAT
)
);
dimensionedScalar UMax
(
dimensionedScalar::lookupOrDefault
(
"UMax",
pimple.dict(),
dimVelocity,
-1.0
)
);
Info<< "Creating turbulence model\n" << endl;
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo
)
);
#if OPENFOAM_VERSION_MAJOR >= 6
Info<< "Creating combustion model\n" << endl;
autoPtr<CombustionModel<rhoReactionThermo>> combustion
(
CombustionModel<rhoReactionThermo>::New(thermo, turbulence())
);
#endif
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, pimple.dict(), pRefCell, pRefValue);
mesh.setFluxRequired(p.name());
Info<< "Creating field dpdt\n" << endl;
volScalarField dpdt
(
IOobject
(
"dpdt",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar("dpdt", p.dimensions()/dimTime, 0)
);
Info<< "Creating field kinetic energy K\n" << endl;
volScalarField K("K", 0.5*magSqr(U));
#if OPENFOAM_VERSION_MAJOR < 5
volScalarField dQ
(
IOobject
(
"dQ",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("dQ", dimEnergy/dimTime, 0.0)
);
#else
volScalarField Qdot
(
IOobject
(
"Qdot",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("Qdot", dimEnergy/dimVolume/dimTime, 0.0)
);
#endif
Info<< "\nReading momentum exchange field Ksl\n" << endl;
volScalarField Ksl
(
IOobject
(
"Ksl",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("0", dimensionSet(1, -3, -1, 0, 0), 0.0)
);
Info<< "Reading particle velocity field Us\n" << endl;
volVectorField Us
(
IOobject
(
"Us",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
volScalarField molarConc
(
IOobject
(
"molarConc",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero",dimensionSet(0, -3, 0, 0, 1),0)
);
volVectorField UsRec
(
IOobject
(
"UsRec",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
Us
);
dimensionedScalar kf("0", dimensionSet(1, 1, -3, -1, 0, 0, 0), 0.026);
//===============================