Files
CFDEMcoupling-PFM/src/recurrence/recPath/multiIntervalPath/multiIntervalPath.C
2018-05-17 12:45:34 +02:00

195 lines
6.1 KiB
C

/*---------------------------------------------------------------------------*\
CFDEMcoupling academic - Open Source CFD-DEM coupling
Contributing authors:
Thomas Lichtenegger
Copyright (C) 2015- Johannes Kepler University, Linz
-------------------------------------------------------------------------------
License
This file is part of CFDEMcoupling academic.
CFDEMcoupling academic is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
CFDEMcoupling academic is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with CFDEMcoupling academic. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "error.H"
#include "multiIntervalPath.H"
#include "Random.H"
#include "recModel.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
defineTypeNameAndDebug(multiIntervalPath, 0);
addToRunTimeSelectionTable
(
recPath,
multiIntervalPath,
dictionary
);
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
// Construct from components
multiIntervalPath::multiIntervalPath
(
const dictionary& dict,
recBase& base
)
:
recPath(dict, base),
propsDict_(dict.subDict(typeName + "Props")),
meanIntervalSteps_(propsDict_.lookupOrDefault<label>("meanIntervalSteps",-1)),
numIntervals_(base.recM().numIntervals()),
intervalSizes_(numIntervals_),
intervalSizesCumulative_(numIntervals_),
Pjump_(0.0),
intervalWeights_(propsDict_.lookupOrDefault<scalarList>("intervalWeights",scalarList(numIntervals_,1.0))),
intervalWeightsCumulative_(intervalWeights_)
{
if(meanIntervalSteps_<0)
{
// if no mean interval length for consecutive steps is specified, use 1/5 from first interval
meanIntervalSteps_ = static_cast<label>(0.2 * intervalSizes_[0]);
}
// normalize weights
scalar wsum = 0.0;
for(int i=0;i<numIntervals_;i++)
{
intervalSizes_[i] = base.recM().numRecFields(i);
wsum += intervalWeights_[i];
}
for(int i=0;i<numIntervals_;i++)
{
intervalWeights_[i] /= wsum;
}
for(int i=0;i<numIntervals_;i++)
{
scalar sum1 = 0.0;
scalar sum2 = 0.0;
for(int j=0;j<=i;j++)
{
sum1 += intervalWeights_[j];
sum2 += intervalSizes_[j];
}
intervalWeightsCumulative_[i] = sum1;
intervalSizesCumulative_[i] = sum2;
}
// given a jump probability of P, the probability of finding a chain of length N is
// P(N) = (1 - P)^N * P, and the mean length E(N) = (1 - P) / P
Pjump_ = 1.0 / (1 + meanIntervalSteps_);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
multiIntervalPath::~multiIntervalPath()
{}
// * * * * * * * * * * * * * protected Member Functions * * * * * * * * * * * * //
void multiIntervalPath::computeRecPath()
{
Info << "\nComputing recurrence path\n" << endl;
Random ranGen(osRandomInteger());
label virtualTimeIndex=0;
label recSteps=0;
label seqStart=0;
bool prevStepWasJump = true;
SymmetricSquareMatrix<scalar>& recurrenceMatrix( base_.recM().recurrenceMatrix() );
if(base_.recM().totRecSteps() == 1)
{
Info << "\nPrimitive recurrence path with one element.\n" << endl;
return;
}
while(recSteps <= base_.recM().totRecSteps() )
{
scalar randJump = ranGen.scalar01();
// check if current virtualTimeIndex is close to separation time
bool intervalBorder = false;
label sep = 0;
for(int i = 0;i < numIntervals_; i++)
{
sep += intervalSizes_[i];
if (sep - 1 == virtualTimeIndex) intervalBorder=true;
}
if ((randJump > Pjump_ && !intervalBorder) || prevStepWasJump)
{
virtualTimeIndex++;
prevStepWasJump = false;
}
else
{
// before jump, complete former consecutive interval
labelPair seqStartEnd(seqStart,virtualTimeIndex);
virtualTimeIndexList_.append(seqStartEnd);
recSteps += virtualTimeIndex - seqStart + 1;
// now jump
// identify interval to jump to
scalar randInterval = ranGen.scalar01();
label interval = numIntervals_-1;
for(int i = numIntervals_-2 ;i >= 0; i--)
{
if (randInterval < intervalWeightsCumulative_[i]) interval=i;
}
label startLoop = 0;
if (interval > 0) startLoop = intervalSizesCumulative_[interval-1];
label endLoop = intervalSizesCumulative_[interval] - meanIntervalSteps_;
scalar nextMinimum(GREAT);
for (label j = startLoop; j <= endLoop; j++)
{
if(abs(j - virtualTimeIndex) < meanIntervalSteps_) continue;
if (recurrenceMatrix[j][virtualTimeIndex] < nextMinimum)
{
nextMinimum = recurrenceMatrix[j][virtualTimeIndex];
seqStart = j+1;
}
}
virtualTimeIndex = seqStart;
prevStepWasJump = true;
}
}
Info << "\nComputing recurrence path done\n" << endl;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //