mirror of
https://github.com/ParticulateFlow/CFDEMcoupling-PFM.git
synced 2025-12-08 06:37:44 +00:00
This 2D case of vortex shedding in laminar cross-flow demonstrates the concept of recurrence. This is a bit work-in-progress: please check whether this tutorial runs with the recurrence model and tools of CFDEMcoupling, namely rStatAnalysis. The simulation roughly goes through three stages: * The initial solution computed by potentialFoam * A period of symmetric, steady-state flow * Finally, periodic vortex shedding These three stages are clearly visible in the recurrence plot. * We see how not one of the later velocity fields is similar to the initial one * We see the intermediate stage with a symmetric flow field * We see the periodic vortex shedding
63 lines
1.4 KiB
C++
63 lines
1.4 KiB
C++
/*--------------------------------*- C++ -*----------------------------------*\
|
|
| ========= | |
|
|
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
|
|
| \\ / O peration | Version: 2.3.0 |
|
|
| \\ / A nd | Web: www.OpenFOAM.org |
|
|
| \\/ M anipulation | |
|
|
\*---------------------------------------------------------------------------*/
|
|
FoamFile
|
|
{
|
|
version 2.0;
|
|
format ascii;
|
|
class dictionary;
|
|
location "system";
|
|
object fvSchemes;
|
|
}
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
ddtSchemes
|
|
{
|
|
default Euler;
|
|
}
|
|
|
|
gradSchemes
|
|
{
|
|
default Gauss linear;
|
|
grad(U) cellLimited Gauss linear 1;
|
|
}
|
|
|
|
divSchemes
|
|
{
|
|
default none;
|
|
div(phi,U) bounded Gauss linearUpwindV grad(U);
|
|
|
|
|
|
div((nuEff*dev2(T(grad(U))))) Gauss linear;
|
|
div((nuEff*dev(T(grad(U))))) Gauss linear;
|
|
}
|
|
|
|
laplacianSchemes
|
|
{
|
|
default Gauss linear limited corrected 0.33;
|
|
}
|
|
|
|
interpolationSchemes
|
|
{
|
|
default linear;
|
|
}
|
|
|
|
snGradSchemes
|
|
{
|
|
default corrected;
|
|
}
|
|
|
|
fluxRequired
|
|
{
|
|
default no;
|
|
p ;
|
|
Phi ;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|