613 lines
19 KiB
C++
613 lines
19 KiB
C++
/* ----------------------------------------------------------------------
|
|
LIGGGHTS - LAMMPS Improved for General Granular and Granular Heat
|
|
Transfer Simulations
|
|
|
|
LIGGGHTS is part of the CFDEMproject
|
|
www.liggghts.com | www.cfdem.com
|
|
|
|
This file was modified with respect to the release in LAMMPS
|
|
Modifications are Copyright 2009-2012 JKU Linz
|
|
Copyright 2012- DCS Computing GmbH, Linz
|
|
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
http://lammps.sandia.gov, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "fix_pour.h"
|
|
#include "atom.h"
|
|
#include "atom_vec.h"
|
|
#include "force.h"
|
|
#include "update.h"
|
|
#include "comm.h"
|
|
#include "modify.h"
|
|
#include "fix_gravity.h"
|
|
#include "domain.h"
|
|
#include "region.h"
|
|
#include "region_block.h"
|
|
#include "region_cylinder.h"
|
|
#include "random_park.h"
|
|
#include "math_const.h"
|
|
#include "memory.h"
|
|
#include "error.h"
|
|
|
|
using namespace LAMMPS_NS;
|
|
using namespace FixConst;
|
|
using namespace MathConst;
|
|
|
|
#define EPSILON 0.001
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
FixPour::FixPour(LAMMPS *lmp, int narg, char **arg) :
|
|
Fix(lmp, narg, arg)
|
|
{
|
|
if (narg < 6) error->all(FLERR,"Illegal fix pour command");
|
|
|
|
time_depend = 1;
|
|
|
|
if (!atom->radius_flag || !atom->rmass_flag)
|
|
error->all(FLERR,"Fix pour requires atom attributes radius, rmass");
|
|
|
|
// required args
|
|
|
|
ninsert = atoi(arg[3]);
|
|
ntype = atoi(arg[4]);
|
|
seed = atoi(arg[5]);
|
|
|
|
if (seed <= 0) error->all(FLERR,"Illegal fix pour command");
|
|
|
|
// option defaults
|
|
|
|
int iregion = -1;
|
|
radius_lo = radius_hi = 0.5;
|
|
density_lo = density_hi = 1.0;
|
|
volfrac = 0.25;
|
|
maxattempt = 50;
|
|
rate = 0.0;
|
|
vxlo = vxhi = vylo = vyhi = vy = vz = 0.0;
|
|
|
|
// optional args
|
|
|
|
int iarg = 6;
|
|
while (iarg < narg) {
|
|
if (strcmp(arg[iarg],"region") == 0) {
|
|
if (iarg+2 > narg) error->all(FLERR,"Illegal fix pour command");
|
|
iregion = domain->find_region(arg[iarg+1]);
|
|
if (iregion == -1) error->all(FLERR,"Fix pour region ID does not exist");
|
|
iarg += 2;
|
|
} else if (strcmp(arg[iarg],"diam") == 0) {
|
|
if (iarg+3 > narg) error->all(FLERR,"Illegal fix pour command");
|
|
radius_lo = 0.5 * atof(arg[iarg+1]);
|
|
radius_hi = 0.5 * atof(arg[iarg+2]);
|
|
iarg += 3;
|
|
} else if (strcmp(arg[iarg],"dens") == 0) {
|
|
if (iarg+3 > narg) error->all(FLERR,"Illegal fix pour command");
|
|
density_lo = atof(arg[iarg+1]);
|
|
density_hi = atof(arg[iarg+2]);
|
|
iarg += 3;
|
|
} else if (strcmp(arg[iarg],"vol") == 0) {
|
|
if (iarg+3 > narg) error->all(FLERR,"Illegal fix pour command");
|
|
volfrac = atof(arg[iarg+1]);
|
|
maxattempt = atoi(arg[iarg+2]);
|
|
iarg += 3;
|
|
} else if (strcmp(arg[iarg],"rate") == 0) {
|
|
if (iarg+2 > narg) error->all(FLERR,"Illegal fix pour command");
|
|
rate = atof(arg[iarg+1]);
|
|
iarg += 2;
|
|
} else if (strcmp(arg[iarg],"vel") == 0) {
|
|
if (domain->dimension == 3) {
|
|
if (iarg+6 > narg) error->all(FLERR,"Illegal fix pour command");
|
|
vxlo = atof(arg[iarg+1]);
|
|
vxhi = atof(arg[iarg+2]);
|
|
vylo = atof(arg[iarg+3]);
|
|
vyhi = atof(arg[iarg+4]);
|
|
vz = atof(arg[iarg+5]);
|
|
iarg += 6;
|
|
} else {
|
|
if (iarg+4 > narg) error->all(FLERR,"Illegal fix pour command");
|
|
vxlo = atof(arg[iarg+1]);
|
|
vxhi = atof(arg[iarg+2]);
|
|
vy = atof(arg[iarg+3]);
|
|
vz = 0.0;
|
|
iarg += 4;
|
|
}
|
|
} else error->all(FLERR,"Illegal fix pour command");
|
|
}
|
|
|
|
// error checks on region and its extent being inside simulation box
|
|
|
|
if (iregion == -1) error->all(FLERR,"Must specify a region in fix pour");
|
|
if (domain->regions[iregion]->bboxflag == 0)
|
|
error->all(FLERR,"Fix pour region does not support a bounding box");
|
|
if (domain->regions[iregion]->dynamic_check())
|
|
error->all(FLERR,"Fix pour region cannot be dynamic");
|
|
|
|
if (strcmp(domain->regions[iregion]->style,"block") == 0) {
|
|
region_style = 1;
|
|
xlo = ((RegBlock *) domain->regions[iregion])->xlo;
|
|
xhi = ((RegBlock *) domain->regions[iregion])->xhi;
|
|
ylo = ((RegBlock *) domain->regions[iregion])->ylo;
|
|
yhi = ((RegBlock *) domain->regions[iregion])->yhi;
|
|
zlo = ((RegBlock *) domain->regions[iregion])->zlo;
|
|
zhi = ((RegBlock *) domain->regions[iregion])->zhi;
|
|
if (xlo < domain->boxlo[0] || xhi > domain->boxhi[0] ||
|
|
ylo < domain->boxlo[1] || yhi > domain->boxhi[1] ||
|
|
zlo < domain->boxlo[2] || zhi > domain->boxhi[2])
|
|
error->all(FLERR,"Insertion region extends outside simulation box");
|
|
} else if (strcmp(domain->regions[iregion]->style,"cylinder") == 0) {
|
|
region_style = 2;
|
|
char axis = ((RegCylinder *) domain->regions[iregion])->axis;
|
|
xc = ((RegCylinder *) domain->regions[iregion])->c1;
|
|
yc = ((RegCylinder *) domain->regions[iregion])->c2;
|
|
rc = ((RegCylinder *) domain->regions[iregion])->radius;
|
|
zlo = ((RegCylinder *) domain->regions[iregion])->lo;
|
|
zhi = ((RegCylinder *) domain->regions[iregion])->hi;
|
|
if (axis != 'z')
|
|
error->all(FLERR,"Must use a z-axis cylinder with fix pour");
|
|
if (xc-rc < domain->boxlo[0] || xc+rc > domain->boxhi[0] ||
|
|
yc-rc < domain->boxlo[1] || yc+rc > domain->boxhi[1] ||
|
|
zlo < domain->boxlo[2] || zhi > domain->boxhi[2])
|
|
error->all(FLERR,"Insertion region extends outside simulation box");
|
|
} else error->all(FLERR,"Must use a block or cylinder region with fix pour");
|
|
|
|
if (region_style == 2 && domain->dimension == 2)
|
|
error->all(FLERR,"Must use a block region with fix pour for 2d simulations");
|
|
|
|
// random number generator, same for all procs
|
|
|
|
random = new RanPark(lmp,seed);
|
|
|
|
// allgather arrays
|
|
|
|
MPI_Comm_rank(world,&me);
|
|
MPI_Comm_size(world,&nprocs);
|
|
recvcounts = new int[nprocs];
|
|
displs = new int[nprocs];
|
|
|
|
// grav = gravity in distance/time^2 units
|
|
// assume grav = -magnitude at this point, enforce in init()
|
|
|
|
int ifix;
|
|
for (ifix = 0; ifix < modify->nfix; ifix++) {
|
|
if (strcmp(modify->fix[ifix]->style,"gravity") == 0) break;
|
|
if (strcmp(modify->fix[ifix]->style,"gravity/omp") == 0) break;
|
|
}
|
|
if (ifix == modify->nfix)
|
|
error->all(FLERR,"No fix gravity defined for fix pour");
|
|
grav = - ((FixGravity *) modify->fix[ifix])->magnitude * force->ftm2v;
|
|
|
|
// nfreq = timesteps between insertions
|
|
// should be time for a particle to fall from top of insertion region
|
|
// to bottom, taking into account that the region may be moving
|
|
// set these 2 eqs equal to each other, solve for smallest positive t
|
|
// x = zhi + vz*t + 1/2 grav t^2
|
|
// x = zlo + rate*t
|
|
// gives t = [-(vz-rate) - sqrt((vz-rate)^2 - 2*grav*(zhi-zlo))] / grav
|
|
// where zhi-zlo > 0, grav < 0, and vz & rate can be either > 0 or < 0
|
|
|
|
double v_relative,delta;
|
|
if (domain->dimension == 3) {
|
|
v_relative = vz - rate;
|
|
delta = zhi - zlo;
|
|
} else {
|
|
v_relative = vy - rate;
|
|
delta = yhi - ylo;
|
|
}
|
|
double t =
|
|
(-v_relative - sqrt(v_relative*v_relative - 2.0*grav*delta)) / grav;
|
|
nfreq = static_cast<int> (t/update->dt + 0.5);
|
|
|
|
// 1st insertion on next timestep
|
|
|
|
force_reneighbor = 1;
|
|
next_reneighbor = update->ntimestep + 1;
|
|
nfirst = next_reneighbor;
|
|
ninserted = 0;
|
|
|
|
// nper = # to insert each time
|
|
// depends on specified volume fraction
|
|
// volume = volume of insertion region
|
|
// volume_one = volume of inserted particle (with max possible radius)
|
|
// in 3d, insure dy >= 1, for quasi-2d simulations
|
|
|
|
double volume,volume_one;
|
|
if (domain->dimension == 3) {
|
|
if (region_style == 1) {
|
|
double dy = yhi - ylo;
|
|
if (dy < 1.0) dy = 1.0;
|
|
volume = (xhi-xlo) * dy * (zhi-zlo);
|
|
} else volume = MY_PI*rc*rc * (zhi-zlo);
|
|
volume_one = 4.0/3.0 * MY_PI * radius_hi*radius_hi*radius_hi;
|
|
} else {
|
|
volume = (xhi-xlo) * (yhi-ylo);
|
|
volume_one = MY_PI * radius_hi*radius_hi;
|
|
}
|
|
|
|
nper = static_cast<int> (volfrac*volume/volume_one);
|
|
int nfinal = update->ntimestep + 1 + (ninsert-1)/nper * nfreq;
|
|
|
|
// print stats
|
|
|
|
if (me == 0) {
|
|
if (screen)
|
|
fprintf(screen,
|
|
"Particle insertion: %d every %d steps, %d by step %d\n",
|
|
nper,nfreq,ninsert,nfinal);
|
|
if (logfile)
|
|
fprintf(logfile,
|
|
"Particle insertion: %d every %d steps, %d by step %d\n",
|
|
nper,nfreq,ninsert,nfinal);
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
FixPour::~FixPour()
|
|
{
|
|
delete random;
|
|
delete [] recvcounts;
|
|
delete [] displs;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
int FixPour::setmask()
|
|
{
|
|
int mask = 0;
|
|
mask |= PRE_EXCHANGE;
|
|
return mask;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixPour::init()
|
|
{
|
|
if (domain->triclinic) error->all(FLERR,"Cannot use fix pour with triclinic box");
|
|
|
|
// insure gravity fix exists
|
|
// for 3d must point in -z, for 2d must point in -y
|
|
// else insertion cannot work
|
|
|
|
int ifix;
|
|
for (ifix = 0; ifix < modify->nfix; ifix++) {
|
|
if (strcmp(modify->fix[ifix]->style,"gravity") == 0) break;
|
|
if (strcmp(modify->fix[ifix]->style,"gravity/omp") == 0) break;
|
|
}
|
|
if (ifix == modify->nfix)
|
|
error->all(FLERR,"No fix gravity defined for fix pour");
|
|
|
|
double xgrav = ((FixGravity *) modify->fix[ifix])->xgrav;
|
|
double ygrav = ((FixGravity *) modify->fix[ifix])->ygrav;
|
|
double zgrav = ((FixGravity *) modify->fix[ifix])->zgrav;
|
|
|
|
if (domain->dimension == 3) {
|
|
if (fabs(xgrav) > EPSILON || fabs(ygrav) > EPSILON ||
|
|
fabs(zgrav+1.0) > EPSILON)
|
|
error->all(FLERR,"Gravity must point in -z to use with fix pour in 3d");
|
|
} else {
|
|
if (fabs(xgrav) > EPSILON || fabs(ygrav+1.0) > EPSILON ||
|
|
fabs(zgrav) > EPSILON)
|
|
error->all(FLERR,"Gravity must point in -y to use with fix pour in 2d");
|
|
}
|
|
|
|
double gnew = - ((FixGravity *) modify->fix[ifix])->magnitude * force->ftm2v;
|
|
if (gnew != grav)
|
|
error->all(FLERR,"Gravity changed since fix pour was created");
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
perform particle insertion
|
|
------------------------------------------------------------------------- */
|
|
|
|
void FixPour::pre_exchange()
|
|
{
|
|
int i;
|
|
|
|
// just return if should not be called on this timestep
|
|
|
|
if (next_reneighbor != update->ntimestep) return;
|
|
|
|
// nnew = # to insert this timestep
|
|
|
|
int nnew = nper;
|
|
if (ninserted + nnew > ninsert) nnew = ninsert - ninserted;
|
|
|
|
// lo/hi current = z (or y) bounds of insertion region this timestep
|
|
|
|
if (domain->dimension == 3) {
|
|
lo_current = zlo + (update->ntimestep - nfirst) * update->dt * rate;
|
|
hi_current = zhi + (update->ntimestep - nfirst) * update->dt * rate;
|
|
} else {
|
|
lo_current = ylo + (update->ntimestep - nfirst) * update->dt * rate;
|
|
hi_current = yhi + (update->ntimestep - nfirst) * update->dt * rate;
|
|
}
|
|
|
|
// ncount = # of my atoms that overlap the insertion region
|
|
// nprevious = total of ncount across all procs
|
|
|
|
int ncount = 0;
|
|
for (i = 0; i < atom->nlocal; i++)
|
|
if (overlap(i)) ncount++;
|
|
|
|
int nprevious;
|
|
MPI_Allreduce(&ncount,&nprevious,1,MPI_INT,MPI_SUM,world);
|
|
|
|
// xmine is for my atoms
|
|
// xnear is for atoms from all procs + atoms to be inserted
|
|
|
|
double **xmine,**xnear;
|
|
memory->create(xmine,ncount,4,"fix_pour:xmine");
|
|
memory->create(xnear,nprevious+nnew,4,"fix_pour:xnear");
|
|
int nnear = nprevious;
|
|
|
|
// setup for allgatherv
|
|
|
|
int n = 4*ncount;
|
|
MPI_Allgather(&n,1,MPI_INT,recvcounts,1,MPI_INT,world);
|
|
|
|
displs[0] = 0;
|
|
for (int iproc = 1; iproc < nprocs; iproc++)
|
|
displs[iproc] = displs[iproc-1] + recvcounts[iproc-1];
|
|
|
|
// load up xmine array
|
|
|
|
double **x = atom->x;
|
|
double *radius = atom->radius;
|
|
|
|
ncount = 0;
|
|
for (i = 0; i < atom->nlocal; i++)
|
|
if (overlap(i)) {
|
|
xmine[ncount][0] = x[i][0];
|
|
xmine[ncount][1] = x[i][1];
|
|
xmine[ncount][2] = x[i][2];
|
|
xmine[ncount][3] = radius[i];
|
|
ncount++;
|
|
}
|
|
|
|
// perform allgatherv to acquire list of nearby particles on all procs
|
|
|
|
double *ptr = NULL;
|
|
if (ncount) ptr = xmine[0];
|
|
MPI_Allgatherv(ptr,4*ncount,MPI_DOUBLE,
|
|
xnear[0],recvcounts,displs,MPI_DOUBLE,world);
|
|
|
|
// insert new atoms into xnear list, one by one
|
|
// check against all nearby atoms and previously inserted ones
|
|
// if there is an overlap then try again at same z (3d) or y (2d) coord
|
|
// else insert by adding to xnear list
|
|
// max = maximum # of insertion attempts for all particles
|
|
// h = height, biased to give uniform distribution in time of insertion
|
|
|
|
int success;
|
|
double coord[3],radtmp,delx,dely,delz,rsq,radsum,rn,h;
|
|
|
|
int attempt = 0;
|
|
int max = nnew * maxattempt;
|
|
int ntotal = nprevious+nnew;
|
|
|
|
while (nnear < ntotal) {
|
|
rn = random->uniform();
|
|
h = hi_current - rn*rn * (hi_current-lo_current);
|
|
radtmp = radius_lo + random->uniform() * (radius_hi-radius_lo);
|
|
success = 0;
|
|
while (attempt < max) {
|
|
attempt++;
|
|
xyz_random(h,coord);
|
|
for (i = 0; i < nnear; i++) {
|
|
delx = coord[0] - xnear[i][0];
|
|
dely = coord[1] - xnear[i][1];
|
|
delz = coord[2] - xnear[i][2];
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
radsum = radtmp + xnear[i][3];
|
|
if (rsq <= radsum*radsum) break;
|
|
}
|
|
if (i == nnear) {
|
|
success = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (success) {
|
|
xnear[nnear][0] = coord[0];
|
|
xnear[nnear][1] = coord[1];
|
|
xnear[nnear][2] = coord[2];
|
|
xnear[nnear][3] = radtmp;
|
|
nnear++;
|
|
} else break;
|
|
}
|
|
|
|
// warn if not all insertions were performed
|
|
|
|
ninserted += nnear-nprevious;
|
|
if (nnear - nprevious < nnew && me == 0)
|
|
error->warning(FLERR,"Less insertions than requested",0);
|
|
|
|
// check if new atom is in my sub-box or above it if I'm highest proc
|
|
// if so, add to my list via create_atom()
|
|
// initialize info about the atom
|
|
// type, diameter, density set from fix parameters
|
|
// group mask set to "all" plus fix group
|
|
// z velocity set to what velocity would be if particle
|
|
// had fallen from top of insertion region
|
|
// this gives continuous stream of atoms
|
|
// solution for v from these 2 eqs, after eliminate t:
|
|
// v = vz + grav*t
|
|
// coord[2] = hi_current + vz*t + 1/2 grav t^2
|
|
// set npartner for new atom to 0 (assume not touching any others)
|
|
|
|
AtomVec *avec = atom->avec;
|
|
int j,m,flag;
|
|
double denstmp,vxtmp,vytmp,vztmp;
|
|
double *sublo = domain->sublo;
|
|
double *subhi = domain->subhi;
|
|
|
|
int nfix = modify->nfix;
|
|
Fix **fix = modify->fix;
|
|
|
|
for (i = nprevious; i < nnear; i++) {
|
|
coord[0] = xnear[i][0];
|
|
coord[1] = xnear[i][1];
|
|
coord[2] = xnear[i][2];
|
|
radtmp = xnear[i][3];
|
|
denstmp = density_lo + random->uniform() * (density_hi-density_lo);
|
|
if (domain->dimension == 3) {
|
|
vxtmp = vxlo + random->uniform() * (vxhi-vxlo);
|
|
vytmp = vylo + random->uniform() * (vyhi-vylo);
|
|
vztmp = -sqrt(vz*vz + 2.0*grav*(coord[2]-hi_current));
|
|
} else {
|
|
vxtmp = vxlo + random->uniform() * (vxhi-vxlo);
|
|
vytmp = -sqrt(vy*vy + 2.0*grav*(coord[1]-hi_current));
|
|
vztmp = 0.0;
|
|
}
|
|
|
|
flag = 0;
|
|
if (coord[0] >= sublo[0] && coord[0] < subhi[0] &&
|
|
coord[1] >= sublo[1] && coord[1] < subhi[1] &&
|
|
coord[2] >= sublo[2] && coord[2] < subhi[2]) flag = 1;
|
|
else if (domain->dimension == 3 && coord[2] >= domain->boxhi[2] &&
|
|
comm->myloc[2] == comm->procgrid[2]-1 &&
|
|
coord[0] >= sublo[0] && coord[0] < subhi[0] &&
|
|
coord[1] >= sublo[1] && coord[1] < subhi[1]) flag = 1;
|
|
else if (domain->dimension == 2 && coord[1] >= domain->boxhi[1] &&
|
|
comm->myloc[1] == comm->procgrid[1]-1 &&
|
|
coord[0] >= sublo[0] && coord[0] < subhi[0]) flag = 1;
|
|
|
|
if (flag) {
|
|
avec->create_atom(ntype,coord);
|
|
m = atom->nlocal - 1;
|
|
atom->type[m] = ntype;
|
|
atom->radius[m] = radtmp;
|
|
atom->rmass[m] = 4.0*MY_PI/3.0 * radtmp*radtmp*radtmp * denstmp;
|
|
atom->mask[m] = 1 | groupbit;
|
|
atom->v[m][0] = vxtmp;
|
|
atom->v[m][1] = vytmp;
|
|
atom->v[m][2] = vztmp;
|
|
for (j = 0; j < nfix; j++)
|
|
if (fix[j]->create_attribute)
|
|
{
|
|
fix[j]->pre_set_arrays();
|
|
fix[j]->set_arrays(m);
|
|
}
|
|
}
|
|
}
|
|
|
|
// reset global natoms
|
|
// set tag # of new particles beyond all previous atoms
|
|
// if global map exists, reset it now instead of waiting for comm
|
|
// since deleting atoms messes up ghosts
|
|
|
|
if (nnear - nprevious > 0) {
|
|
atom->natoms += nnear - nprevious;
|
|
if (atom->tag_enable) {
|
|
atom->tag_extend();
|
|
if (atom->map_style) {
|
|
atom->nghost = 0;
|
|
atom->map_init();
|
|
atom->map_set();
|
|
}
|
|
}
|
|
}
|
|
|
|
// free local memory
|
|
|
|
memory->destroy(xmine);
|
|
memory->destroy(xnear);
|
|
|
|
// next timestep to insert
|
|
|
|
if (ninserted < ninsert) next_reneighbor += nfreq;
|
|
else next_reneighbor = 0;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
check if particle i could overlap with a particle inserted into region
|
|
return 1 if yes, 0 if no
|
|
use maximum diameter for inserted particle
|
|
------------------------------------------------------------------------- */
|
|
|
|
int FixPour::overlap(int i)
|
|
{
|
|
double delta = radius_hi + atom->radius[i];
|
|
double **x = atom->x;
|
|
|
|
if (domain->dimension == 3) {
|
|
if (region_style == 1) {
|
|
if (x[i][0] < xlo-delta || x[i][0] > xhi+delta ||
|
|
x[i][1] < ylo-delta || x[i][1] > yhi+delta ||
|
|
x[i][2] < lo_current-delta || x[i][2] > hi_current+delta) return 0;
|
|
} else {
|
|
if (x[i][2] < lo_current-delta || x[i][2] > hi_current+delta) return 0;
|
|
double delx = x[i][0] - xc;
|
|
double dely = x[i][1] - yc;
|
|
double rsq = delx*delx + dely*dely;
|
|
double r = rc + delta;
|
|
if (rsq > r*r) return 0;
|
|
}
|
|
} else {
|
|
if (x[i][0] < xlo-delta || x[i][0] > xhi+delta ||
|
|
x[i][1] < lo_current-delta || x[i][1] > hi_current+delta) return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixPour::xyz_random(double h, double *coord)
|
|
{
|
|
if (domain->dimension == 3) {
|
|
if (region_style == 1) {
|
|
coord[0] = xlo + random->uniform() * (xhi-xlo);
|
|
coord[1] = ylo + random->uniform() * (yhi-ylo);
|
|
coord[2] = h;
|
|
} else {
|
|
double r1,r2;
|
|
while (1) {
|
|
r1 = random->uniform() - 0.5;
|
|
r2 = random->uniform() - 0.5;
|
|
if (r1*r1 + r2*r2 < 0.25) break;
|
|
}
|
|
coord[0] = xc + 2.0*r1*rc;
|
|
coord[1] = yc + 2.0*r2*rc;
|
|
coord[2] = h;
|
|
}
|
|
} else {
|
|
coord[0] = xlo + random->uniform() * (xhi-xlo);
|
|
coord[1] = h;
|
|
coord[2] = 0.0;
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixPour::reset_dt()
|
|
{
|
|
error->all(FLERR,"Cannot change timestep with fix pour");
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
//NP modified C.K.
|
|
double FixPour::min_rad(int type) const
|
|
{
|
|
if(type != ntype) return 1000.;
|
|
return radius_lo;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
//NP modified C.K.
|
|
double FixPour::max_rad(int type) const
|
|
{
|
|
if(type != ntype) return 0.;
|
|
return radius_hi;
|
|
}
|