Files
LPP/src/dump.py
danielque 597e606bde python 3 compatibility for src/*.py files
move imports to top of files
add from __future__ import
commands module -> subprocesses module
print statement -> print() function
exec statement -> exec() function
xrange -> range
map() -> list(map())
StandardError -> Exception
integer division: / -> //
x.has_key(y) -> y in x
sort(): use functools.cmp_to_key
type(x) is y -> isinstance(x, y)
raw_input -> input
change variable names 'list' to avoid clashes with list class
2023-08-10 13:19:02 +02:00

1277 lines
42 KiB
Python

# Pizza.py toolkit, www.cs.sandia.gov/~sjplimp/pizza.html
# Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
#
# Copyright (2005) Sandia Corporation. Under the terms of Contract
# DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
# certain rights in this software. This software is distributed under
# the GNU General Public License.
# dump tool
# Imports and external programs
import sys, subprocess, re, glob, types
from os import popen
from math import * # any function could be used by set()
import os
import functools
oneline = "Read, write, manipulate dump files and particle attributes"
docstr = """
d = dump("dump.one") read in one or more dump files
d = dump("dump.1 dump.2.gz") can be gzipped
d = dump("dump.*") wildcard expands to multiple files
d = dump("dump.*",0) two args = store filenames, but don't read
incomplete and duplicate snapshots are deleted
if atoms have 5 or 8 columns, assign id,type,x,y,z (ix,iy,iz)
atoms will be unscaled if stored in files as scaled
time = d.next() read next snapshot from dump files
used with 2-argument constructor to allow reading snapshots one-at-a-time
snapshot will be skipped only if another snapshot has same time stamp
return time stamp of snapshot read
return -1 if no snapshots left or last snapshot is incomplete
no column name assignment or unscaling is performed
d.map(1,"id",3,"x") assign names to atom columns (1-N)
not needed if dump file is self-describing
d.tselect.all() select all timesteps
d.tselect.one(N) select only timestep N
d.tselect.none() deselect all timesteps
d.tselect.skip(M) select every Mth step
d.tselect.test("$t >= 100 and $t < 10000") select matching timesteps
d.delete() delete non-selected timesteps
selecting a timestep also selects all atoms in the timestep
skip() and test() only select from currently selected timesteps
test() uses a Python Boolean expression with $t for timestep value
Python comparison syntax: == != < > <= >= and or
d.aselect.all() select all atoms in all steps
d.aselect.all(N) select all atoms in one step
d.aselect.test("$id > 100 and $type == 2") select match atoms in all steps
d.aselect.test("$id > 100 and $type == 2",N) select matching atoms in one step
all() with no args selects atoms from currently selected timesteps
test() with one arg selects atoms from currently selected timesteps
test() sub-selects from currently selected atoms
test() uses a Python Boolean expression with $ for atom attributes
Python comparison syntax: == != < > <= >= and or
$name must end with a space
d.write("file") write selected steps/atoms to dump file
d.write("file",head,app) write selected steps/atoms to dump file
d.scatter("tmp") write selected steps/atoms to multiple files
write() can be specified with 2 additional flags
head = 0/1 for no/yes snapshot header, app = 0/1 for write vs append
scatter() files are given timestep suffix: e.g. tmp.0, tmp.100, etc
d.scale() scale x,y,z to 0-1 for all timesteps
d.scale(100) scale atom coords for timestep N
d.unscale() unscale x,y,z to box size to all timesteps
d.unscale(1000) unscale atom coords for timestep N
d.wrap() wrap x,y,z into periodic box via ix,iy,iz
d.unwrap() unwrap x,y,z out of box via ix,iy,iz
d.owrap("other") wrap x,y,z to same image as another atom
d.sort() sort atoms by atom ID in all selected steps
d.sort("x") sort atoms by column value in all steps
d.sort(1000) sort atoms in timestep N
scale(), unscale(), wrap(), unwrap(), owrap() operate on all steps and atoms
wrap(), unwrap(), owrap() require ix,iy,iz be defined
owrap() requires a column be defined which contains an atom ID
name of that column is the argument to owrap()
x,y,z for each atom is wrapped to same image as the associated atom ID
useful for wrapping all molecule's atoms the same so it is contiguous
m1,m2 = d.minmax("type") find min/max values for a column
d.set("$ke = $vx * $vx + $vy * $vy") set a column to a computed value
d.setv("type",vector) set a column to a vector of values
d.spread("ke",N,"color") 2nd col = N ints spread over 1st col
d.clone(1000,"color") clone timestep N values to other steps
minmax() operates on selected timesteps and atoms
set() operates on selected timesteps and atoms
left hand side column is created if necessary
left-hand side column is unset or unchanged for non-selected atoms
equation is in Python syntax
use $ for column names, $name must end with a space
setv() operates on selected timesteps and atoms
if column label does not exist, column is created
values in vector are assigned sequentially to atoms, so may want to sort()
length of vector must match # of selected atoms
spread() operates on selected timesteps and atoms
min and max are found for 1st specified column across all selected atoms
atom's value is linear mapping (1-N) between min and max
that is stored in 2nd column (created if needed)
useful for creating a color map
clone() operates on selected timesteps and atoms
values at every timestep are set to value at timestep N for that atom ID
useful for propagating a color map
t = d.time() return vector of selected timestep values
fx,fy,... = d.atom(100,"fx","fy",...) return vector(s) for atom ID N
fx,fy,... = d.vecs(1000,"fx","fy",...) return vector(s) for timestep N
atom() returns vectors with one value for each selected timestep
vecs() returns vectors with one value for each selected atom in the timestep
index,time,flag = d.iterator(0/1) loop over dump snapshots
time,box,atoms,bonds,tris,lines = d.viz(index) return list of viz objects
d.atype = "color" set column returned as "type" by viz
d.extra(obj) extract bond/tri/line info from obj
iterator() loops over selected timesteps
iterator() called with arg = 0 first time, with arg = 1 on subsequent calls
index = index within dump object (0 to # of snapshots)
time = timestep value
flag = -1 when iteration is done, 1 otherwise
viz() returns info for selected atoms for specified timestep index
can also call as viz(time,1) and will find index of preceding snapshot
time = timestep value
box = \[xlo,ylo,zlo,xhi,yhi,zhi\]
atoms = id,type,x,y,z for each atom as 2d array
bonds = id,type,x1,y1,z1,x2,y2,z2,t1,t2 for each bond as 2d array
if extra() used to define bonds, else NULL
tris = id,type,x1,y1,z1,x2,y2,z2,x3,y3,z3,nx,ny,nz for each tri as 2d array
if extra() used to define tris, else NULL
lines = id,type,x1,y1,z1,x2,y2,z2 for each line as 2d array
if extra() used to define lines, else NULL
atype is column name viz() will return as atom type (def = "type")
extra() extracts bonds/tris/lines from obj each time viz() is called
obj can be data object for bonds, cdata object for tris and lines,
bdump object for bonds, mdump object for tris, ldump object for lines
"""
# History
# 8/05, Steve Plimpton (SNL): original version
# 12/09, David Hart (SNL): allow use of NumPy or Numeric
# ToDo list
# try to optimize this line in read_snap: words += f.readline().split()
# allow $name in aselect.test() and set() to end with non-space
# should next() snapshot be auto-unscaled ?
# Variables
# flist = list of dump file names
# increment = 1 if reading snapshots one-at-a-time
# nextfile = which file to read from via next()
# eof = ptr into current file for where to read via next()
# scale_original = 0/1/-1 if coords were read in as unscaled/scaled/unknown
# nsnaps = # of snapshots
# nselect = # of selected snapshots
# snaps = list of snapshots
# names = dictionary of column names:
# key = "id", value = column # (0 to M-1)
# tselect = class for time selection
# aselect = class for atom selection
# atype = name of vector used as atom type by viz extract
# bondflag = 0 if no bonds, 1 if they are defined statically, 2 if dynamic
# bondlist = static list of bonds to return w/ viz() for all snapshots
# triflag = 0 if no tris, 1 if they are defined statically, 2 if dynamic
# trilist = static list of tris to return w/ viz() for all snapshots
# lineflag = 0 if no lines, 1 if they are defined statically, 2 if dynamic
# linelist = static list of lines to return w/ viz() for all snapshots
# objextra = object to get bonds,tris,lines from dynamically
# Snap = one snapshot
# time = time stamp
# tselect = 0/1 if this snapshot selected
# natoms = # of atoms
# nselect = # of selected atoms in this snapshot
# aselect[i] = 0/1 for each atom
# xlo,xhi,ylo,yhi,zlo,zhi = box bounds (float)
# atoms[i][j] = 2d array of floats, i = 0 to natoms-1, j = 0 to ncols-1
try:
import numpy as np
oldnumeric = False
except:
import Numeric as np
oldnumeric = True
try: from DEFAULTS import PIZZA_GUNZIP
except: PIZZA_GUNZIP = "gunzip"
# Class definition
class dump:
# --------------------------------------------------------------------
def __init__(self,*input,**kwargs):
self.snaps = []
self.nsnaps = self.nselect = 0
self.names = {}
self.tselect = tselect(self)
self.aselect = aselect(self)
self.atype = "type"
self.bondflag = 0
self.bondlist = []
self.triflag = 0
self.trilist = []
self.lineflag = 0
self.linelist = []
self.multiprocflag = 0
self.fileNums = []
self.objextra = None
outputfl = True
if isinstance(input[0],dict): # multiprocessing code (the [0] comes from the asteriks in the argumentlist)
dictionary = input[0]
# check whether to output or not
if "debugMode" in dictionary: outputfl = dictionary["debugMode"]
if outputfl: print("number of subprocess:", os.getpid())
self.flist = dictionary["filelist"]
self.multiprocflag = 1
self.increment = 0
self.read_all(output=outputfl)
else: # serial code
# flist = list of all dump file names
words = input[0].split()
self.flist = []
for word in words: self.flist += glob.glob(word)
if len(self.flist) == 0 and len(input) == 1:
raise Exception("no dump file specified")
if len(input) == 1:
self.increment = 0
self.read_all(output=outputfl)
else:
self.increment = 1
self.nextfile = 0
self.eof = 0
# --------------------------------------------------------------------
def read_all(self, **kwargs):
# read all snapshots from each file
# test for gzipped files
# check whether to output or not
outputfl = True
if "output" in kwargs: outputfl = kwargs["output"]
if outputfl: print("reading dump file...")
for i, file in enumerate(self.flist):
if file[-3:] == ".gz":
f = popen("%s -c %s" % (PIZZA_GUNZIP,file),'r')
else:
f = open(file)
snap = self.read_snapshot(f)
while snap:
self.snaps.append(snap)
if outputfl: print(snap.time,end=' ')
self.fileNums.append(snap.time)
sys.stdout.flush()
snap = self.read_snapshot(f)
f.close()
if outputfl: print()
# sort entries by timestep, cull duplicates
self.snaps.sort(key = functools.cmp_to_key(self.compare_time))
self.fileNums.sort()
self.cull()
self.nsnaps = len(self.snaps)
#print("read %d snapshots" % self.nsnaps)
# select all timesteps and atoms
self.tselect.all(output=outputfl)
# set default names for atom columns if file wasn't self-describing
if len(self.snaps) == 0:
if outputfl: print("no column assignments made")
elif len(self.names):
if outputfl: print("assigned columns:",self.names2str())
else:
if outputfl: print("no column assignments made")
pass
# if snapshots are scaled, unscale them
if ("x" not in self.names) or \
("y" not in self.names) or \
("z" not in self.names):
print("dump scaling status is unknown")
elif self.nsnaps > 0:
if self.scale_original == 1: self.unscale()
elif self.scale_original == 0:
if outputfl: print("dump is already unscaled")
else:
if outputfl: print("dump scaling status is unknown")
# --------------------------------------------------------------------
# read next snapshot from list of files
def next(self):
if not self.increment: raise Exception("cannot read incrementally")
# read next snapshot in current file using eof as pointer
# if fail, try next file
# if new snapshot time stamp already exists, read next snapshot
while 1:
f = open(self.flist[self.nextfile],'rb')
f.seek(self.eof)
snap = self.read_snapshot(f)
if not snap:
self.nextfile += 1
if self.nextfile == len(self.flist): return -1
f.close()
self.eof = 0
continue
self.eof = f.tell()
f.close()
try:
self.findtime(snap.time)
continue
except: break
# select the new snapshot with all its atoms
self.snaps.append(snap)
self.fileNums.append(snap.time)
snap = self.snaps[self.nsnaps]
snap.tselect = 1
snap.nselect = snap.natoms
for i in range(snap.natoms): snap.aselect[i] = 1
self.nsnaps += 1
self.nselect += 1
return snap.time
# --------------------------------------------------------------------
# read a single snapshot from file f
# return snapshot or 0 if failed
# assign column names if not already done and file is self-describing
# set scale_original to 0/1/-1 for unscaled/scaled/unknown
# convert xs,xu to x
def read_snapshot(self,f):
try:
snap = Snap()
item = f.readline()
snap.time = int(f.readline().split()[0]) # just grab 1st field
item = f.readline()
snap.natoms = int(f.readline())
snap.aselect = np.zeros(snap.natoms)
item = f.readline()
words = f.readline().split()
snap.xlo,snap.xhi = float(words[0]),float(words[1])
words = f.readline().split()
snap.ylo,snap.yhi = float(words[0]),float(words[1])
words = f.readline().split()
snap.zlo,snap.zhi = float(words[0]),float(words[1])
item = f.readline()
if len(self.names) == 0:
self.scale_original = -1
xflag = yflag = zflag = -1
words = item.split()[2:]
if len(words):
for i in range(len(words)):
if words[i] == "x" or words[i] == "xu":
xflag = 0
self.names["x"] = i
elif words[i] == "xs" or words[i] == "xsu":
xflag = 1
self.names["x"] = i
elif words[i] == "y" or words[i] == "yu":
yflag = 0
self.names["y"] = i
elif words[i] == "ys" or words[i] == "ysu":
yflag = 1
self.names["y"] = i
elif words[i] == "z" or words[i] == "zu":
zflag = 0
self.names["z"] = i
elif words[i] == "zs" or words[i] == "zsu":
zflag = 1
self.names["z"] = i
else: self.names[words[i]] = i
if xflag == 0 and yflag == 0 and zflag == 0: self.scale_original = 0
if xflag == 1 and yflag == 1 and zflag == 1: self.scale_original = 1
if snap.natoms:
words = f.readline().split()
ncol = len(words)
for i in range(1,snap.natoms):
words += f.readline().split()
floats = list(map(float,words))
if oldnumeric: atoms = np.zeros((snap.natoms,ncol),np.Float)
else: atoms = np.zeros((snap.natoms,ncol),np.float)
start = 0
stop = ncol
for i in range(snap.natoms):
atoms[i] = floats[start:stop]
start = stop
stop += ncol
else: atoms = None
snap.atoms = atoms
return snap
except:
return 0
# --------------------------------------------------------------------
# map atom column names
def map(self,*pairs):
if len(pairs) % 2 != 0:
raise Exception("dump map() requires pairs of mappings")
for i in range(0,len(pairs),2):
j = i + 1
self.names[pairs[j]] = pairs[i]-1
# --------------------------------------------------------------------
# delete unselected snapshots
def delete(self):
ndel = i = 0
while i < self.nsnaps:
if not self.snaps[i].tselect:
del self.fileNums[i]
del self.snaps[i]
self.nsnaps -= 1
ndel += 1
else: i += 1
print("%d snapshots deleted" % ndel)
print("%d snapshots remaining" % self.nsnaps)
# --------------------------------------------------------------------
# scale coords to 0-1 for all snapshots or just one
def scale(self,*dumplist):
if len(dumplist) == 0:
print("Scaling dump ...")
x = self.names["x"]
y = self.names["y"]
z = self.names["z"]
for snap in self.snaps: self.scale_one(snap,x,y,z)
else:
i = self.findtime(dumplist[0])
x = self.names["x"]
y = self.names["y"]
z = self.names["z"]
self.scale_one(self.snaps[i],x,y,z)
# --------------------------------------------------------------------
def scale_one(self,snap,x,y,z):
xprdinv = 1.0 / (snap.xhi - snap.xlo)
yprdinv = 1.0 / (snap.yhi - snap.ylo)
zprdinv = 1.0 / (snap.zhi - snap.zlo)
atoms = snap.atoms
atoms[:,x] = (atoms[:,x] - snap.xlo) * xprdinv
atoms[:,y] = (atoms[:,y] - snap.ylo) * yprdinv
atoms[:,z] = (atoms[:,z] - snap.zlo) * zprdinv
# --------------------------------------------------------------------
# unscale coords from 0-1 to box size for all snapshots or just one
def unscale(self,*dumplist):
if len(dumplist) == 0:
print("Unscaling dump ...")
x = self.names["x"]
y = self.names["y"]
z = self.names["z"]
for snap in self.snaps: self.unscale_one(snap,x,y,z)
else:
i = self.findtime(dumplist[0])
x = self.names["x"]
y = self.names["y"]
z = self.names["z"]
self.unscale_one(self.snaps[i],x,y,z)
# --------------------------------------------------------------------
def unscale_one(self,snap,x,y,z):
xprd = snap.xhi - snap.xlo
yprd = snap.yhi - snap.ylo
zprd = snap.zhi - snap.zlo
atoms = snap.atoms
atoms[:,x] = snap.xlo + atoms[:,x]*xprd
atoms[:,y] = snap.ylo + atoms[:,y]*yprd
atoms[:,z] = snap.zlo + atoms[:,z]*zprd
# --------------------------------------------------------------------
# wrap coords from outside box to inside
def wrap(self):
print("Wrapping dump ...")
x = self.names["x"]
y = self.names["y"]
z = self.names["z"]
ix = self.names["ix"]
iy = self.names["iy"]
iz = self.names["iz"]
for snap in self.snaps:
xprd = snap.xhi - snap.xlo
yprd = snap.yhi - snap.ylo
zprd = snap.zhi - snap.zlo
atoms = snap.atoms
atoms[:,x] -= atoms[:,ix]*xprd
atoms[:,y] -= atoms[:,iy]*yprd
atoms[:,z] -= atoms[:,iz]*zprd
# --------------------------------------------------------------------
# unwrap coords from inside box to outside
def unwrap(self):
print("Unwrapping dump ...")
x = self.names["x"]
y = self.names["y"]
z = self.names["z"]
ix = self.names["ix"]
iy = self.names["iy"]
iz = self.names["iz"]
for snap in self.snaps:
xprd = snap.xhi - snap.xlo
yprd = snap.yhi - snap.ylo
zprd = snap.zhi - snap.zlo
atoms = snap.atoms
atoms[:,x] += atoms[:,ix]*xprd
atoms[:,y] += atoms[:,iy]*yprd
atoms[:,z] += atoms[:,iz]*zprd
# --------------------------------------------------------------------
# wrap coords to same image as atom ID stored in "other" column
# if dynamic extra lines or triangles defined, owrap them as well
def owrap(self,other):
print("Wrapping to other ...")
id = self.names["id"]
x = self.names["x"]
y = self.names["y"]
z = self.names["z"]
ix = self.names["ix"]
iy = self.names["iy"]
iz = self.names["iz"]
iother = self.names[other]
for snap in self.snaps:
xprd = snap.xhi - snap.xlo
yprd = snap.yhi - snap.ylo
zprd = snap.zhi - snap.zlo
atoms = snap.atoms
ids = {}
for i in range(snap.natoms):
ids[atoms[i][id]] = i
for i in range(snap.natoms):
j = ids[atoms[i][iother]]
atoms[i][x] += (atoms[i][ix]-atoms[j][ix])*xprd
atoms[i][y] += (atoms[i][iy]-atoms[j][iy])*yprd
atoms[i][z] += (atoms[i][iz]-atoms[j][iz])*zprd
# should bonds also be owrapped ?
if self.lineflag == 2 or self.triflag == 2:
self.objextra.owrap(snap.time,xprd,yprd,zprd,ids,atoms,iother,ix,iy,iz)
# --------------------------------------------------------------------
# convert column names assignment to a string, in column order
def names2str(self):
pairs = list(self.names.items())
values = list(self.names.values())
ncol = len(pairs)
str = ""
for i in range(ncol):
if i in values: str += pairs[values.index(i)][0] + ' '
return str
# --------------------------------------------------------------------
# sort atoms by atom ID in all selected timesteps by default
# if arg = string, sort all steps by that column
# if arg = numeric, sort atoms in single step
def sort(self,*tslist, **kwargs):
# check whether to output or not
outputfl = True
if "output" in kwargs: outputfl = kwargs["output"]
if len(tslist) == 0:
if outputfl: print("Sorting selected snapshots ...")
id = self.names["id"]
for snap in self.snaps:
if snap.tselect: self.sort_one(snap,id)
elif isinstance(tslist[0], str):
if outputfl: print("Sorting selected snapshots by %s ..." % tslist[0])
id = self.names[tslist[0]]
for snap in self.snaps:
if snap.tselect: self.sort_one(snap,id)
else:
i = self.findtime(tslist[0])
id = self.names["id"]
self.sort_one(self.snaps[i],id)
# --------------------------------------------------------------------
# sort a single snapshot by ID column
def sort_one(self,snap,id):
atoms = snap.atoms
ids = atoms[:,id]
ordering = np.argsort(ids)
for i in range(len(atoms[0])):
atoms[:,i] = np.take(atoms[:,i],ordering)
# --------------------------------------------------------------------
# write a single dump file from current selection
def write(self,file,header=1,append=0):
if len(self.snaps): namestr = self.names2str()
if not append: f = open(file,"w")
else: f = open(file,"a")
for snap in self.snaps:
if not snap.tselect: continue
print(snap.time, end=' ')
sys.stdout.flush()
if header:
print("ITEM: TIMESTEP", file=f)
print(snap.time, file=f)
print("ITEM: NUMBER OF ATOMS", file=f)
print(snap.nselect, file=f)
print("ITEM: BOX BOUNDS", file=f)
print(snap.xlo,snap.xhi, file=f)
print(snap.ylo,snap.yhi, file=f)
print(snap.zlo,snap.zhi, file=f)
print("ITEM: ATOMS",namestr, file=f)
atoms = snap.atoms
nvalues = len(atoms[0])
for i in range(snap.natoms):
if not snap.aselect[i]: continue
line = ""
for j in range(nvalues):
if (j < 2):
line += str(int(atoms[i][j])) + " "
else:
line += str(atoms[i][j]) + " "
print(line, file=f)
f.close()
print("\n%d snapshots" % self.nselect)
# --------------------------------------------------------------------
# write one dump file per snapshot from current selection
def scatter(self,root):
if len(self.snaps): namestr = self.names2str()
for snap in self.snaps:
if not snap.tselect: continue
print(snap.time, end=' ')
sys.stdout.flush()
file = root + "." + str(snap.time)
f = open(file,"w")
print("ITEM: TIMESTEP", file=f)
print(snap.time, file=f)
print("ITEM: NUMBER OF ATOMS", file=f)
print(snap.nselect, file=f)
print("ITEM: BOX BOUNDS", file=f)
print(snap.xlo,snap.xhi, file=f)
print(snap.ylo,snap.yhi, file=f)
print(snap.zlo,snap.zhi, file=f)
print("ITEM: ATOMS",namestr, file=f)
atoms = snap.atoms
nvalues = len(atoms[0])
for i in range(snap.natoms):
if not snap.aselect[i]: continue
line = ""
for j in range(nvalues):
if (j < 2):
line += str(int(atoms[i][j])) + " "
else:
line += str(atoms[i][j]) + " "
print(line, file=f)
f.close()
print("\n%d snapshots" % self.nselect)
# --------------------------------------------------------------------
# find min/max across all selected snapshots/atoms for a particular column
def minmax(self,colname):
icol = self.names[colname]
min = 1.0e20
max = -min
for snap in self.snaps:
if not snap.tselect: continue
atoms = snap.atoms
for i in range(snap.natoms):
if not snap.aselect[i]: continue
if atoms[i][icol] < min: min = atoms[i][icol]
if atoms[i][icol] > max: max = atoms[i][icol]
return (min,max)
# --------------------------------------------------------------------
# set a column value via an equation for all selected snapshots
def set(self,eq):
print("Setting ...")
pattern = "\$\w*"
eqlist = re.findall(pattern,eq)
lhs = eqlist[0][1:]
if lhs not in self.names:
self.newcolumn(lhs)
for item in eqlist:
name = item[1:]
column = self.names[name]
insert = "snap.atoms[i][%d]" % (column)
eq = eq.replace(item,insert)
ceq = compile(eq,'','single')
for snap in self.snaps:
if not snap.tselect: continue
for i in range(snap.natoms):
if snap.aselect[i]: exec(ceq)
# --------------------------------------------------------------------
# set a column value via an input vec for all selected snapshots/atoms
def setv(self,colname,vec):
print("Setting ...")
if colname not in self.names:
self.newcolumn(colname)
icol = self.names[colname]
for snap in self.snaps:
if not snap.tselect: continue
if snap.nselect != len(vec):
raise Exception("vec length does not match # of selected atoms")
atoms = snap.atoms
m = 0
for i in range(snap.natoms):
if snap.aselect[i]:
atoms[i][icol] = vec[m]
m += 1
# --------------------------------------------------------------------
# clone value in col across selected timesteps for atoms with same ID
def clone(self,nstep,col):
istep = self.findtime(nstep)
icol = self.names[col]
id = self.names["id"]
ids = {}
for i in range(self.snaps[istep].natoms):
ids[self.snaps[istep].atoms[i][id]] = i
for snap in self.snaps:
if not snap.tselect: continue
atoms = snap.atoms
for i in range(snap.natoms):
if not snap.aselect[i]: continue
j = ids[atoms[i][id]]
atoms[i][icol] = self.snaps[istep].atoms[j][icol]
# --------------------------------------------------------------------
# values in old column are spread as ints from 1-N and assigned to new column
def spread(self,old,n,new):
iold = self.names[old]
if new not in self.names: self.newcolumn(new)
inew = self.names[new]
min,max = self.minmax(old)
print("min/max = ",min,max)
gap = max - min
invdelta = n/gap
for snap in self.snaps:
if not snap.tselect: continue
atoms = snap.atoms
for i in range(snap.natoms):
if not snap.aselect[i]: continue
ivalue = int((atoms[i][iold] - min) * invdelta) + 1
if ivalue > n: ivalue = n
if ivalue < 1: ivalue = 1
atoms[i][inew] = ivalue
# --------------------------------------------------------------------
# return vector of selected snapshot time stamps
def time(self):
vec = self.nselect * [0]
i = 0
for snap in self.snaps:
if not snap.tselect: continue
vec[i] = snap.time
i += 1
return vec
# --------------------------------------------------------------------
# extract vector(s) of values for atom ID n at each selected timestep
def atom(self,n,*tslist):
if len(tslist) == 0:
raise Exception("no columns specified")
columns = []
values = []
for name in tslist:
columns.append(self.names[name])
values.append(self.nselect * [0])
ncol = len(columns)
id = self.names["id"]
m = 0
for snap in self.snaps:
if not snap.tselect: continue
atoms = snap.atoms
for i in range(snap.natoms):
if atoms[i][id] == n: break
if atoms[i][id] != n:
raise Exception("could not find atom ID in snapshot")
for j in range(ncol):
values[j][m] = atoms[i][columns[j]]
m += 1
if len(tslist) == 1: return values[0]
else: return values
# --------------------------------------------------------------------
# extract vector(s) of values for selected atoms at chosen timestep
def vecs(self,n,*tslist):
snap = self.snaps[self.findtime(n)]
if len(tslist) == 0:
raise Exception("no columns specified")
columns = []
values = []
for name in tslist:
columns.append(self.names[name])
values.append(snap.nselect * [0])
ncol = len(columns)
m = 0
for i in range(snap.natoms):
if not snap.aselect[i]: continue
for j in range(ncol):
values[j][m] = snap.atoms[i][columns[j]]
m += 1
if len(tslist) == 1: return values[0]
else: return values
# --------------------------------------------------------------------
# add a new column to every snapshot and set value to 0
# set the name of the column to str
def newcolumn(self,str):
ncol = len(self.snaps[0].atoms[0])
self.map(ncol+1,str)
for snap in self.snaps:
atoms = snap.atoms
if oldnumeric: newatoms = np.zeros((snap.natoms,ncol+1),np.Float)
else: newatoms = np.zeros((snap.natoms,ncol+1),np.float)
newatoms[:,0:ncol] = snap.atoms
snap.atoms = newatoms
# --------------------------------------------------------------------
# sort snapshots on time stamp
def compare_time(self,a,b):
if a.time < b.time:
return -1
elif a.time > b.time:
return 1
else:
return 0
# --------------------------------------------------------------------
# delete successive snapshots with duplicate time stamp
def cull(self):
i = 1
while i < len(self.snaps):
if self.snaps[i].time == self.snaps[i-1].time:
del self.snaps[i]
else:
i += 1
# --------------------------------------------------------------------
# iterate over selected snapshots
def iterator(self,flag):
start = 0
if flag: start = self.iterate + 1
for i in range(start,self.nsnaps):
if self.snaps[i].tselect:
self.iterate = i
return i,self.snaps[i].time,1
return 0,0,-1
# --------------------------------------------------------------------
# return list of atoms to viz for snapshot isnap
# if called with flag, then index is timestep, so convert to snapshot index
# augment with bonds, tris, lines if extra() was invoked
def viz(self,index,flag=0):
if not flag: isnap = index
else:
times = self.time()
n = len(times)
i = 0
while i < n:
if times[i] > index: break
i += 1
isnap = i - 1
snap = self.snaps[isnap]
time = snap.time
box = [snap.xlo,snap.ylo,snap.zlo,snap.xhi,snap.yhi,snap.zhi]
id = self.names["id"]
type = self.names[self.atype]
x = self.names["x"]
y = self.names["y"]
z = self.names["z"]
# create atom list needed by viz from id,type,x,y,z
# need Numeric/Numpy mode here
atoms = []
for i in range(snap.natoms):
if not snap.aselect[i]: continue
atom = snap.atoms[i]
atoms.append([atom[id],atom[type],atom[x],atom[y],atom[z]])
# create list of bonds from static or dynamic bond list
# then generate bond coords from bondlist
# alist = dictionary of atom IDs for atoms list
# lookup bond atom IDs in alist and grab their coords
# try is used since some atoms may be unselected
# any bond with unselected atom is not added to bonds
# need Numeric/Numpy mode here
bonds = []
if self.bondflag:
if self.bondflag == 1: bondlist = self.bondlist
elif self.bondflag == 2:
tmp1,tmp2,tmp3,bondlist,tmp4,tmp5 = self.objextra.viz(time,1)
alist = {}
for i in range(len(atoms)): alist[int(atoms[i][0])] = i
for bond in bondlist:
try:
i = alist[bond[2]]
j = alist[bond[3]]
atom1 = atoms[i]
atom2 = atoms[j]
bonds.append([bond[0],bond[1],atom1[2],atom1[3],atom1[4],
atom2[2],atom2[3],atom2[4],atom1[1],atom2[1]])
except: continue
# create list of tris from static or dynamic tri list
# if dynamic, could eliminate tris for unselected atoms
tris = []
if self.triflag:
if self.triflag == 1: tris = self.trilist
elif self.triflag == 2:
tmp1,tmp2,tmp3,tmp4,tris,tmp5 = self.objextra.viz(time,1)
# create list of lines from static or dynamic tri list
# if dynamic, could eliminate lines for unselected atoms
lines = []
if self.lineflag:
if self.lineflag == 1: lines = self.linelist
elif self.lineflag == 2:
tmp1,tmp2,tmp3,tmp4,tmp5,lines = self.objextra.viz(time,1)
return time,box,atoms,bonds,tris,lines
# --------------------------------------------------------------------
def findtime(self,n):
for i in range(self.nsnaps):
if self.snaps[i].time == n: return i
raise Exception("no step %d exists" % n)
# --------------------------------------------------------------------
# return maximum box size across all selected snapshots
def maxbox(self):
xlo = ylo = zlo = None
xhi = yhi = zhi = None
for snap in self.snaps:
if not snap.tselect: continue
if xlo == None or snap.xlo < xlo: xlo = snap.xlo
if xhi == None or snap.xhi > xhi: xhi = snap.xhi
if ylo == None or snap.ylo < ylo: ylo = snap.ylo
if yhi == None or snap.yhi > yhi: yhi = snap.yhi
if zlo == None or snap.zlo < zlo: zlo = snap.zlo
if zhi == None or snap.zhi > zhi: zhi = snap.zhi
return [xlo,ylo,zlo,xhi,yhi,zhi]
# --------------------------------------------------------------------
# return maximum atom type across all selected snapshots and atoms
def maxtype(self):
icol = self.names["type"]
max = 0
for snap in self.snaps:
if not snap.tselect: continue
atoms = snap.atoms
for i in range(snap.natoms):
if not snap.aselect[i]: continue
if atoms[i][icol] > max: max = atoms[i][icol]
return int(max)
# --------------------------------------------------------------------
# grab bonds/tris/lines from another object
# if static, grab once, else store obj to grab dynamically
def extra(self,arg):
# data object, grab bonds statically
if isinstance(arg, object) and ".data" in str(arg.__class__):
self.bondflag = 0
try:
bondlist = []
bondlines = arg.sections["Bonds"]
for line in bondlines:
words = line.split()
bondlist.append([int(words[0]),int(words[1]),
int(words[2]),int(words[3])])
if bondlist:
self.bondflag = 1
self.bondlist = bondlist
except:
raise Exception("could not extract bonds from data object")
# cdata object, grab tris and lines statically
elif isinstance(arg, object) and ".cdata" in str(arg.__class__):
self.triflag = self.lineflag = 0
try:
tmp,tmp,tmp,tmp,tris,lines = arg.viz(0)
if tris:
self.triflag = 1
self.trilist = tris
if lines:
self.lineflag = 1
self.linelist = lines
except:
raise Exception("could not extract tris/lines from cdata object")
# mdump object, grab tris dynamically
elif isinstance(arg, object) and ".mdump" in str(arg.__class__):
self.triflag = 2
self.objextra = arg
# bdump object, grab bonds dynamically
elif isinstance(arg, object) and ".bdump" in str(arg.__class__):
self.bondflag = 2
self.objextra = arg
# ldump object, grab tris dynamically
elif isinstance(arg, object) and ".ldump" in str(arg.__class__):
self.lineflag = 2
self.objextra = arg
# tdump object, grab tris dynamically
elif isinstance(arg, object) and ".tdump" in str(arg.__class__):
self.triflag = 2
self.objextra = arg
else:
raise Exception("unrecognized argument to dump.extra()")
# --------------------------------------------------------------------
def compare_atom(self,a,b):
if a[0] < b[0]:
return -1
elif a[0] > b[0]:
return 1
else:
return 0
# --------------------------------------------------------------------
# one snapshot
class Snap:
pass
# --------------------------------------------------------------------
# time selection class
class tselect:
def __init__(self,data):
self.data = data
# --------------------------------------------------------------------
def all(self,**kwargs):
# check whether to output or not
outputfl = True
if "output" in kwargs: outputfl = kwargs["output"]
data = self.data
for snap in data.snaps:
snap.tselect = 1
data.nselect = len(data.snaps)
data.aselect.all()
if outputfl: print("%d snapshots selected out of %d" % (data.nselect,data.nsnaps))
# --------------------------------------------------------------------
def one(self,n):
data = self.data
for snap in data.snaps:
snap.tselect = 0
i = data.findtime(n)
data.snaps[i].tselect = 1
data.nselect = 1
data.aselect.all()
print("%d snapshots selected out of %d" % (data.nselect,data.nsnaps))
# --------------------------------------------------------------------
def none(self):
data = self.data
for snap in data.snaps:
snap.tselect = 0
data.nselect = 0
print("%d snapshots selected out of %d" % (data.nselect,data.nsnaps))
# --------------------------------------------------------------------
def skip(self,n):
data = self.data
count = n-1
for snap in data.snaps:
if not snap.tselect: continue
count += 1
if count == n:
count = 0
continue
snap.tselect = 0
data.nselect -= 1
data.aselect.all()
print("%d snapshots selected out of %d" % (data.nselect,data.nsnaps))
# --------------------------------------------------------------------
def test(self,teststr):
data = self.data
snaps = data.snaps
cmd = "flag = " + teststr.replace("$t","snaps[i].time")
ccmd = compile(cmd,'','single')
for i in range(data.nsnaps):
if not snaps[i].tselect: continue
ldict = {'data':data,'snaps':snaps,'i':i}
exec(ccmd,globals(),ldict)
flag = ldict['flag']
if not flag:
snaps[i].tselect = 0
data.nselect -= 1
data.aselect.all()
print("%d snapshots selected out of %d" % (data.nselect,data.nsnaps))
# --------------------------------------------------------------------
# atom selection class
class aselect:
def __init__(self,data):
self.data = data
# --------------------------------------------------------------------
def all(self,*args):
data = self.data
if len(args) == 0: # all selected timesteps
for snap in data.snaps:
if not snap.tselect: continue
for i in range(snap.natoms): snap.aselect[i] = 1
snap.nselect = snap.natoms
else: # one timestep
n = data.findtime(args[0])
snap = data.snaps[n]
for i in range(snap.natoms): snap.aselect[i] = 1
snap.nselect = snap.natoms
# --------------------------------------------------------------------
def test(self,teststr,*args):
data = self.data
# replace all $var with snap.atoms references and compile test string
pattern = "\$\w*"
testlist = re.findall(pattern,teststr)
for item in testlist:
name = item[1:]
column = data.names[name]
insert = "snap.atoms[i][%d]" % column
teststr = teststr.replace(item,insert)
cmd = "flag = " + teststr
ccmd = compile(cmd,'','single')
if len(args) == 0: # all selected timesteps
for snap in data.snaps:
if not snap.tselect: continue
for i in range(snap.natoms):
if not snap.aselect[i]: continue
ldict = {'snap':snap,'i':i}
exec(ccmd,globals(),ldict)
flag = ldict['flag']
if not flag:
snap.aselect[i] = 0
snap.nselect -= 1
for i in range(data.nsnaps):
if data.snaps[i].tselect:
print("%d atoms of %d selected in first step %d" % \
(data.snaps[i].nselect,data.snaps[i].natoms,data.snaps[i].time))
break
for i in range(data.nsnaps-1,-1,-1):
if data.snaps[i].tselect:
print("%d atoms of %d selected in last step %d" % \
(data.snaps[i].nselect,data.snaps[i].natoms,data.snaps[i].time))
break
else: # one timestep
n = data.findtime(args[0])
snap = data.snaps[n]
for i in range(snap.natoms):
if not snap.aselect[i]: continue
ldict = {'snap':snap,'i':i}
exec(ccmd,globals(),ldict)
flag = ldict['flag']
if not flag:
snap.aselect[i] = 0
snap.nselect -= 1