lagrangian: Support meshToMesh mapping

Lagrangian is now compatible with the meshToMesh topology changer. If a
cloud is being simulated and this topology changer is active, then the
cloud data will be automatically mapped between the specified sequence
of meshes in the same way as the finite volume data. This works both for
serial and parallel simulations.

In addition, mapFieldsPar now also supports mapping of Lagrangian data
when run in parallel.
This commit is contained in:
Will Bainbridge
2022-10-11 08:09:25 +01:00
parent 9e9ab2204c
commit 03b0619ee1
70 changed files with 4079 additions and 4013 deletions

View File

@ -0,0 +1,423 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2022 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "meshToMesh0.H"
#include "volFields.H"
#include "interpolationCellPoint.H"
#include "SubField.H"
#include "mixedFvPatchField.H"
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template<class Type>
void Foam::meshToMesh0::mapField
(
Field<Type>& toF,
const Field<Type>& fromVf,
const labelList& adr
) const
{
// Direct mapping of nearest-cell values
forAll(toF, celli)
{
if (adr[celli] != -1)
{
toF[celli] = fromVf[adr[celli]];
}
}
// toF.map(fromVf, adr);
}
template<class Type>
void Foam::meshToMesh0::interpolateField
(
Field<Type>& toF,
const GeometricField<Type, fvPatchField, volMesh>& fromVf,
const labelListList& adr,
const scalarListList& weights
) const
{
// Inverse volume weighted interpolation
forAll(toF, celli)
{
const labelList& overlapCells = adr[celli];
const scalarList& w = weights[celli];
Type f = Zero;
forAll(overlapCells, i)
{
label fromCelli = overlapCells[i];
f += fromVf[fromCelli]*w[i];
toF[celli] = f;
}
}
}
template<class Type>
void Foam::meshToMesh0::interpolateField
(
Field<Type>& toF,
const GeometricField<Type, fvPatchField, volMesh>& fromVf,
const labelList& adr,
const scalarListList& weights
) const
{
// Inverse distance weighted interpolation
// get reference to cellCells
const labelListList& cc = fromMesh_.cellCells();
forAll(toF, celli)
{
if (adr[celli] != -1)
{
const labelList& neighbours = cc[adr[celli]];
const scalarList& w = weights[celli];
Type f = fromVf[adr[celli]]*w[0];
for (label ni = 1; ni < w.size(); ni++)
{
f += fromVf[neighbours[ni - 1]]*w[ni];
}
toF[celli] = f;
}
}
}
template<class Type>
void Foam::meshToMesh0::interpolateField
(
Field<Type>& toF,
const GeometricField<Type, fvPatchField, volMesh>& fromVf,
const labelList& adr,
const vectorField& centres
) const
{
// Cell-Point interpolation
interpolationCellPoint<Type> interpolator(fromVf);
forAll(toF, celli)
{
if (adr[celli] != -1)
{
toF[celli] = interpolator.interpolate(centres[celli], adr[celli]);
}
}
}
template<class Type>
void Foam::meshToMesh0::interpolateInternalField
(
Field<Type>& toF,
const GeometricField<Type, fvPatchField, volMesh>& fromVf,
meshToMesh0::order ord
) const
{
if (fromVf.mesh() != fromMesh_)
{
FatalErrorInFunction
<< "the argument field does not correspond to the right mesh. "
<< "Field size: " << fromVf.size()
<< " mesh size: " << fromMesh_.nCells()
<< exit(FatalError);
}
if (toF.size() != toMesh_.nCells())
{
FatalErrorInFunction
<< "the argument field does not correspond to the right mesh. "
<< "Field size: " << toF.size()
<< " mesh size: " << toMesh_.nCells()
<< exit(FatalError);
}
switch(ord)
{
case MAP:
mapField(toF, fromVf, cellAddressing_);
break;
case INTERPOLATE:
{
interpolateField
(
toF,
fromVf,
cellAddressing_,
inverseDistanceWeights()
);
break;
}
case CELL_POINT_INTERPOLATE:
{
interpolateField
(
toF,
fromVf,
cellAddressing_,
toMesh_.cellCentres()
);
break;
}
case CELL_VOLUME_WEIGHT:
{
const labelListList& cellToCell = cellToCellAddressing();
const scalarListList& invVolWeights = inverseVolumeWeights();
interpolateField
(
toF,
fromVf,
cellToCell,
invVolWeights
);
break;
}
default:
FatalErrorInFunction
<< "unknown interpolation scheme " << ord
<< exit(FatalError);
}
}
template<class Type>
void Foam::meshToMesh0::interpolateInternalField
(
Field<Type>& toF,
const tmp<GeometricField<Type, fvPatchField, volMesh>>& tfromVf,
meshToMesh0::order ord
) const
{
interpolateInternalField(toF, tfromVf(), ord);
tfromVf.clear();
}
template<class Type>
void Foam::meshToMesh0::interpolate
(
GeometricField<Type, fvPatchField, volMesh>& toVf,
const GeometricField<Type, fvPatchField, volMesh>& fromVf,
meshToMesh0::order ord
) const
{
interpolateInternalField(toVf, fromVf, ord);
typename GeometricField<Type, fvPatchField, volMesh>::
Boundary& toVfBf = toVf.boundaryFieldRef();
forAll(toMesh_.boundaryMesh(), patchi)
{
const fvPatch& toPatch = toMesh_.boundary()[patchi];
if (cuttingPatches_.found(toPatch.name()))
{
switch(ord)
{
case MAP:
{
mapField
(
toVfBf[patchi],
fromVf,
boundaryAddressing_[patchi]
);
break;
}
case INTERPOLATE:
{
interpolateField
(
toVfBf[patchi],
fromVf,
boundaryAddressing_[patchi],
toPatch.Cf()
);
break;
}
case CELL_POINT_INTERPOLATE:
{
interpolateField
(
toVfBf[patchi],
fromVf,
boundaryAddressing_[patchi],
toPatch.Cf()
);
break;
}
case CELL_VOLUME_WEIGHT:
{
break;
}
default:
FatalErrorInFunction
<< "unknown interpolation scheme " << ord
<< exit(FatalError);
}
if (isA<mixedFvPatchField<Type>>(toVfBf[patchi]))
{
refCast<mixedFvPatchField<Type>>
(
toVfBf[patchi]
).refValue() = toVfBf[patchi];
}
}
else if
(
patchMap_.found(toPatch.name())
&& fromMeshPatches_.found(patchMap_.find(toPatch.name())())
)
{
mapField
(
toVfBf[patchi],
fromVf.boundaryField()
[
fromMeshPatches_.find(patchMap_.find(toPatch.name())())()
],
boundaryAddressing_[patchi]
);
}
}
}
template<class Type>
void Foam::meshToMesh0::interpolate
(
GeometricField<Type, fvPatchField, volMesh>& toVf,
const tmp<GeometricField<Type, fvPatchField, volMesh>>& tfromVf,
meshToMesh0::order ord
) const
{
interpolate(toVf, tfromVf(), ord);
tfromVf.clear();
}
template<class Type>
Foam::tmp<Foam::GeometricField<Type, Foam::fvPatchField, Foam::volMesh>>
Foam::meshToMesh0::interpolate
(
const GeometricField<Type, fvPatchField, volMesh>& fromVf,
meshToMesh0::order ord
) const
{
// Create and map the internal-field values
Field<Type> internalField(toMesh_.nCells());
interpolateInternalField(internalField, fromVf, ord);
// check whether both meshes have got the same number
// of boundary patches
if (fromMesh_.boundary().size() != toMesh_.boundary().size())
{
FatalErrorInFunction
<< "Incompatible meshes: different number of boundaries, "
"only internal field may be interpolated"
<< exit(FatalError);
}
// Create and map the patch field values
PtrList<fvPatchField<Type>> patchFields
(
boundaryAddressing_.size()
);
forAll(boundaryAddressing_, patchi)
{
patchFields.set
(
patchi,
fvPatchField<Type>::New
(
fromVf.boundaryField()[patchi],
toMesh_.boundary()[patchi],
DimensionedField<Type, volMesh>::null(),
patchFieldInterpolator
(
boundaryAddressing_[patchi]
)
)
);
}
// Create the complete field from the pieces
tmp<GeometricField<Type, fvPatchField, volMesh>> ttoF
(
new GeometricField<Type, fvPatchField, volMesh>
(
IOobject
(
"interpolated(" + fromVf.name() + ')',
toMesh_.time().timeName(),
toMesh_,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
toMesh_,
fromVf.dimensions(),
internalField,
patchFields
)
);
return ttoF;
}
template<class Type>
Foam::tmp<Foam::GeometricField<Type, Foam::fvPatchField, Foam::volMesh>>
Foam::meshToMesh0::interpolate
(
const tmp<GeometricField<Type, fvPatchField, volMesh>>& tfromVf,
meshToMesh0::order ord
) const
{
tmp<GeometricField<Type, fvPatchField, volMesh>> tint =
interpolate(tfromVf(), ord);
tfromVf.clear();
return tint;
}
// ************************************************************************* //