ODESolvers: Updated references to APA style

This commit is contained in:
Henry Weller
2016-08-17 10:27:15 +01:00
parent ab205d2e94
commit 1ba4a19d96
10 changed files with 63 additions and 87 deletions

View File

@ -29,18 +29,15 @@ Description
References:
\verbatim
"A variable order Runge-Kutta method for initial value problems
with rapidly varying right-hand sides"
Cash, J.R.,
Karp, A.H.
ACM Transactions on Mathematical Software, vol. 16, 1990, pp. 201222.
Cash, J. R., & Karp, A. H. (1990).
A variable order Runge-Kutta method for initial value problems
with rapidly varying right-hand sides.
ACM Transactions on Mathematical Software (TOMS), 16(3), 201-222.
"Solving Ordinary Differential Equations I: Nonstiff Problems,
second edition",
Hairer, E.,
Nørsett, S.,
Wanner, G.,
Springer-Verlag, Berlin. 1993, ISBN 3-540-56670-8.
Hairer, E., Nørsett, S. P., & Wanner, G. (1993).
Solving Ordinary Differential Equations I: Nonstiff Problems,
second edition.
Springer-Verlag, Berlin.
\endverbatim
SourceFiles

View File

@ -29,18 +29,14 @@ Description
References:
\verbatim
"A family of embedded Runge-Kutta formulae"
Dormand, J. R.,
Prince, P. J.,
Journal of Computational and Applied Mathematics,
6 (1), 1980: pp. 19-26.
Dormand, J. R., & Prince, P. J. (1980).
A family of embedded Runge-Kutta formulae.
Journal of computational and applied mathematics, 6(1), 19-26.
"Solving Ordinary Differential Equations I: Nonstiff Problems,
second edition",
Hairer, E.,
Nørsett, S.,
Wanner, G.,
Springer-Verlag, Berlin. 1993, ISBN 3-540-56670-8.
Hairer, E., Nørsett, S. P., & Wanner, G. (1993).
Solving Ordinary Differential Equations I: Nonstiff Problems,
second edition.
Springer-Verlag, Berlin.
\endverbatim
See also

View File

@ -29,17 +29,15 @@ Description
References:
\verbatim
"Low-order classical Runge-Kutta formulas with step size control
and their application to some heat transfer problems."
Fehlberg, E.,
NASA Technical Report 315, 1969.
Fehlberg, E. (1969).
Low-order classical Runge-Kutta formulas with stepsize control
and their application to some heat transfer problems.
NASA Technical Report 315.
"Solving Ordinary Differential Equations I: Nonstiff Problems,
second edition",
Hairer, E.,
Nørsett, S.,
Wanner, G.,
Springer-Verlag, Berlin. 1993, ISBN 3-540-56670-8.
Hairer, E., Nørsett, S. P., & Wanner, G. (1993).
Solving Ordinary Differential Equations I: Nonstiff Problems,
second edition.
Springer-Verlag, Berlin.
\endverbatim
This method embedds the 4-th order integration step into the 5-th order step

View File

@ -29,13 +29,10 @@ Description
References:
\verbatim
"A second-order Rosenbrock method applied to
photochemical dispersion problems",
J. G. Verwer,
E. J. Spee,
J. G. Blom,
W. Hundsdorfer,
Siam Journal on Scientific Computing 01/1999; 20(4):1456-1480.
Verwer, J. G., Spee, E. J., Blom, J. G., & Hundsdorfer, W. (1999).
A second-order Rosenbrock method applied to
photochemical dispersion problems.
SIAM Journal on Scientific Computing, 20(4), 1456-1480.
\endverbatim
SourceFiles

View File

@ -29,16 +29,11 @@ Description
References:
\verbatim
Sandu et al,
"Benchmarking stiff ODE solvers for atmospheric chemistry problems II
Rosenbrock solvers",
A. Sandu,
J.G. Verwer,
J.G. Blom,
E.J. Spee,
G.R. Carmichael,
F.A. Potra,
Atmospheric Environment, Volume 31, 1997, Issue 20, Pages 3459-3472
Sandu, A., Verwer, J. G., Blom, J. G., Spee, E. J., Carmichael, G. R.,
& Potra, F. A. (1997).
Benchmarking stiff ODE solvers for atmospheric chemistry problems II:
Rosenbrock solvers.
Atmospheric environment, 31(20), 3459-3472.
\endverbatim
SourceFiles

View File

@ -28,19 +28,17 @@ Description
L-stable embedded Rosenbrock ODE solver of order (3)4.
\verbatim
"Solving Ordinary Differential Equations II: Stiff
and Differential-Algebraic Problems, second edition",
Hairer, E.,
Nørsett, S.,
Wanner, G.,
Springer-Verlag, Berlin. 1996.
Hairer, E., Nørsett, S. P., & Wanner, G. (1996).
Solving Ordinary Differential Equations II:
Stiff and Differential-Algebraic Problems, second edition",
Springer-Verlag, Berlin.
\endverbatim
The default constants are from:
\verbatim
"Implementation of Rosenbrock Methods"
Shampine, L. F.,
ACM Transactions on Mathematical Software, vol. 8, 1982, pp. 93113.
Shampine, L. F. (1982).
Implementation of Rosenbrock Methods.
ACM Transactions on Mathematical Software, vol. 8, pp. 93113.
\endverbatim
with which the scheme is more accurate than with the L-Stable coefficients
for small step-size but less stable for large step-size.

View File

@ -25,12 +25,16 @@ Class
Foam::SIBS
Description
Foam::SIBS
A semi-implicit mid-point solver for stiff systems of ordinary differential
equations.
Bader, G. and Deuflhard, P.
"A Semi-Implicit Mid-Point Rule for
Stiff Systems of Ordinary Differential Equations."
Numer. Math. 41, 373-398, 1983.
Reference:
\verbatim
Bader, G., & Deuflhard, P. (1983).
A semi-implicit mid-point rule for stiff systems
of ordinary differential equations.
Numerische Mathematik, 41(3), 373-398.
\endverbatim
SourceFiles
SIMPR.C

View File

@ -29,16 +29,11 @@ Description
References:
\verbatim
Sandu et al,
"Benchmarking stiff ODE solvers for atmospheric chemistry problems II
Rosenbrock solvers",
A. Sandu,
J.G. Verwer,
J.G. Blom,
E.J. Spee,
G.R. Carmichael,
F.A. Potra,
Atmospheric Environment, Volume 31, 1997, Issue 20, Pages 3459-3472
Sandu, A., Verwer, J. G., Blom, J. G., Spee, E. J., Carmichael, G. R.,
& Potra, F. A. (1997).
Benchmarking stiff ODE solvers for atmospheric chemistry problems II:
Rosenbrock solvers.
Atmospheric environment, 31(20), 3459-3472.
\endverbatim
SourceFiles

View File

@ -27,14 +27,12 @@ Class
Description
L-stable, stiffly-accurate embedded Rosenbrock ODE solver of order (3)4.
References:
Reference:
\verbatim
"Solving Ordinary Differential Equations II: Stiff
and Differential-Algebraic Problems, second edition",
Hairer, E.,
Nørsett, S.,
Wanner, G.,
Springer-Verlag, Berlin. 1996.
Hairer, E., Nørsett, S. P., & Wanner, G. (1996).
Solving Ordinary Differential Equations II:
Stiff and Differential-Algebraic Problems, second edition",
Springer-Verlag, Berlin.
\endverbatim
SourceFiles

View File

@ -28,14 +28,12 @@ Description
An extrapolation-algorithm, based on the linearly implicit Euler method
with step size control and order selection.
The implementation is based on the SEULEX algorithm in
Reference:
\verbatim
"Solving Ordinary Differential Equations II: Stiff
and Differential-Algebraic Problems, second edition",
Hairer, E.,
Nørsett, S.,
Wanner, G.,
Springer-Verlag, Berlin. 1996.
Hairer, E., Nørsett, S. P., & Wanner, G. (1996).
Solving Ordinary Differential Equations II:
Stiff and Differential-Algebraic Problems, second edition",
Springer-Verlag, Berlin.
\endverbatim
SourceFiles