reactingMultiphaseEulerFoam::multiphaseSystem: Updated implicitPhasePressure handling to improve stability and allow larger time-steps
This commit is contained in:
@ -2,7 +2,7 @@
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration | Website: https://openfoam.org
|
||||
\\ / A nd | Copyright (C) 2013-2019 OpenFOAM Foundation
|
||||
\\ / A nd | Copyright (C) 2013-2020 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
@ -68,314 +68,6 @@ void Foam::multiphaseSystem::calcAlphas()
|
||||
}
|
||||
|
||||
|
||||
void Foam::multiphaseSystem::solveAlphas
|
||||
(
|
||||
const PtrList<volScalarField>& rAUs,
|
||||
const PtrList<surfaceScalarField>& rAUfs
|
||||
)
|
||||
{
|
||||
forAll(phases(), phasei)
|
||||
{
|
||||
phases()[phasei].correctBoundaryConditions();
|
||||
}
|
||||
|
||||
// Calculate the void fraction
|
||||
volScalarField alphaVoid
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"alphaVoid",
|
||||
mesh_.time().timeName(),
|
||||
mesh_
|
||||
),
|
||||
mesh_,
|
||||
dimensionedScalar(dimless, 1)
|
||||
);
|
||||
forAll(stationaryPhases(), stationaryPhasei)
|
||||
{
|
||||
alphaVoid -= stationaryPhases()[stationaryPhasei];
|
||||
}
|
||||
|
||||
// Generate face-alphas
|
||||
PtrList<surfaceScalarField> alphafs(phases().size());
|
||||
forAll(phases(), phasei)
|
||||
{
|
||||
phaseModel& phase = phases()[phasei];
|
||||
alphafs.set
|
||||
(
|
||||
phasei,
|
||||
new surfaceScalarField
|
||||
(
|
||||
IOobject::groupName("alphaf", phase.name()),
|
||||
upwind<scalar>(mesh_, phi_).interpolate(phase)
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
// Create correction fluxes
|
||||
PtrList<surfaceScalarField> alphaPhiCorrs(phases().size());
|
||||
forAll(stationaryPhases(), stationaryPhasei)
|
||||
{
|
||||
phaseModel& phase = stationaryPhases()[stationaryPhasei];
|
||||
|
||||
alphaPhiCorrs.set
|
||||
(
|
||||
phase.index(),
|
||||
new surfaceScalarField
|
||||
(
|
||||
IOobject::groupName("alphaPhiCorr", phase.name()),
|
||||
- upwind<scalar>(mesh_, phi_).flux(phase)
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
PtrList<surfaceScalarField> DbyAs;
|
||||
if (implicitPhasePressure() && (rAUs.size() || rAUfs.size()))
|
||||
{
|
||||
DbyAs = this->DByAfs(rAUs, rAUfs);
|
||||
}
|
||||
|
||||
PtrList<surfaceScalarField> alphaDbyAs(phases().size());
|
||||
|
||||
forAll(movingPhases(), movingPhasei)
|
||||
{
|
||||
phaseModel& phase = movingPhases()[movingPhasei];
|
||||
volScalarField& alpha = phase;
|
||||
|
||||
alphaPhiCorrs.set
|
||||
(
|
||||
phase.index(),
|
||||
new surfaceScalarField
|
||||
(
|
||||
IOobject::groupName("alphaPhiCorr", phase.name()),
|
||||
fvc::flux(phi_, alpha, "div(phi," + alpha.name() + ')')
|
||||
)
|
||||
);
|
||||
|
||||
surfaceScalarField& alphaPhiCorr = alphaPhiCorrs[phase.index()];
|
||||
|
||||
forAll(phases(), phasei)
|
||||
{
|
||||
phaseModel& phase2 = phases()[phasei];
|
||||
volScalarField& alpha2 = phase2;
|
||||
|
||||
if (&phase2 == &phase) continue;
|
||||
|
||||
surfaceScalarField phir(phase.phi() - phase2.phi());
|
||||
|
||||
cAlphaTable::const_iterator cAlpha
|
||||
(
|
||||
cAlphas_.find(phasePairKey(phase.name(), phase2.name()))
|
||||
);
|
||||
|
||||
if (cAlpha != cAlphas_.end())
|
||||
{
|
||||
surfaceScalarField phic
|
||||
(
|
||||
(mag(phi_) + mag(phir))/mesh_.magSf()
|
||||
);
|
||||
|
||||
phir += min(cAlpha()*phic, max(phic))*nHatf(alpha, alpha2);
|
||||
}
|
||||
|
||||
word phirScheme
|
||||
(
|
||||
"div(phir," + alpha2.name() + ',' + alpha.name() + ')'
|
||||
);
|
||||
|
||||
alphaPhiCorr += fvc::flux
|
||||
(
|
||||
-fvc::flux(-phir, alpha2, phirScheme),
|
||||
alpha,
|
||||
phirScheme
|
||||
);
|
||||
}
|
||||
|
||||
if (implicitPhasePressure() && (rAUs.size() || rAUfs.size()))
|
||||
{
|
||||
alphaDbyAs.set
|
||||
(
|
||||
phase.index(),
|
||||
fvc::interpolate(max(alpha, scalar(0)))
|
||||
*fvc::interpolate(max(1 - alpha, scalar(0)))
|
||||
*DbyAs[phase.index()]
|
||||
);
|
||||
|
||||
alphaPhiCorr +=
|
||||
alphaDbyAs[phase.index()]
|
||||
*fvc::snGrad(alpha, "bounded")*mesh_.magSf();
|
||||
}
|
||||
|
||||
phase.correctInflowOutflow(alphaPhiCorr);
|
||||
|
||||
MULES::limit
|
||||
(
|
||||
geometricOneField(),
|
||||
alpha,
|
||||
phi_,
|
||||
alphaPhiCorr,
|
||||
zeroField(),
|
||||
zeroField(),
|
||||
min(alphaVoid.primitiveField(), phase.alphaMax())(),
|
||||
zeroField(),
|
||||
true
|
||||
);
|
||||
}
|
||||
|
||||
// Limit the flux sums, fixing those of the stationary phases
|
||||
labelHashSet fixedAlphaPhiCorrs;
|
||||
forAll(stationaryPhases(), stationaryPhasei)
|
||||
{
|
||||
fixedAlphaPhiCorrs.insert(stationaryPhases()[stationaryPhasei].index());
|
||||
}
|
||||
MULES::limitSum(alphafs, alphaPhiCorrs, fixedAlphaPhiCorrs);
|
||||
|
||||
// Solve for the moving phase alphas
|
||||
forAll(movingPhases(), movingPhasei)
|
||||
{
|
||||
phaseModel& phase = movingPhases()[movingPhasei];
|
||||
volScalarField& alpha = phase;
|
||||
|
||||
surfaceScalarField& alphaPhi = alphaPhiCorrs[phase.index()];
|
||||
alphaPhi += upwind<scalar>(mesh_, phi_).flux(phase);
|
||||
phase.correctInflowOutflow(alphaPhi);
|
||||
|
||||
volScalarField::Internal Sp
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"Sp",
|
||||
mesh_.time().timeName(),
|
||||
mesh_
|
||||
),
|
||||
mesh_,
|
||||
dimensionedScalar(dimless/dimTime, 0)
|
||||
);
|
||||
|
||||
volScalarField::Internal Su
|
||||
(
|
||||
"Su",
|
||||
min(alpha, scalar(1))*fvc::div(fvc::absolute(phi_, phase.U()))
|
||||
);
|
||||
|
||||
if (phase.divU().valid())
|
||||
{
|
||||
const scalarField& dgdt = phase.divU()();
|
||||
|
||||
forAll(dgdt, celli)
|
||||
{
|
||||
if (dgdt[celli] > 0.0)
|
||||
{
|
||||
Sp[celli] -= dgdt[celli];
|
||||
Su[celli] += dgdt[celli];
|
||||
}
|
||||
else if (dgdt[celli] < 0.0)
|
||||
{
|
||||
Sp[celli] +=
|
||||
dgdt[celli]
|
||||
*(1 - alpha[celli])/max(alpha[celli], 1e-4);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
forAll(phases(), phasej)
|
||||
{
|
||||
const phaseModel& phase2 = phases()[phasej];
|
||||
const volScalarField& alpha2 = phase2;
|
||||
|
||||
if (&phase2 == &phase) continue;
|
||||
|
||||
if (phase2.divU().valid())
|
||||
{
|
||||
const scalarField& dgdt2 = phase2.divU()();
|
||||
|
||||
forAll(dgdt2, celli)
|
||||
{
|
||||
if (dgdt2[celli] < 0.0)
|
||||
{
|
||||
Sp[celli] +=
|
||||
dgdt2[celli]
|
||||
*(1 - alpha2[celli])/max(alpha2[celli], 1e-4);
|
||||
|
||||
Su[celli] -=
|
||||
dgdt2[celli]
|
||||
*alpha[celli]/max(alpha2[celli], 1e-4);
|
||||
}
|
||||
else if (dgdt2[celli] > 0.0)
|
||||
{
|
||||
Sp[celli] -= dgdt2[celli];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
MULES::explicitSolve
|
||||
(
|
||||
geometricOneField(),
|
||||
alpha,
|
||||
alphaPhi,
|
||||
Sp,
|
||||
Su
|
||||
);
|
||||
|
||||
phase.alphaPhiRef() = alphaPhi;
|
||||
|
||||
if (alphaDbyAs.set(phase.index()))
|
||||
{
|
||||
fvScalarMatrix alphaEqn
|
||||
(
|
||||
fvm::ddt(alpha) - fvc::ddt(alpha)
|
||||
- fvm::laplacian(alphaDbyAs[phase.index()], alpha, "bounded")
|
||||
);
|
||||
|
||||
alphaEqn.solve();
|
||||
|
||||
phase.alphaPhiRef() += alphaEqn.flux();
|
||||
}
|
||||
}
|
||||
|
||||
// Report the phase fractions and the phase fraction sum
|
||||
forAll(phases(), phasei)
|
||||
{
|
||||
phaseModel& phase = phases()[phasei];
|
||||
|
||||
Info<< phase.name() << " fraction, min, max = "
|
||||
<< phase.weightedAverage(mesh_.V()).value()
|
||||
<< ' ' << min(phase).value()
|
||||
<< ' ' << max(phase).value()
|
||||
<< endl;
|
||||
}
|
||||
|
||||
volScalarField sumAlphaMoving
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"sumAlphaMoving",
|
||||
mesh_.time().timeName(),
|
||||
mesh_
|
||||
),
|
||||
mesh_,
|
||||
dimensionedScalar(dimless, 0)
|
||||
);
|
||||
forAll(movingPhases(), movingPhasei)
|
||||
{
|
||||
sumAlphaMoving += movingPhases()[movingPhasei];
|
||||
}
|
||||
|
||||
Info<< "Phase-sum volume fraction, min, max = "
|
||||
<< (sumAlphaMoving + 1 - alphaVoid)().weightedAverage(mesh_.V()).value()
|
||||
<< ' ' << min(sumAlphaMoving + 1 - alphaVoid).value()
|
||||
<< ' ' << max(sumAlphaMoving + 1 - alphaVoid).value()
|
||||
<< endl;
|
||||
|
||||
// Correct the sum of the phase fractions to avoid drift
|
||||
forAll(movingPhases(), movingPhasei)
|
||||
{
|
||||
movingPhases()[movingPhasei] *= alphaVoid/sumAlphaMoving;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Foam::tmp<Foam::surfaceVectorField> Foam::multiphaseSystem::nHatfv
|
||||
(
|
||||
const volScalarField& alpha1,
|
||||
@ -660,49 +352,53 @@ void Foam::multiphaseSystem::solve
|
||||
const PtrList<surfaceScalarField>& rAUfs
|
||||
)
|
||||
{
|
||||
const Time& runTime = mesh_.time();
|
||||
|
||||
const dictionary& alphaControls = mesh_.solverDict("alpha");
|
||||
|
||||
label nAlphaSubCycles(alphaControls.lookup<label>("nAlphaSubCycles"));
|
||||
label nAlphaCorr(alphaControls.lookup<label>("nAlphaCorr"));
|
||||
|
||||
bool LTS = fv::localEulerDdt::enabled(mesh_);
|
||||
|
||||
if (nAlphaSubCycles > 1)
|
||||
forAll(phases(), phasei)
|
||||
{
|
||||
tmp<volScalarField> trSubDeltaT;
|
||||
|
||||
if (LTS)
|
||||
{
|
||||
trSubDeltaT =
|
||||
fv::localEulerDdt::localRSubDeltaT(mesh_, nAlphaSubCycles);
|
||||
phases()[phasei].correctBoundaryConditions();
|
||||
}
|
||||
|
||||
List<volScalarField*> alphaPtrs(phases().size());
|
||||
PtrList<surfaceScalarField> alphaPhiSums(phases().size());
|
||||
PtrList<surfaceScalarField> alphaPhiDbyA0s(phases().size());
|
||||
if (implicitPhasePressure() && (rAUs.size() || rAUfs.size()))
|
||||
{
|
||||
const PtrList<surfaceScalarField> DByAfs(this->DByAfs(rAUs, rAUfs));
|
||||
|
||||
forAll(phases(), phasei)
|
||||
{
|
||||
phaseModel& phase = phases()[phasei];
|
||||
volScalarField& alpha = phase;
|
||||
|
||||
alphaPtrs[phasei] = α
|
||||
|
||||
alphaPhiSums.set
|
||||
alphaPhiDbyA0s.set
|
||||
(
|
||||
phasei,
|
||||
new surfaceScalarField
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"phiSum" + alpha.name(),
|
||||
runTime.timeName(),
|
||||
mesh_
|
||||
),
|
||||
mesh_,
|
||||
dimensionedScalar(dimensionSet(0, 3, -1, 0, 0), 0)
|
||||
)
|
||||
phase.index(),
|
||||
DByAfs[phase.index()]
|
||||
*fvc::snGrad(alpha, "bounded")*mesh_.magSf()
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
for (int acorr=0; acorr<nAlphaCorr; acorr++)
|
||||
{
|
||||
tmp<volScalarField> trSubDeltaT;
|
||||
|
||||
if (LTS && nAlphaSubCycles > 1)
|
||||
{
|
||||
trSubDeltaT =
|
||||
fv::localEulerDdt::localRSubDeltaT(mesh_, nAlphaSubCycles);
|
||||
}
|
||||
|
||||
List<volScalarField*> alphaPtrs(phases().size());
|
||||
|
||||
forAll(phases(), phasei)
|
||||
{
|
||||
alphaPtrs[phasei] = &phases()[phasei];
|
||||
}
|
||||
|
||||
for
|
||||
(
|
||||
@ -714,31 +410,334 @@ void Foam::multiphaseSystem::solve
|
||||
!(++alphaSubCycle).end();
|
||||
)
|
||||
{
|
||||
solveAlphas(rAUs, rAUfs);
|
||||
|
||||
forAll(phases(), phasei)
|
||||
// Calculate the void fraction
|
||||
volScalarField alphaVoid
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"alphaVoid",
|
||||
mesh_.time().timeName(),
|
||||
mesh_
|
||||
),
|
||||
mesh_,
|
||||
dimensionedScalar(dimless, 1)
|
||||
);
|
||||
forAll(stationaryPhases(), stationaryPhasei)
|
||||
{
|
||||
alphaPhiSums[phasei] += phases()[phasei].alphaPhi();
|
||||
}
|
||||
alphaVoid -= stationaryPhases()[stationaryPhasei];
|
||||
}
|
||||
|
||||
// Generate face-alphas
|
||||
PtrList<surfaceScalarField> alphafs(phases().size());
|
||||
forAll(phases(), phasei)
|
||||
{
|
||||
phaseModel& phase = phases()[phasei];
|
||||
if (phase.stationary()) continue;
|
||||
|
||||
phase.alphaPhiRef() = alphaPhiSums[phasei]/nAlphaSubCycles;
|
||||
alphafs.set
|
||||
(
|
||||
phasei,
|
||||
new surfaceScalarField
|
||||
(
|
||||
IOobject::groupName("alphaf", phase.name()),
|
||||
upwind<scalar>(mesh_, phi_).interpolate(phase)
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
// Create correction fluxes
|
||||
PtrList<surfaceScalarField> alphaPhiCorrs(phases().size());
|
||||
forAll(stationaryPhases(), stationaryPhasei)
|
||||
{
|
||||
phaseModel& phase = stationaryPhases()[stationaryPhasei];
|
||||
|
||||
alphaPhiCorrs.set
|
||||
(
|
||||
phase.index(),
|
||||
new surfaceScalarField
|
||||
(
|
||||
IOobject::groupName("alphaPhiCorr", phase.name()),
|
||||
- upwind<scalar>(mesh_, phi_).flux(phase)
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
forAll(movingPhases(), movingPhasei)
|
||||
{
|
||||
phaseModel& phase = movingPhases()[movingPhasei];
|
||||
volScalarField& alpha = phase;
|
||||
|
||||
alphaPhiCorrs.set
|
||||
(
|
||||
phase.index(),
|
||||
new surfaceScalarField
|
||||
(
|
||||
IOobject::groupName("alphaPhiCorr", phase.name()),
|
||||
fvc::flux(phi_, alpha, "div(phi," + alpha.name() + ')')
|
||||
)
|
||||
);
|
||||
|
||||
surfaceScalarField& alphaPhiCorr = alphaPhiCorrs[phase.index()];
|
||||
|
||||
forAll(phases(), phasei)
|
||||
{
|
||||
phaseModel& phase2 = phases()[phasei];
|
||||
volScalarField& alpha2 = phase2;
|
||||
|
||||
if (&phase2 == &phase) continue;
|
||||
|
||||
surfaceScalarField phir(phase.phi() - phase2.phi());
|
||||
|
||||
cAlphaTable::const_iterator cAlpha
|
||||
(
|
||||
cAlphas_.find(phasePairKey(phase.name(), phase2.name()))
|
||||
);
|
||||
|
||||
if (cAlpha != cAlphas_.end())
|
||||
{
|
||||
surfaceScalarField phic
|
||||
(
|
||||
(mag(phi_) + mag(phir))/mesh_.magSf()
|
||||
);
|
||||
|
||||
phir +=
|
||||
min(cAlpha()*phic, max(phic))
|
||||
*nHatf(alpha, alpha2);
|
||||
}
|
||||
|
||||
word phirScheme
|
||||
(
|
||||
"div(phir," + alpha2.name() + ',' + alpha.name() + ')'
|
||||
);
|
||||
|
||||
alphaPhiCorr += fvc::flux
|
||||
(
|
||||
-fvc::flux(-phir, alpha2, phirScheme),
|
||||
alpha,
|
||||
phirScheme
|
||||
);
|
||||
}
|
||||
|
||||
if (alphaPhiDbyA0s.set(phase.index()))
|
||||
{
|
||||
alphaPhiCorr +=
|
||||
fvc::interpolate(max(alpha, scalar(0)))
|
||||
*fvc::interpolate(max(1 - alpha, scalar(0)))
|
||||
*alphaPhiDbyA0s[phase.index()];
|
||||
}
|
||||
|
||||
phase.correctInflowOutflow(alphaPhiCorr);
|
||||
|
||||
MULES::limit
|
||||
(
|
||||
geometricOneField(),
|
||||
alpha,
|
||||
phi_,
|
||||
alphaPhiCorr,
|
||||
zeroField(),
|
||||
zeroField(),
|
||||
min(alphaVoid.primitiveField(), phase.alphaMax())(),
|
||||
zeroField(),
|
||||
true
|
||||
);
|
||||
}
|
||||
|
||||
// Limit the flux sums, fixing those of the stationary phases
|
||||
labelHashSet fixedAlphaPhiCorrs;
|
||||
forAll(stationaryPhases(), stationaryPhasei)
|
||||
{
|
||||
fixedAlphaPhiCorrs.insert
|
||||
(
|
||||
stationaryPhases()[stationaryPhasei].index()
|
||||
);
|
||||
}
|
||||
MULES::limitSum(alphafs, alphaPhiCorrs, fixedAlphaPhiCorrs);
|
||||
|
||||
// Solve for the moving phase alphas
|
||||
forAll(movingPhases(), movingPhasei)
|
||||
{
|
||||
phaseModel& phase = movingPhases()[movingPhasei];
|
||||
volScalarField& alpha = phase;
|
||||
|
||||
surfaceScalarField& alphaPhi = alphaPhiCorrs[phase.index()];
|
||||
alphaPhi += upwind<scalar>(mesh_, phi_).flux(phase);
|
||||
phase.correctInflowOutflow(alphaPhi);
|
||||
|
||||
volScalarField::Internal Sp
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"Sp",
|
||||
mesh_.time().timeName(),
|
||||
mesh_
|
||||
),
|
||||
mesh_,
|
||||
dimensionedScalar(dimless/dimTime, 0)
|
||||
);
|
||||
|
||||
volScalarField::Internal Su
|
||||
(
|
||||
"Su",
|
||||
min(alpha, scalar(1))
|
||||
*fvc::div(fvc::absolute(phi_, phase.U()))
|
||||
);
|
||||
|
||||
if (phase.divU().valid())
|
||||
{
|
||||
const scalarField& dgdt = phase.divU()();
|
||||
|
||||
forAll(dgdt, celli)
|
||||
{
|
||||
if (dgdt[celli] > 0.0)
|
||||
{
|
||||
Sp[celli] -= dgdt[celli];
|
||||
Su[celli] += dgdt[celli];
|
||||
}
|
||||
else if (dgdt[celli] < 0.0)
|
||||
{
|
||||
Sp[celli] +=
|
||||
dgdt[celli]
|
||||
*(1 - alpha[celli])/max(alpha[celli], 1e-4);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
forAll(phases(), phasej)
|
||||
{
|
||||
const phaseModel& phase2 = phases()[phasej];
|
||||
const volScalarField& alpha2 = phase2;
|
||||
|
||||
if (&phase2 == &phase) continue;
|
||||
|
||||
if (phase2.divU().valid())
|
||||
{
|
||||
const scalarField& dgdt2 = phase2.divU()();
|
||||
|
||||
forAll(dgdt2, celli)
|
||||
{
|
||||
if (dgdt2[celli] < 0.0)
|
||||
{
|
||||
Sp[celli] +=
|
||||
dgdt2[celli]
|
||||
*(1 - alpha2[celli])
|
||||
/max(alpha2[celli], 1e-4);
|
||||
|
||||
Su[celli] -=
|
||||
dgdt2[celli]
|
||||
*alpha[celli]/max(alpha2[celli], 1e-4);
|
||||
}
|
||||
else if (dgdt2[celli] > 0.0)
|
||||
{
|
||||
Sp[celli] -= dgdt2[celli];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
MULES::explicitSolve
|
||||
(
|
||||
geometricOneField(),
|
||||
alpha,
|
||||
alphaPhi,
|
||||
Sp,
|
||||
Su
|
||||
);
|
||||
|
||||
if (alphaSubCycle.index() == 1)
|
||||
{
|
||||
phase.alphaPhiRef() = alphaPhi;
|
||||
}
|
||||
else
|
||||
{
|
||||
solveAlphas(rAUs, rAUfs);
|
||||
phase.alphaPhiRef() += alphaPhi;
|
||||
}
|
||||
}
|
||||
|
||||
if (implicitPhasePressure() && (rAUs.size() || rAUfs.size()))
|
||||
{
|
||||
const PtrList<surfaceScalarField> DByAfs
|
||||
(
|
||||
this->DByAfs(rAUs, rAUfs)
|
||||
);
|
||||
|
||||
forAll(phases(), phasei)
|
||||
{
|
||||
phaseModel& phase = phases()[phasei];
|
||||
if (phase.stationary()) continue;
|
||||
volScalarField& alpha = phase;
|
||||
|
||||
const surfaceScalarField alphaDbyA
|
||||
(
|
||||
fvc::interpolate(max(alpha, scalar(0)))
|
||||
*fvc::interpolate(max(1 - alpha, scalar(0)))
|
||||
*DByAfs[phase.index()]
|
||||
);
|
||||
|
||||
fvScalarMatrix alphaEqn
|
||||
(
|
||||
fvm::ddt(alpha) - fvc::ddt(alpha)
|
||||
- fvm::laplacian(alphaDbyA, alpha, "bounded")
|
||||
);
|
||||
|
||||
alphaEqn.solve();
|
||||
|
||||
phase.alphaPhiRef() += alphaEqn.flux();
|
||||
}
|
||||
}
|
||||
|
||||
// Report the phase fractions and the phase fraction sum
|
||||
forAll(phases(), phasei)
|
||||
{
|
||||
phaseModel& phase = phases()[phasei];
|
||||
|
||||
Info<< phase.name() << " fraction, min, max = "
|
||||
<< phase.weightedAverage(mesh_.V()).value()
|
||||
<< ' ' << min(phase).value()
|
||||
<< ' ' << max(phase).value()
|
||||
<< endl;
|
||||
}
|
||||
|
||||
volScalarField sumAlphaMoving
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"sumAlphaMoving",
|
||||
mesh_.time().timeName(),
|
||||
mesh_
|
||||
),
|
||||
mesh_,
|
||||
dimensionedScalar(dimless, 0)
|
||||
);
|
||||
forAll(movingPhases(), movingPhasei)
|
||||
{
|
||||
sumAlphaMoving += movingPhases()[movingPhasei];
|
||||
}
|
||||
|
||||
Info<< "Phase-sum volume fraction, min, max = "
|
||||
<< (sumAlphaMoving + 1 - alphaVoid)()
|
||||
.weightedAverage(mesh_.V()).value()
|
||||
<< ' ' << min(sumAlphaMoving + 1 - alphaVoid).value()
|
||||
<< ' ' << max(sumAlphaMoving + 1 - alphaVoid).value()
|
||||
<< endl;
|
||||
|
||||
// Correct the sum of the phase fractions to avoid drift
|
||||
forAll(movingPhases(), movingPhasei)
|
||||
{
|
||||
movingPhases()[movingPhasei] *= alphaVoid/sumAlphaMoving;
|
||||
}
|
||||
}
|
||||
|
||||
if (nAlphaSubCycles > 1)
|
||||
{
|
||||
forAll(movingPhases(), movingPhasei)
|
||||
{
|
||||
phaseModel& phase = movingPhases()[movingPhasei];
|
||||
|
||||
phase.alphaPhiRef() /= nAlphaSubCycles;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
forAll(movingPhases(), movingPhasei)
|
||||
{
|
||||
phaseModel& phase = movingPhases()[movingPhasei];
|
||||
|
||||
phase.alphaRhoPhiRef() =
|
||||
fvc::interpolate(phase.rho())*phase.alphaPhi();
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration | Website: https://openfoam.org
|
||||
\\ / A nd | Copyright (C) 2013-2019 OpenFOAM Foundation
|
||||
\\ / A nd | Copyright (C) 2013-2020 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
@ -81,12 +81,6 @@ private:
|
||||
|
||||
void calcAlphas();
|
||||
|
||||
void solveAlphas
|
||||
(
|
||||
const PtrList<volScalarField>& rAUs,
|
||||
const PtrList<surfaceScalarField>& rAUfs
|
||||
);
|
||||
|
||||
tmp<surfaceVectorField> nHatfv
|
||||
(
|
||||
const volScalarField& alpha1,
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration | Website: https://openfoam.org
|
||||
\\ / A nd | Copyright (C) 2013-2019 OpenFOAM Foundation
|
||||
\\ / A nd | Copyright (C) 2013-2020 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
@ -122,8 +122,6 @@ void Foam::twoPhaseSystem::solve
|
||||
const PtrList<surfaceScalarField>& rAUfs
|
||||
)
|
||||
{
|
||||
const Time& runTime = mesh_.time();
|
||||
|
||||
volScalarField& alpha1 = phase1_;
|
||||
volScalarField& alpha2 = phase2_;
|
||||
|
||||
@ -189,7 +187,7 @@ void Foam::twoPhaseSystem::solve
|
||||
IOobject
|
||||
(
|
||||
"Sp",
|
||||
runTime.timeName(),
|
||||
mesh_.time().timeName(),
|
||||
mesh_
|
||||
),
|
||||
mesh_,
|
||||
@ -201,7 +199,7 @@ void Foam::twoPhaseSystem::solve
|
||||
IOobject
|
||||
(
|
||||
"Su",
|
||||
runTime.timeName(),
|
||||
mesh_.time().timeName(),
|
||||
mesh_
|
||||
),
|
||||
// Divergence term is handled explicitly to be
|
||||
|
||||
@ -19,6 +19,7 @@ solvers
|
||||
{
|
||||
"alpha.*"
|
||||
{
|
||||
nAlphaCorr 1;
|
||||
nAlphaSubCycles 2;
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user