Add the OpenFOAM source tree
This commit is contained in:
@ -0,0 +1,3 @@
|
||||
buoyantBoussinesqPimpleFoam.C
|
||||
|
||||
EXE = $(FOAM_APPBIN)/buoyantBoussinesqPimpleFoam
|
||||
@ -0,0 +1,21 @@
|
||||
EXE_INC = \
|
||||
-I../buoyantBoussinesqSimpleFoam \
|
||||
-I$(LIB_SRC)/sampling/lnInclude \
|
||||
-I$(LIB_SRC)/meshTools/lnInclude \
|
||||
-I$(LIB_SRC)/fvOptions/lnInclude \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude \
|
||||
-I$(LIB_SRC)/turbulenceModels \
|
||||
-I$(LIB_SRC)/turbulenceModels/incompressible/RAS/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels \
|
||||
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
|
||||
-I$(LIB_SRC)/thermophysicalModels/radiationModels/lnInclude
|
||||
|
||||
EXE_LIBS = \
|
||||
-lfiniteVolume \
|
||||
-lfvOptions \
|
||||
-lsampling \
|
||||
-lmeshTools \
|
||||
-lincompressibleTurbulenceModel \
|
||||
-lincompressibleRASModels \
|
||||
-lincompressibleTransportModels \
|
||||
-lradiationModels
|
||||
@ -0,0 +1,28 @@
|
||||
{
|
||||
alphat = turbulence->nut()/Prt;
|
||||
alphat.correctBoundaryConditions();
|
||||
|
||||
volScalarField alphaEff("alphaEff", turbulence->nu()/Pr + alphat);
|
||||
|
||||
fvScalarMatrix TEqn
|
||||
(
|
||||
fvm::ddt(T)
|
||||
+ fvm::div(phi, T)
|
||||
- fvm::laplacian(alphaEff, T)
|
||||
==
|
||||
radiation->ST(rhoCpRef, T)
|
||||
+ fvOptions(T)
|
||||
);
|
||||
|
||||
TEqn.relax();
|
||||
|
||||
fvOptions.constrain(TEqn);
|
||||
|
||||
TEqn.solve();
|
||||
|
||||
radiation->correct();
|
||||
|
||||
fvOptions.correct(T);
|
||||
|
||||
rhok = 1.0 - beta*(T - TRef);
|
||||
}
|
||||
@ -0,0 +1,32 @@
|
||||
// Solve the momentum equation
|
||||
|
||||
fvVectorMatrix UEqn
|
||||
(
|
||||
fvm::ddt(U)
|
||||
+ fvm::div(phi, U)
|
||||
+ turbulence->divDevReff(U)
|
||||
==
|
||||
fvOptions(U)
|
||||
);
|
||||
|
||||
UEqn.relax();
|
||||
|
||||
fvOptions.constrain(UEqn);
|
||||
|
||||
if (pimple.momentumPredictor())
|
||||
{
|
||||
solve
|
||||
(
|
||||
UEqn
|
||||
==
|
||||
fvc::reconstruct
|
||||
(
|
||||
(
|
||||
- ghf*fvc::snGrad(rhok)
|
||||
- fvc::snGrad(p_rgh)
|
||||
)*mesh.magSf()
|
||||
)
|
||||
);
|
||||
|
||||
fvOptions.correct(U);
|
||||
}
|
||||
@ -0,0 +1,117 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Application
|
||||
buoyantBoussinesqPimpleFoam
|
||||
|
||||
Description
|
||||
Transient solver for buoyant, turbulent flow of incompressible fluids
|
||||
|
||||
Uses the Boussinesq approximation:
|
||||
\f[
|
||||
rho_{k} = 1 - beta(T - T_{ref})
|
||||
\f]
|
||||
|
||||
where:
|
||||
\f$ rho_{k} \f$ = the effective (driving) kinematic density
|
||||
beta = thermal expansion coefficient [1/K]
|
||||
T = temperature [K]
|
||||
\f$ T_{ref} \f$ = reference temperature [K]
|
||||
|
||||
Valid when:
|
||||
\f[
|
||||
\frac{beta(T - T_{ref})}{rho_{ref}} << 1
|
||||
\f]
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "singlePhaseTransportModel.H"
|
||||
#include "RASModel.H"
|
||||
#include "radiationModel.H"
|
||||
#include "fvIOoptionList.H"
|
||||
#include "pimpleControl.H"
|
||||
#include "fixedFluxPressureFvPatchScalarField.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
#include "setRootCase.H"
|
||||
#include "createTime.H"
|
||||
#include "createMesh.H"
|
||||
#include "readGravitationalAcceleration.H"
|
||||
#include "createFields.H"
|
||||
#include "createIncompressibleRadiationModel.H"
|
||||
#include "createFvOptions.H"
|
||||
#include "initContinuityErrs.H"
|
||||
#include "readTimeControls.H"
|
||||
#include "CourantNo.H"
|
||||
#include "setInitialDeltaT.H"
|
||||
|
||||
pimpleControl pimple(mesh);
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
Info<< "\nStarting time loop\n" << endl;
|
||||
|
||||
while (runTime.loop())
|
||||
{
|
||||
Info<< "Time = " << runTime.timeName() << nl << endl;
|
||||
|
||||
#include "readTimeControls.H"
|
||||
#include "CourantNo.H"
|
||||
#include "setDeltaT.H"
|
||||
|
||||
// --- Pressure-velocity PIMPLE corrector loop
|
||||
while (pimple.loop())
|
||||
{
|
||||
#include "UEqn.H"
|
||||
#include "TEqn.H"
|
||||
|
||||
// --- Pressure corrector loop
|
||||
while (pimple.correct())
|
||||
{
|
||||
#include "pEqn.H"
|
||||
}
|
||||
|
||||
if (pimple.turbCorr())
|
||||
{
|
||||
turbulence->correct();
|
||||
}
|
||||
}
|
||||
|
||||
runTime.write();
|
||||
|
||||
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
||||
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
||||
<< nl << endl;
|
||||
}
|
||||
|
||||
Info<< "End\n" << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -0,0 +1,118 @@
|
||||
Info<< "Reading thermophysical properties\n" << endl;
|
||||
|
||||
Info<< "Reading field T\n" << endl;
|
||||
volScalarField T
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"T",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
Info<< "Reading field p_rgh\n" << endl;
|
||||
volScalarField p_rgh
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p_rgh",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
Info<< "Reading field U\n" << endl;
|
||||
volVectorField U
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"U",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
#include "createPhi.H"
|
||||
|
||||
#include "readTransportProperties.H"
|
||||
|
||||
Info<< "Creating turbulence model\n" << endl;
|
||||
autoPtr<incompressible::RASModel> turbulence
|
||||
(
|
||||
incompressible::RASModel::New(U, phi, laminarTransport)
|
||||
);
|
||||
|
||||
// Kinematic density for buoyancy force
|
||||
volScalarField rhok
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rhok",
|
||||
runTime.timeName(),
|
||||
mesh
|
||||
),
|
||||
1.0 - beta*(T - TRef)
|
||||
);
|
||||
|
||||
// kinematic turbulent thermal thermal conductivity m2/s
|
||||
Info<< "Reading field alphat\n" << endl;
|
||||
volScalarField alphat
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"alphat",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
Info<< "Calculating field g.h\n" << endl;
|
||||
volScalarField gh("gh", g & mesh.C());
|
||||
surfaceScalarField ghf("ghf", g & mesh.Cf());
|
||||
|
||||
volScalarField p
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
p_rgh + rhok*gh
|
||||
);
|
||||
|
||||
label pRefCell = 0;
|
||||
scalar pRefValue = 0.0;
|
||||
setRefCell
|
||||
(
|
||||
p,
|
||||
p_rgh,
|
||||
mesh.solutionDict().subDict("PIMPLE"),
|
||||
pRefCell,
|
||||
pRefValue
|
||||
);
|
||||
|
||||
if (p_rgh.needReference())
|
||||
{
|
||||
p += dimensionedScalar
|
||||
(
|
||||
"p",
|
||||
p.dimensions(),
|
||||
pRefValue - getRefCellValue(p, pRefCell)
|
||||
);
|
||||
}
|
||||
@ -0,0 +1,71 @@
|
||||
{
|
||||
volScalarField rAU("rAU", 1.0/UEqn.A());
|
||||
surfaceScalarField rAUf("rAUf", fvc::interpolate(rAU));
|
||||
|
||||
volVectorField HbyA("HbyA", U);
|
||||
HbyA = rAU*UEqn.H();
|
||||
|
||||
surfaceScalarField phig(-rAUf*ghf*fvc::snGrad(rhok)*mesh.magSf());
|
||||
|
||||
surfaceScalarField phiHbyA
|
||||
(
|
||||
"phiHbyA",
|
||||
(fvc::interpolate(HbyA) & mesh.Sf())
|
||||
+ rAUf*fvc::ddtCorr(U, phi)
|
||||
+ phig
|
||||
);
|
||||
|
||||
fvOptions.makeRelative(phiHbyA);
|
||||
|
||||
// Update the fixedFluxPressure BCs to ensure flux consistency
|
||||
setSnGrad<fixedFluxPressureFvPatchScalarField>
|
||||
(
|
||||
p_rgh.boundaryField(),
|
||||
(
|
||||
phiHbyA.boundaryField()
|
||||
- fvOptions.relative(mesh.Sf().boundaryField() & U.boundaryField())
|
||||
)/(mesh.magSf().boundaryField()*rAUf.boundaryField())
|
||||
);
|
||||
|
||||
while (pimple.correctNonOrthogonal())
|
||||
{
|
||||
fvScalarMatrix p_rghEqn
|
||||
(
|
||||
fvm::laplacian(rAUf, p_rgh) == fvc::div(phiHbyA)
|
||||
);
|
||||
|
||||
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
|
||||
|
||||
p_rghEqn.solve(mesh.solver(p_rgh.select(pimple.finalInnerIter())));
|
||||
|
||||
if (pimple.finalNonOrthogonalIter())
|
||||
{
|
||||
// Calculate the conservative fluxes
|
||||
phi = phiHbyA - p_rghEqn.flux();
|
||||
|
||||
// Explicitly relax pressure for momentum corrector
|
||||
p_rgh.relax();
|
||||
|
||||
// Correct the momentum source with the pressure gradient flux
|
||||
// calculated from the relaxed pressure
|
||||
U = HbyA + rAU*fvc::reconstruct((phig - p_rghEqn.flux())/rAUf);
|
||||
U.correctBoundaryConditions();
|
||||
fvOptions.correct(U);
|
||||
}
|
||||
}
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
p = p_rgh + rhok*gh;
|
||||
|
||||
if (p_rgh.needReference())
|
||||
{
|
||||
p += dimensionedScalar
|
||||
(
|
||||
"p",
|
||||
p.dimensions(),
|
||||
pRefValue - getRefCellValue(p, pRefCell)
|
||||
);
|
||||
p_rgh = p - rhok*gh;
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,3 @@
|
||||
buoyantBoussinesqSimpleFoam.C
|
||||
|
||||
EXE = $(FOAM_APPBIN)/buoyantBoussinesqSimpleFoam
|
||||
@ -0,0 +1,18 @@
|
||||
EXE_INC = \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude \
|
||||
-I$(LIB_SRC)/sampling/lnInclude \
|
||||
-I$(LIB_SRC)/meshTools/lnInclude \
|
||||
-I$(LIB_SRC)/fvOptions/lnInclude \
|
||||
-I$(LIB_SRC)/turbulenceModels \
|
||||
-I$(LIB_SRC)/turbulenceModels/incompressible/RAS/lnInclude \
|
||||
-I$(LIB_SRC)/transportModels \
|
||||
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel
|
||||
|
||||
EXE_LIBS = \
|
||||
-lfiniteVolume \
|
||||
-lsampling \
|
||||
-lmeshTools \
|
||||
-lfvOptions \
|
||||
-lincompressibleTurbulenceModel \
|
||||
-lincompressibleRASModels \
|
||||
-lincompressibleTransportModels
|
||||
@ -0,0 +1,24 @@
|
||||
{
|
||||
alphat = turbulence->nut()/Prt;
|
||||
alphat.correctBoundaryConditions();
|
||||
|
||||
volScalarField alphaEff("alphaEff", turbulence->nu()/Pr + alphat);
|
||||
|
||||
fvScalarMatrix TEqn
|
||||
(
|
||||
fvm::div(phi, T)
|
||||
- fvm::laplacian(alphaEff, T)
|
||||
==
|
||||
fvOptions(T)
|
||||
);
|
||||
|
||||
TEqn.relax();
|
||||
|
||||
fvOptions.constrain(TEqn);
|
||||
|
||||
TEqn.solve();
|
||||
|
||||
fvOptions.correct(T);
|
||||
|
||||
rhok = 1.0 - beta*(T - TRef);
|
||||
}
|
||||
@ -0,0 +1,31 @@
|
||||
// Solve the momentum equation
|
||||
|
||||
tmp<fvVectorMatrix> UEqn
|
||||
(
|
||||
fvm::div(phi, U)
|
||||
+ turbulence->divDevReff(U)
|
||||
==
|
||||
fvOptions(U)
|
||||
);
|
||||
|
||||
UEqn().relax();
|
||||
|
||||
fvOptions.constrain(UEqn());
|
||||
|
||||
if (simple.momentumPredictor())
|
||||
{
|
||||
solve
|
||||
(
|
||||
UEqn()
|
||||
==
|
||||
fvc::reconstruct
|
||||
(
|
||||
(
|
||||
- ghf*fvc::snGrad(rhok)
|
||||
- fvc::snGrad(p_rgh)
|
||||
)*mesh.magSf()
|
||||
)
|
||||
);
|
||||
|
||||
fvOptions.correct(U);
|
||||
}
|
||||
@ -0,0 +1,99 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Application
|
||||
buoyantBoussinesqSimpleFoam
|
||||
|
||||
Description
|
||||
Steady-state solver for buoyant, turbulent flow of incompressible fluids
|
||||
|
||||
Uses the Boussinesq approximation:
|
||||
\f[
|
||||
rho_{k} = 1 - beta(T - T_{ref})
|
||||
\f]
|
||||
|
||||
where:
|
||||
\f$ rho_{k} \f$ = the effective (driving) density
|
||||
beta = thermal expansion coefficient [1/K]
|
||||
T = temperature [K]
|
||||
\f$ T_{ref} \f$ = reference temperature [K]
|
||||
|
||||
Valid when:
|
||||
\f[
|
||||
\frac{beta(T - T_{ref})}{rho_{ref}} << 1
|
||||
\f]
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "singlePhaseTransportModel.H"
|
||||
#include "RASModel.H"
|
||||
#include "fvIOoptionList.H"
|
||||
#include "simpleControl.H"
|
||||
#include "fixedFluxPressureFvPatchScalarField.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
#include "setRootCase.H"
|
||||
#include "createTime.H"
|
||||
#include "createMesh.H"
|
||||
#include "readGravitationalAcceleration.H"
|
||||
#include "createFields.H"
|
||||
#include "createFvOptions.H"
|
||||
#include "initContinuityErrs.H"
|
||||
|
||||
simpleControl simple(mesh);
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
Info<< "\nStarting time loop\n" << endl;
|
||||
|
||||
while (simple.loop())
|
||||
{
|
||||
Info<< "Time = " << runTime.timeName() << nl << endl;
|
||||
|
||||
// Pressure-velocity SIMPLE corrector
|
||||
{
|
||||
#include "UEqn.H"
|
||||
#include "TEqn.H"
|
||||
#include "pEqn.H"
|
||||
}
|
||||
|
||||
turbulence->correct();
|
||||
|
||||
runTime.write();
|
||||
|
||||
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
||||
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
||||
<< nl << endl;
|
||||
}
|
||||
|
||||
Info<< "End\n" << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -0,0 +1,118 @@
|
||||
Info<< "Reading thermophysical properties\n" << endl;
|
||||
|
||||
Info<< "Reading field T\n" << endl;
|
||||
volScalarField T
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"T",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
Info<< "Reading field p_rgh\n" << endl;
|
||||
volScalarField p_rgh
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p_rgh",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
Info<< "Reading field U\n" << endl;
|
||||
volVectorField U
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"U",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
#include "createPhi.H"
|
||||
|
||||
#include "readTransportProperties.H"
|
||||
|
||||
Info<< "Creating turbulence model\n" << endl;
|
||||
autoPtr<incompressible::RASModel> turbulence
|
||||
(
|
||||
incompressible::RASModel::New(U, phi, laminarTransport)
|
||||
);
|
||||
|
||||
// Kinematic density for buoyancy force
|
||||
volScalarField rhok
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rhok",
|
||||
runTime.timeName(),
|
||||
mesh
|
||||
),
|
||||
1.0 - beta*(T - TRef)
|
||||
);
|
||||
|
||||
// kinematic turbulent thermal thermal conductivity m2/s
|
||||
Info<< "Reading field alphat\n" << endl;
|
||||
volScalarField alphat
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"alphat",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
Info<< "Calculating field g.h\n" << endl;
|
||||
volScalarField gh("gh", g & mesh.C());
|
||||
surfaceScalarField ghf("ghf", g & mesh.Cf());
|
||||
|
||||
volScalarField p
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
p_rgh + rhok*gh
|
||||
);
|
||||
|
||||
label pRefCell = 0;
|
||||
scalar pRefValue = 0.0;
|
||||
setRefCell
|
||||
(
|
||||
p,
|
||||
p_rgh,
|
||||
mesh.solutionDict().subDict("SIMPLE"),
|
||||
pRefCell,
|
||||
pRefValue
|
||||
);
|
||||
|
||||
if (p_rgh.needReference())
|
||||
{
|
||||
p += dimensionedScalar
|
||||
(
|
||||
"p",
|
||||
p.dimensions(),
|
||||
pRefValue - getRefCellValue(p, pRefCell)
|
||||
);
|
||||
}
|
||||
@ -0,0 +1,74 @@
|
||||
{
|
||||
volScalarField rAU("rAU", 1.0/UEqn().A());
|
||||
surfaceScalarField rAUf("rAUf", fvc::interpolate(rAU));
|
||||
|
||||
volVectorField HbyA("HbyA", U);
|
||||
HbyA = rAU*UEqn().H();
|
||||
UEqn.clear();
|
||||
|
||||
surfaceScalarField phig(-rAUf*ghf*fvc::snGrad(rhok)*mesh.magSf());
|
||||
|
||||
surfaceScalarField phiHbyA
|
||||
(
|
||||
"phiHbyA",
|
||||
(fvc::interpolate(HbyA) & mesh.Sf())
|
||||
);
|
||||
|
||||
fvOptions.makeRelative(phiHbyA);
|
||||
|
||||
adjustPhi(phiHbyA, U, p_rgh);
|
||||
|
||||
phiHbyA += phig;
|
||||
|
||||
// Update the fixedFluxPressure BCs to ensure flux consistency
|
||||
setSnGrad<fixedFluxPressureFvPatchScalarField>
|
||||
(
|
||||
p_rgh.boundaryField(),
|
||||
(
|
||||
phiHbyA.boundaryField()
|
||||
- fvOptions.relative(mesh.Sf().boundaryField() & U.boundaryField())
|
||||
)/(mesh.magSf().boundaryField()*rAUf.boundaryField())
|
||||
);
|
||||
|
||||
while (simple.correctNonOrthogonal())
|
||||
{
|
||||
fvScalarMatrix p_rghEqn
|
||||
(
|
||||
fvm::laplacian(rAUf, p_rgh) == fvc::div(phiHbyA)
|
||||
);
|
||||
|
||||
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
|
||||
|
||||
p_rghEqn.solve();
|
||||
|
||||
if (simple.finalNonOrthogonalIter())
|
||||
{
|
||||
// Calculate the conservative fluxes
|
||||
phi = phiHbyA - p_rghEqn.flux();
|
||||
|
||||
// Explicitly relax pressure for momentum corrector
|
||||
p_rgh.relax();
|
||||
|
||||
// Correct the momentum source with the pressure gradient flux
|
||||
// calculated from the relaxed pressure
|
||||
U = HbyA + rAU*fvc::reconstruct((phig - p_rghEqn.flux())/rAUf);
|
||||
U.correctBoundaryConditions();
|
||||
fvOptions.correct(U);
|
||||
}
|
||||
}
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
p = p_rgh + rhok*gh;
|
||||
|
||||
if (p_rgh.needReference())
|
||||
{
|
||||
p += dimensionedScalar
|
||||
(
|
||||
"p",
|
||||
p.dimensions(),
|
||||
pRefValue - getRefCellValue(p, pRefCell)
|
||||
);
|
||||
p_rgh = p - rhok*gh;
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,13 @@
|
||||
singlePhaseTransportModel laminarTransport(U, phi);
|
||||
|
||||
// Thermal expansion coefficient [1/K]
|
||||
dimensionedScalar beta(laminarTransport.lookup("beta"));
|
||||
|
||||
// Reference temperature [K]
|
||||
dimensionedScalar TRef(laminarTransport.lookup("TRef"));
|
||||
|
||||
// Laminar Prandtl number
|
||||
dimensionedScalar Pr(laminarTransport.lookup("Pr"));
|
||||
|
||||
// Turbulent Prandtl number
|
||||
dimensionedScalar Prt(laminarTransport.lookup("Prt"));
|
||||
34
applications/solvers/heatTransfer/buoyantPimpleFoam/EEqn.H
Normal file
34
applications/solvers/heatTransfer/buoyantPimpleFoam/EEqn.H
Normal file
@ -0,0 +1,34 @@
|
||||
{
|
||||
volScalarField& he = thermo.he();
|
||||
|
||||
fvScalarMatrix EEqn
|
||||
(
|
||||
fvm::ddt(rho, he) + fvm::div(phi, he)
|
||||
+ fvc::ddt(rho, K) + fvc::div(phi, K)
|
||||
+ (
|
||||
he.name() == "e"
|
||||
? fvc::div
|
||||
(
|
||||
fvc::absolute(phi/fvc::interpolate(rho), U),
|
||||
p,
|
||||
"div(phiv,p)"
|
||||
)
|
||||
: -dpdt
|
||||
)
|
||||
- fvm::laplacian(turbulence->alphaEff(), he)
|
||||
==
|
||||
radiation->Sh(thermo)
|
||||
+ fvOptions(rho, he)
|
||||
);
|
||||
|
||||
EEqn.relax();
|
||||
|
||||
fvOptions.constrain(EEqn);
|
||||
|
||||
EEqn.solve();
|
||||
|
||||
fvOptions.correct(he);
|
||||
|
||||
thermo.correct();
|
||||
radiation->correct();
|
||||
}
|
||||
@ -0,0 +1,3 @@
|
||||
buoyantPimpleFoam.C
|
||||
|
||||
EXE = $(FOAM_APPBIN)/buoyantPimpleFoam
|
||||
@ -0,0 +1,21 @@
|
||||
EXE_INC = \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude \
|
||||
-I$(LIB_SRC)/sampling/lnInclude \
|
||||
-I$(LIB_SRC)/meshTools/lnInclude \
|
||||
-I$(LIB_SRC)/fvOptions/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/radiationModels/lnInclude \
|
||||
-I$(LIB_SRC)/turbulenceModels/compressible/turbulenceModel
|
||||
|
||||
EXE_LIBS = \
|
||||
-lfiniteVolume \
|
||||
-lsampling \
|
||||
-lmeshTools \
|
||||
-lfvOptions \
|
||||
-lfluidThermophysicalModels \
|
||||
-lradiationModels \
|
||||
-lspecie \
|
||||
-lcompressibleTurbulenceModel \
|
||||
-lcompressibleRASModels \
|
||||
-lcompressibleLESModels
|
||||
|
||||
33
applications/solvers/heatTransfer/buoyantPimpleFoam/UEqn.H
Normal file
33
applications/solvers/heatTransfer/buoyantPimpleFoam/UEqn.H
Normal file
@ -0,0 +1,33 @@
|
||||
// Solve the Momentum equation
|
||||
|
||||
fvVectorMatrix UEqn
|
||||
(
|
||||
fvm::ddt(rho, U)
|
||||
+ fvm::div(phi, U)
|
||||
+ turbulence->divDevRhoReff(U)
|
||||
==
|
||||
fvOptions(rho, U)
|
||||
);
|
||||
|
||||
UEqn.relax();
|
||||
|
||||
fvOptions.constrain(UEqn);
|
||||
|
||||
if (pimple.momentumPredictor())
|
||||
{
|
||||
solve
|
||||
(
|
||||
UEqn
|
||||
==
|
||||
fvc::reconstruct
|
||||
(
|
||||
(
|
||||
- ghf*fvc::snGrad(rho)
|
||||
- fvc::snGrad(p_rgh)
|
||||
)*mesh.magSf()
|
||||
)
|
||||
);
|
||||
|
||||
fvOptions.correct(U);
|
||||
K = 0.5*magSqr(U);
|
||||
}
|
||||
@ -0,0 +1,111 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Application
|
||||
buoyantPimpleFoam
|
||||
|
||||
Description
|
||||
Transient solver for buoyant, turbulent flow of compressible fluids for
|
||||
ventilation and heat-transfer.
|
||||
|
||||
Turbulence is modelled using a run-time selectable compressible RAS or
|
||||
LES model.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "rhoThermo.H"
|
||||
#include "turbulenceModel.H"
|
||||
#include "radiationModel.H"
|
||||
#include "fvIOoptionList.H"
|
||||
#include "pimpleControl.H"
|
||||
#include "fixedFluxPressureFvPatchScalarField.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
#include "setRootCase.H"
|
||||
#include "createTime.H"
|
||||
#include "createMesh.H"
|
||||
#include "readGravitationalAcceleration.H"
|
||||
#include "createFields.H"
|
||||
#include "createFvOptions.H"
|
||||
#include "createRadiationModel.H"
|
||||
#include "initContinuityErrs.H"
|
||||
#include "readTimeControls.H"
|
||||
#include "compressibleCourantNo.H"
|
||||
#include "setInitialDeltaT.H"
|
||||
|
||||
pimpleControl pimple(mesh);
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
Info<< "\nStarting time loop\n" << endl;
|
||||
|
||||
while (runTime.run())
|
||||
{
|
||||
#include "readTimeControls.H"
|
||||
#include "compressibleCourantNo.H"
|
||||
#include "setDeltaT.H"
|
||||
|
||||
runTime++;
|
||||
|
||||
Info<< "Time = " << runTime.timeName() << nl << endl;
|
||||
|
||||
#include "rhoEqn.H"
|
||||
|
||||
// --- Pressure-velocity PIMPLE corrector loop
|
||||
while (pimple.loop())
|
||||
{
|
||||
#include "UEqn.H"
|
||||
#include "EEqn.H"
|
||||
|
||||
// --- Pressure corrector loop
|
||||
while (pimple.correct())
|
||||
{
|
||||
#include "pEqn.H"
|
||||
}
|
||||
|
||||
if (pimple.turbCorr())
|
||||
{
|
||||
turbulence->correct();
|
||||
}
|
||||
}
|
||||
|
||||
rho = thermo.rho();
|
||||
|
||||
runTime.write();
|
||||
|
||||
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
||||
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
||||
<< nl << endl;
|
||||
}
|
||||
|
||||
Info<< "End\n" << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -0,0 +1,88 @@
|
||||
Info<< "Reading thermophysical properties\n" << endl;
|
||||
|
||||
autoPtr<rhoThermo> pThermo(rhoThermo::New(mesh));
|
||||
rhoThermo& thermo = pThermo();
|
||||
thermo.validate(args.executable(), "h", "e");
|
||||
|
||||
volScalarField rho
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rho",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::NO_WRITE
|
||||
),
|
||||
thermo.rho()
|
||||
);
|
||||
|
||||
volScalarField& p = thermo.p();
|
||||
const volScalarField& psi = thermo.psi();
|
||||
|
||||
|
||||
Info<< "Reading field U\n" << endl;
|
||||
volVectorField U
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"U",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
#include "compressibleCreatePhi.H"
|
||||
|
||||
|
||||
Info<< "Creating turbulence model\n" << endl;
|
||||
autoPtr<compressible::turbulenceModel> turbulence
|
||||
(
|
||||
compressible::turbulenceModel::New
|
||||
(
|
||||
rho,
|
||||
U,
|
||||
phi,
|
||||
thermo
|
||||
)
|
||||
);
|
||||
|
||||
Info<< "Calculating field g.h\n" << endl;
|
||||
volScalarField gh("gh", g & mesh.C());
|
||||
surfaceScalarField ghf("ghf", g & mesh.Cf());
|
||||
|
||||
Info<< "Reading field p_rgh\n" << endl;
|
||||
volScalarField p_rgh
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p_rgh",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
// Force p_rgh to be consistent with p
|
||||
p_rgh = p - rho*gh;
|
||||
|
||||
Info<< "Creating field dpdt\n" << endl;
|
||||
volScalarField dpdt
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"dpdt",
|
||||
runTime.timeName(),
|
||||
mesh
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar("dpdt", p.dimensions()/dimTime, 0)
|
||||
);
|
||||
|
||||
Info<< "Creating field kinetic energy K\n" << endl;
|
||||
volScalarField K("K", 0.5*magSqr(U));
|
||||
88
applications/solvers/heatTransfer/buoyantPimpleFoam/pEqn.H
Normal file
88
applications/solvers/heatTransfer/buoyantPimpleFoam/pEqn.H
Normal file
@ -0,0 +1,88 @@
|
||||
{
|
||||
rho = thermo.rho();
|
||||
|
||||
// Thermodynamic density needs to be updated by psi*d(p) after the
|
||||
// pressure solution - done in 2 parts. Part 1:
|
||||
thermo.rho() -= psi*p_rgh;
|
||||
|
||||
volScalarField rAU(1.0/UEqn.A());
|
||||
surfaceScalarField rAUf("rAUf", fvc::interpolate(rho*rAU));
|
||||
|
||||
volVectorField HbyA("HbyA", U);
|
||||
HbyA = rAU*UEqn.H();
|
||||
|
||||
surfaceScalarField phig(-rAUf*ghf*fvc::snGrad(rho)*mesh.magSf());
|
||||
|
||||
surfaceScalarField phiHbyA
|
||||
(
|
||||
"phiHbyA",
|
||||
(
|
||||
(fvc::interpolate(rho*HbyA) & mesh.Sf())
|
||||
+ rAUf*fvc::ddtCorr(rho, U, phi)
|
||||
)
|
||||
+ phig
|
||||
);
|
||||
|
||||
fvOptions.makeRelative(fvc::interpolate(rho), phiHbyA);
|
||||
|
||||
// Update the fixedFluxPressure BCs to ensure flux consistency
|
||||
setSnGrad<fixedFluxPressureFvPatchScalarField>
|
||||
(
|
||||
p_rgh.boundaryField(),
|
||||
(
|
||||
phiHbyA.boundaryField()
|
||||
- fvOptions.relative(mesh.Sf().boundaryField() & U.boundaryField())
|
||||
*rho.boundaryField()
|
||||
)/(mesh.magSf().boundaryField()*rAUf.boundaryField())
|
||||
);
|
||||
|
||||
fvScalarMatrix p_rghDDtEqn
|
||||
(
|
||||
fvc::ddt(rho) + psi*correction(fvm::ddt(p_rgh))
|
||||
+ fvc::div(phiHbyA)
|
||||
==
|
||||
fvOptions(psi, p_rgh, rho.name())
|
||||
);
|
||||
|
||||
while (pimple.correctNonOrthogonal())
|
||||
{
|
||||
fvScalarMatrix p_rghEqn
|
||||
(
|
||||
p_rghDDtEqn
|
||||
- fvm::laplacian(rAUf, p_rgh)
|
||||
);
|
||||
|
||||
fvOptions.constrain(p_rghEqn);
|
||||
|
||||
p_rghEqn.solve(mesh.solver(p_rgh.select(pimple.finalInnerIter())));
|
||||
|
||||
if (pimple.finalNonOrthogonalIter())
|
||||
{
|
||||
// Calculate the conservative fluxes
|
||||
phi = phiHbyA + p_rghEqn.flux();
|
||||
|
||||
// Explicitly relax pressure for momentum corrector
|
||||
p_rgh.relax();
|
||||
|
||||
// Correct the momentum source with the pressure gradient flux
|
||||
// calculated from the relaxed pressure
|
||||
U = HbyA + rAU*fvc::reconstruct((phig + p_rghEqn.flux())/rAUf);
|
||||
U.correctBoundaryConditions();
|
||||
fvOptions.correct(U);
|
||||
K = 0.5*magSqr(U);
|
||||
}
|
||||
}
|
||||
|
||||
p = p_rgh + rho*gh;
|
||||
|
||||
// Second part of thermodynamic density update
|
||||
thermo.rho() += psi*p_rgh;
|
||||
|
||||
if (thermo.dpdt())
|
||||
{
|
||||
dpdt = fvc::ddt(p);
|
||||
}
|
||||
|
||||
#include "rhoEqn.H"
|
||||
#include "compressibleContinuityErrs.H"
|
||||
}
|
||||
28
applications/solvers/heatTransfer/buoyantSimpleFoam/EEqn.H
Normal file
28
applications/solvers/heatTransfer/buoyantSimpleFoam/EEqn.H
Normal file
@ -0,0 +1,28 @@
|
||||
{
|
||||
volScalarField& he = thermo.he();
|
||||
|
||||
fvScalarMatrix EEqn
|
||||
(
|
||||
fvm::div(phi, he)
|
||||
+ (
|
||||
he.name() == "e"
|
||||
? fvc::div(phi, volScalarField("Ekp", 0.5*magSqr(U) + p/rho))
|
||||
: fvc::div(phi, volScalarField("K", 0.5*magSqr(U)))
|
||||
)
|
||||
- fvm::laplacian(turbulence->alphaEff(), he)
|
||||
==
|
||||
radiation->Sh(thermo)
|
||||
+ fvOptions(rho, he)
|
||||
);
|
||||
|
||||
EEqn.relax();
|
||||
|
||||
fvOptions.constrain(EEqn);
|
||||
|
||||
EEqn.solve();
|
||||
|
||||
fvOptions.correct(he);
|
||||
|
||||
thermo.correct();
|
||||
radiation->correct();
|
||||
}
|
||||
@ -0,0 +1,3 @@
|
||||
buoyantSimpleFoam.C
|
||||
|
||||
EXE = $(FOAM_APPBIN)/buoyantSimpleFoam
|
||||
@ -0,0 +1,22 @@
|
||||
EXE_INC = \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude \
|
||||
-I$(LIB_SRC)/fvOptions/lnInclude \
|
||||
-I$(LIB_SRC)/sampling/lnInclude \
|
||||
-I$(LIB_SRC)/meshTools/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/radiationModels/lnInclude \
|
||||
-I$(LIB_SRC)/turbulenceModels \
|
||||
-I$(LIB_SRC)/turbulenceModels/compressible/RAS/lnInclude \
|
||||
-I$(LIB_SRC)/turbulenceModels/RAS \
|
||||
|
||||
EXE_LIBS = \
|
||||
-lfiniteVolume \
|
||||
-lfvOptions \
|
||||
-lsampling \
|
||||
-lmeshTools \
|
||||
-lfluidThermophysicalModels \
|
||||
-lspecie \
|
||||
-lradiationModels \
|
||||
-lcompressibleTurbulenceModel \
|
||||
-lcompressibleRASModels \
|
||||
-lmeshTools
|
||||
31
applications/solvers/heatTransfer/buoyantSimpleFoam/UEqn.H
Normal file
31
applications/solvers/heatTransfer/buoyantSimpleFoam/UEqn.H
Normal file
@ -0,0 +1,31 @@
|
||||
// Solve the Momentum equation
|
||||
|
||||
tmp<fvVectorMatrix> UEqn
|
||||
(
|
||||
fvm::div(phi, U)
|
||||
+ turbulence->divDevRhoReff(U)
|
||||
==
|
||||
fvOptions(rho, U)
|
||||
);
|
||||
|
||||
UEqn().relax();
|
||||
|
||||
fvOptions.constrain(UEqn());
|
||||
|
||||
if (simple.momentumPredictor())
|
||||
{
|
||||
solve
|
||||
(
|
||||
UEqn()
|
||||
==
|
||||
fvc::reconstruct
|
||||
(
|
||||
(
|
||||
- ghf*fvc::snGrad(rho)
|
||||
- fvc::snGrad(p_rgh)
|
||||
)*mesh.magSf()
|
||||
)
|
||||
);
|
||||
|
||||
fvOptions.correct(U);
|
||||
}
|
||||
@ -0,0 +1,86 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Application
|
||||
buoyantSimpleFoam
|
||||
|
||||
Description
|
||||
Steady-state solver for buoyant, turbulent flow of compressible fluids,
|
||||
including radiation, for ventilation and heat-transfer.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "rhoThermo.H"
|
||||
#include "RASModel.H"
|
||||
#include "radiationModel.H"
|
||||
#include "simpleControl.H"
|
||||
#include "fvIOoptionList.H"
|
||||
#include "fixedFluxPressureFvPatchScalarField.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
#include "setRootCase.H"
|
||||
#include "createTime.H"
|
||||
#include "createMesh.H"
|
||||
#include "readGravitationalAcceleration.H"
|
||||
#include "createFields.H"
|
||||
#include "createFvOptions.H"
|
||||
#include "createRadiationModel.H"
|
||||
#include "initContinuityErrs.H"
|
||||
|
||||
simpleControl simple(mesh);
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
Info<< "\nStarting time loop\n" << endl;
|
||||
|
||||
while (simple.loop())
|
||||
{
|
||||
Info<< "Time = " << runTime.timeName() << nl << endl;
|
||||
|
||||
// Pressure-velocity SIMPLE corrector
|
||||
{
|
||||
#include "UEqn.H"
|
||||
#include "EEqn.H"
|
||||
#include "pEqn.H"
|
||||
}
|
||||
|
||||
turbulence->correct();
|
||||
|
||||
runTime.write();
|
||||
|
||||
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
||||
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
||||
<< nl << endl;
|
||||
}
|
||||
|
||||
Info<< "End\n" << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -0,0 +1,86 @@
|
||||
Info<< "Reading thermophysical properties\n" << endl;
|
||||
|
||||
autoPtr<rhoThermo> pThermo(rhoThermo::New(mesh));
|
||||
rhoThermo& thermo = pThermo();
|
||||
thermo.validate(args.executable(), "h", "e");
|
||||
|
||||
volScalarField rho
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rho",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::NO_WRITE
|
||||
),
|
||||
thermo.rho()
|
||||
);
|
||||
|
||||
volScalarField& p = thermo.p();
|
||||
const volScalarField& psi = thermo.psi();
|
||||
|
||||
Info<< "Reading field U\n" << endl;
|
||||
volVectorField U
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"U",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
#include "compressibleCreatePhi.H"
|
||||
|
||||
Info<< "Creating turbulence model\n" << endl;
|
||||
autoPtr<compressible::RASModel> turbulence
|
||||
(
|
||||
compressible::RASModel::New
|
||||
(
|
||||
rho,
|
||||
U,
|
||||
phi,
|
||||
thermo
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
Info<< "Calculating field g.h\n" << endl;
|
||||
volScalarField gh("gh", g & mesh.C());
|
||||
surfaceScalarField ghf("ghf", g & mesh.Cf());
|
||||
|
||||
Info<< "Reading field p_rgh\n" << endl;
|
||||
volScalarField p_rgh
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p_rgh",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
// Force p_rgh to be consistent with p
|
||||
p_rgh = p - rho*gh;
|
||||
|
||||
|
||||
label pRefCell = 0;
|
||||
scalar pRefValue = 0.0;
|
||||
setRefCell
|
||||
(
|
||||
p,
|
||||
p_rgh,
|
||||
mesh.solutionDict().subDict("SIMPLE"),
|
||||
pRefCell,
|
||||
pRefValue
|
||||
);
|
||||
|
||||
dimensionedScalar initialMass = fvc::domainIntegrate(rho);
|
||||
dimensionedScalar totalVolume = sum(mesh.V());
|
||||
80
applications/solvers/heatTransfer/buoyantSimpleFoam/pEqn.H
Normal file
80
applications/solvers/heatTransfer/buoyantSimpleFoam/pEqn.H
Normal file
@ -0,0 +1,80 @@
|
||||
{
|
||||
rho = thermo.rho();
|
||||
rho.relax();
|
||||
|
||||
volScalarField rAU("rAU", 1.0/UEqn().A());
|
||||
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
|
||||
|
||||
volVectorField HbyA("HbyA", U);
|
||||
HbyA = rAU*UEqn().H();
|
||||
UEqn.clear();
|
||||
|
||||
surfaceScalarField phig(-rhorAUf*ghf*fvc::snGrad(rho)*mesh.magSf());
|
||||
|
||||
surfaceScalarField phiHbyA
|
||||
(
|
||||
"phiHbyA",
|
||||
(fvc::interpolate(rho*HbyA) & mesh.Sf())
|
||||
);
|
||||
|
||||
fvOptions.makeRelative(fvc::interpolate(rho), phiHbyA);
|
||||
|
||||
bool closedVolume = adjustPhi(phiHbyA, U, p_rgh);
|
||||
|
||||
phiHbyA += phig;
|
||||
|
||||
// Update the fixedFluxPressure BCs to ensure flux consistency
|
||||
setSnGrad<fixedFluxPressureFvPatchScalarField>
|
||||
(
|
||||
p_rgh.boundaryField(),
|
||||
(
|
||||
phiHbyA.boundaryField()
|
||||
- fvOptions.relative(mesh.Sf().boundaryField() & U.boundaryField())
|
||||
*rho.boundaryField()
|
||||
)/(mesh.magSf().boundaryField()*rhorAUf.boundaryField())
|
||||
);
|
||||
|
||||
while (simple.correctNonOrthogonal())
|
||||
{
|
||||
fvScalarMatrix p_rghEqn
|
||||
(
|
||||
fvm::laplacian(rhorAUf, p_rgh) == fvc::div(phiHbyA)
|
||||
);
|
||||
|
||||
p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));
|
||||
p_rghEqn.solve();
|
||||
|
||||
if (simple.finalNonOrthogonalIter())
|
||||
{
|
||||
// Calculate the conservative fluxes
|
||||
phi = phiHbyA - p_rghEqn.flux();
|
||||
|
||||
// Explicitly relax pressure for momentum corrector
|
||||
p_rgh.relax();
|
||||
|
||||
// Correct the momentum source with the pressure gradient flux
|
||||
// calculated from the relaxed pressure
|
||||
U = HbyA + rAU*fvc::reconstruct((phig - p_rghEqn.flux())/rhorAUf);
|
||||
U.correctBoundaryConditions();
|
||||
fvOptions.correct(U);
|
||||
}
|
||||
}
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
p = p_rgh + rho*gh;
|
||||
|
||||
// For closed-volume cases adjust the pressure level
|
||||
// to obey overall mass continuity
|
||||
if (closedVolume)
|
||||
{
|
||||
p += (initialMass - fvc::domainIntegrate(psi*p))
|
||||
/fvc::domainIntegrate(psi);
|
||||
p_rgh = p - rho*gh;
|
||||
}
|
||||
|
||||
rho = thermo.rho();
|
||||
rho.relax();
|
||||
Info<< "rho max/min : " << max(rho).value() << " " << min(rho).value()
|
||||
<< endl;
|
||||
}
|
||||
8
applications/solvers/heatTransfer/chtMultiRegionFoam/Allwclean
Executable file
8
applications/solvers/heatTransfer/chtMultiRegionFoam/Allwclean
Executable file
@ -0,0 +1,8 @@
|
||||
#!/bin/sh
|
||||
cd ${0%/*} || exit 1 # run from this directory
|
||||
set -x
|
||||
|
||||
wclean
|
||||
wclean chtMultiRegionSimpleFoam
|
||||
|
||||
# ----------------------------------------------------------------- end-of-file
|
||||
8
applications/solvers/heatTransfer/chtMultiRegionFoam/Allwmake
Executable file
8
applications/solvers/heatTransfer/chtMultiRegionFoam/Allwmake
Executable file
@ -0,0 +1,8 @@
|
||||
#!/bin/sh
|
||||
cd ${0%/*} || exit 1 # run from this directory
|
||||
set -x
|
||||
|
||||
wmake
|
||||
wmake chtMultiRegionSimpleFoam
|
||||
|
||||
# ----------------------------------------------------------------- end-of-file
|
||||
@ -0,0 +1,5 @@
|
||||
fluid/compressibleCourantNo.C
|
||||
solid/solidRegionDiffNo.C
|
||||
chtMultiRegionFoam.C
|
||||
|
||||
EXE = $(FOAM_APPBIN)/chtMultiRegionFoam
|
||||
@ -0,0 +1,32 @@
|
||||
|
||||
EXE_INC = \
|
||||
-I./fluid \
|
||||
-I./solid \
|
||||
-I./porousFluid \
|
||||
-I./porousSolid \
|
||||
-I./include \
|
||||
-I$(LIB_SRC)/meshTools/lnInclude \
|
||||
-I$(LIB_SRC)/sampling/lnInclude \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/solidThermo/lnInclude \
|
||||
-I$(LIB_SRC)/turbulenceModels/compressible/turbulenceModel/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/radiationModels/lnInclude \
|
||||
-I$(LIB_SRC)/fvOptions/lnInclude \
|
||||
-I$(LIB_SRC)/regionModels/regionModel/lnInclude
|
||||
|
||||
|
||||
EXE_LIBS = \
|
||||
-lfluidThermophysicalModels \
|
||||
-lsolidThermo \
|
||||
-lspecie \
|
||||
-lcompressibleTurbulenceModel \
|
||||
-lcompressibleRASModels \
|
||||
-lcompressibleLESModels \
|
||||
-lmeshTools \
|
||||
-lfiniteVolume \
|
||||
-lradiationModels \
|
||||
-lfvOptions \
|
||||
-lregionModels \
|
||||
-lsampling
|
||||
@ -0,0 +1,136 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Application
|
||||
chtMultiRegionFoam
|
||||
|
||||
Description
|
||||
Combination of heatConductionFoam and buoyantFoam for conjugate heat
|
||||
transfer between solid regions and fluid regions. Both regions include
|
||||
the fvOptions framework.
|
||||
|
||||
It handles secondary fluid or solid circuits which can be coupled
|
||||
thermally with the main fluid region. i.e radiators, etc.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "rhoThermo.H"
|
||||
#include "turbulenceModel.H"
|
||||
#include "fixedGradientFvPatchFields.H"
|
||||
#include "regionProperties.H"
|
||||
#include "compressibleCourantNo.H"
|
||||
#include "solidRegionDiffNo.H"
|
||||
#include "solidThermo.H"
|
||||
#include "radiationModel.H"
|
||||
#include "fvIOoptionList.H"
|
||||
#include "coordinateSystem.H"
|
||||
#include "fixedFluxPressureFvPatchScalarField.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
#include "setRootCase.H"
|
||||
#include "createTime.H"
|
||||
|
||||
regionProperties rp(runTime);
|
||||
|
||||
#include "createFluidMeshes.H"
|
||||
#include "createSolidMeshes.H"
|
||||
|
||||
#include "createFluidFields.H"
|
||||
#include "createSolidFields.H"
|
||||
|
||||
#include "initContinuityErrs.H"
|
||||
#include "readTimeControls.H"
|
||||
#include "readSolidTimeControls.H"
|
||||
|
||||
|
||||
#include "compressibleMultiRegionCourantNo.H"
|
||||
#include "solidRegionDiffusionNo.H"
|
||||
#include "setInitialMultiRegionDeltaT.H"
|
||||
|
||||
while (runTime.run())
|
||||
{
|
||||
#include "readTimeControls.H"
|
||||
#include "readSolidTimeControls.H"
|
||||
#include "readPIMPLEControls.H"
|
||||
|
||||
#include "compressibleMultiRegionCourantNo.H"
|
||||
#include "solidRegionDiffusionNo.H"
|
||||
#include "setMultiRegionDeltaT.H"
|
||||
|
||||
runTime++;
|
||||
|
||||
Info<< "Time = " << runTime.timeName() << nl << endl;
|
||||
|
||||
if (nOuterCorr != 1)
|
||||
{
|
||||
forAll(fluidRegions, i)
|
||||
{
|
||||
#include "setRegionFluidFields.H"
|
||||
#include "storeOldFluidFields.H"
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// --- PIMPLE loop
|
||||
for (int oCorr=0; oCorr<nOuterCorr; oCorr++)
|
||||
{
|
||||
bool finalIter = oCorr == nOuterCorr-1;
|
||||
|
||||
forAll(fluidRegions, i)
|
||||
{
|
||||
Info<< "\nSolving for fluid region "
|
||||
<< fluidRegions[i].name() << endl;
|
||||
#include "setRegionFluidFields.H"
|
||||
#include "readFluidMultiRegionPIMPLEControls.H"
|
||||
#include "solveFluid.H"
|
||||
}
|
||||
|
||||
forAll(solidRegions, i)
|
||||
{
|
||||
Info<< "\nSolving for solid region "
|
||||
<< solidRegions[i].name() << endl;
|
||||
#include "setRegionSolidFields.H"
|
||||
#include "readSolidMultiRegionPIMPLEControls.H"
|
||||
#include "solveSolid.H"
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
runTime.write();
|
||||
|
||||
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
||||
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
||||
<< nl << endl;
|
||||
}
|
||||
|
||||
Info<< "End\n" << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -0,0 +1,4 @@
|
||||
chtMultiRegionSimpleFoam.C
|
||||
|
||||
EXE = $(FOAM_APPBIN)/chtMultiRegionSimpleFoam
|
||||
|
||||
@ -0,0 +1,30 @@
|
||||
EXE_INC = \
|
||||
-Ifluid \
|
||||
-Isolid \
|
||||
-I../solid \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude \
|
||||
-I$(LIB_SRC)/meshTools/lnInclude \
|
||||
-I$(LIB_SRC)/finiteVolume/cfdTools \
|
||||
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/solidThermo/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/radiationModels/lnInclude \
|
||||
-I$(LIB_SRC)/turbulenceModels \
|
||||
-I$(LIB_SRC)/turbulenceModels/compressible/turbulenceModel/lnInclude \
|
||||
-I$(LIB_SRC)/turbulenceModels/compressible/RAS/lnInclude \
|
||||
-I$(LIB_SRC)/fvOptions/lnInclude \
|
||||
-I$(LIB_SRC)/sampling/lnInclude \
|
||||
-I$(LIB_SRC)/regionModels/regionModel/lnInclude
|
||||
|
||||
EXE_LIBS = \
|
||||
-lfiniteVolume \
|
||||
-lfluidThermophysicalModels \
|
||||
-lsolidThermo \
|
||||
-lspecie \
|
||||
-lcompressibleTurbulenceModel \
|
||||
-lcompressibleRASModels \
|
||||
-lcompressibleLESModels \
|
||||
-lradiationModels \
|
||||
-lfvOptions \
|
||||
-lregionModels \
|
||||
-lsampling
|
||||
@ -0,0 +1,96 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Application
|
||||
chtMultiRegionSimpleFoam
|
||||
|
||||
Description
|
||||
Steady-state version of chtMultiRegionFoam
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "rhoThermo.H"
|
||||
#include "turbulenceModel.H"
|
||||
#include "fixedGradientFvPatchFields.H"
|
||||
#include "regionProperties.H"
|
||||
#include "solidThermo.H"
|
||||
#include "radiationModel.H"
|
||||
#include "fvIOoptionList.H"
|
||||
#include "coordinateSystem.H"
|
||||
#include "fixedFluxPressureFvPatchScalarField.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
#include "setRootCase.H"
|
||||
#include "createTime.H"
|
||||
|
||||
regionProperties rp(runTime);
|
||||
|
||||
#include "createFluidMeshes.H"
|
||||
#include "createSolidMeshes.H"
|
||||
|
||||
#include "createFluidFields.H"
|
||||
#include "createSolidFields.H"
|
||||
|
||||
#include "initContinuityErrs.H"
|
||||
|
||||
|
||||
while (runTime.loop())
|
||||
{
|
||||
Info<< "Time = " << runTime.timeName() << nl << endl;
|
||||
|
||||
forAll(fluidRegions, i)
|
||||
{
|
||||
Info<< "\nSolving for fluid region "
|
||||
<< fluidRegions[i].name() << endl;
|
||||
#include "setRegionFluidFields.H"
|
||||
#include "readFluidMultiRegionSIMPLEControls.H"
|
||||
#include "solveFluid.H"
|
||||
}
|
||||
|
||||
forAll(solidRegions, i)
|
||||
{
|
||||
Info<< "\nSolving for solid region "
|
||||
<< solidRegions[i].name() << endl;
|
||||
#include "setRegionSolidFields.H"
|
||||
#include "readSolidMultiRegionSIMPLEControls.H"
|
||||
#include "solveSolid.H"
|
||||
}
|
||||
|
||||
runTime.write();
|
||||
|
||||
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
||||
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
||||
<< nl << endl;
|
||||
}
|
||||
|
||||
Info<< "End\n" << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -0,0 +1,31 @@
|
||||
{
|
||||
volScalarField& he = thermo.he();
|
||||
|
||||
fvScalarMatrix EEqn
|
||||
(
|
||||
fvm::div(phi, he)
|
||||
+ (
|
||||
he.name() == "e"
|
||||
? fvc::div(phi, volScalarField("Ekp", 0.5*magSqr(U) + p/rho))
|
||||
: fvc::div(phi, volScalarField("K", 0.5*magSqr(U)))
|
||||
)
|
||||
- fvm::laplacian(turb.alphaEff(), he)
|
||||
==
|
||||
rad.Sh(thermo)
|
||||
+ fvOptions(rho, he)
|
||||
);
|
||||
|
||||
EEqn.relax();
|
||||
|
||||
fvOptions.constrain(EEqn);
|
||||
|
||||
EEqn.solve();
|
||||
|
||||
fvOptions.correct(he);
|
||||
|
||||
thermo.correct();
|
||||
rad.correct();
|
||||
|
||||
Info<< "Min/max T:" << min(thermo.T()).value() << ' '
|
||||
<< max(thermo.T()).value() << endl;
|
||||
}
|
||||
@ -0,0 +1,27 @@
|
||||
// Solve the Momentum equation
|
||||
tmp<fvVectorMatrix> UEqn
|
||||
(
|
||||
fvm::div(phi, U)
|
||||
+ turb.divDevRhoReff(U)
|
||||
==
|
||||
fvOptions(rho, U)
|
||||
);
|
||||
|
||||
UEqn().relax();
|
||||
|
||||
fvOptions.constrain(UEqn());
|
||||
|
||||
solve
|
||||
(
|
||||
UEqn()
|
||||
==
|
||||
fvc::reconstruct
|
||||
(
|
||||
(
|
||||
- ghf*fvc::snGrad(rho)
|
||||
- fvc::snGrad(p_rgh)
|
||||
)*mesh.magSf()
|
||||
)
|
||||
);
|
||||
|
||||
fvOptions.correct(U);
|
||||
@ -0,0 +1,21 @@
|
||||
{
|
||||
dimensionedScalar totalMass = fvc::domainIntegrate(rho);
|
||||
|
||||
scalar sumLocalContErr =
|
||||
(
|
||||
fvc::domainIntegrate(mag(rho - thermo.rho()))/totalMass
|
||||
).value();
|
||||
|
||||
scalar globalContErr =
|
||||
(
|
||||
fvc::domainIntegrate(rho - thermo.rho())/totalMass
|
||||
).value();
|
||||
|
||||
cumulativeContErr[i] += globalContErr;
|
||||
|
||||
Info<< "time step continuity errors (" << mesh.name() << ")"
|
||||
<< ": sum local = " << sumLocalContErr
|
||||
<< ", global = " << globalContErr
|
||||
<< ", cumulative = " << cumulativeContErr[i]
|
||||
<< endl;
|
||||
}
|
||||
@ -0,0 +1,15 @@
|
||||
scalar CoNum = -GREAT;
|
||||
forAll(fluidRegions, regionI)
|
||||
{
|
||||
CoNum = max
|
||||
(
|
||||
compressibleCourantNo
|
||||
(
|
||||
fluidRegions[regionI],
|
||||
runTime,
|
||||
rhoFluid[regionI],
|
||||
phiFluid[regionI]
|
||||
),
|
||||
CoNum
|
||||
);
|
||||
}
|
||||
@ -0,0 +1,189 @@
|
||||
// Initialise fluid field pointer lists
|
||||
PtrList<rhoThermo> thermoFluid(fluidRegions.size());
|
||||
PtrList<volScalarField> rhoFluid(fluidRegions.size());
|
||||
PtrList<volVectorField> UFluid(fluidRegions.size());
|
||||
PtrList<surfaceScalarField> phiFluid(fluidRegions.size());
|
||||
PtrList<uniformDimensionedVectorField> gFluid(fluidRegions.size());
|
||||
PtrList<compressible::turbulenceModel> turbulence(fluidRegions.size());
|
||||
PtrList<volScalarField> p_rghFluid(fluidRegions.size());
|
||||
PtrList<volScalarField> ghFluid(fluidRegions.size());
|
||||
PtrList<surfaceScalarField> ghfFluid(fluidRegions.size());
|
||||
PtrList<radiation::radiationModel> radiation(fluidRegions.size());
|
||||
|
||||
List<scalar> initialMassFluid(fluidRegions.size());
|
||||
List<label> pRefCellFluid(fluidRegions.size(), 0);
|
||||
List<scalar> pRefValueFluid(fluidRegions.size(), 0.0);
|
||||
List<bool> frozenFlowFluid(fluidRegions.size(), false);
|
||||
|
||||
PtrList<dimensionedScalar> rhoMax(fluidRegions.size());
|
||||
PtrList<dimensionedScalar> rhoMin(fluidRegions.size());
|
||||
|
||||
PtrList<fv::IOoptionList> fluidFvOptions(fluidRegions.size());
|
||||
|
||||
// Populate fluid field pointer lists
|
||||
forAll(fluidRegions, i)
|
||||
{
|
||||
Info<< "*** Reading fluid mesh thermophysical properties for region "
|
||||
<< fluidRegions[i].name() << nl << endl;
|
||||
|
||||
Info<< " Adding to thermoFluid\n" << endl;
|
||||
|
||||
thermoFluid.set
|
||||
(
|
||||
i,
|
||||
rhoThermo::New(fluidRegions[i]).ptr()
|
||||
);
|
||||
|
||||
Info<< " Adding to rhoFluid\n" << endl;
|
||||
rhoFluid.set
|
||||
(
|
||||
i,
|
||||
new volScalarField
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rho",
|
||||
runTime.timeName(),
|
||||
fluidRegions[i],
|
||||
IOobject::NO_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
thermoFluid[i].rho()
|
||||
)
|
||||
);
|
||||
|
||||
Info<< " Adding to UFluid\n" << endl;
|
||||
UFluid.set
|
||||
(
|
||||
i,
|
||||
new volVectorField
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"U",
|
||||
runTime.timeName(),
|
||||
fluidRegions[i],
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
fluidRegions[i]
|
||||
)
|
||||
);
|
||||
|
||||
Info<< " Adding to phiFluid\n" << endl;
|
||||
phiFluid.set
|
||||
(
|
||||
i,
|
||||
new surfaceScalarField
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"phi",
|
||||
runTime.timeName(),
|
||||
fluidRegions[i],
|
||||
IOobject::READ_IF_PRESENT,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
linearInterpolate(rhoFluid[i]*UFluid[i])
|
||||
& fluidRegions[i].Sf()
|
||||
)
|
||||
);
|
||||
|
||||
Info<< " Adding to gFluid\n" << endl;
|
||||
gFluid.set
|
||||
(
|
||||
i,
|
||||
new uniformDimensionedVectorField
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"g",
|
||||
runTime.constant(),
|
||||
fluidRegions[i],
|
||||
IOobject::MUST_READ,
|
||||
IOobject::NO_WRITE
|
||||
)
|
||||
)
|
||||
);
|
||||
|
||||
Info<< " Adding to turbulence\n" << endl;
|
||||
turbulence.set
|
||||
(
|
||||
i,
|
||||
compressible::turbulenceModel::New
|
||||
(
|
||||
rhoFluid[i],
|
||||
UFluid[i],
|
||||
phiFluid[i],
|
||||
thermoFluid[i]
|
||||
).ptr()
|
||||
);
|
||||
|
||||
Info<< " Adding to ghFluid\n" << endl;
|
||||
ghFluid.set
|
||||
(
|
||||
i,
|
||||
new volScalarField("gh", gFluid[i] & fluidRegions[i].C())
|
||||
);
|
||||
|
||||
Info<< " Adding to ghfFluid\n" << endl;
|
||||
ghfFluid.set
|
||||
(
|
||||
i,
|
||||
new surfaceScalarField("ghf", gFluid[i] & fluidRegions[i].Cf())
|
||||
);
|
||||
|
||||
p_rghFluid.set
|
||||
(
|
||||
i,
|
||||
new volScalarField
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p_rgh",
|
||||
runTime.timeName(),
|
||||
fluidRegions[i],
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
fluidRegions[i]
|
||||
)
|
||||
);
|
||||
|
||||
// Force p_rgh to be consistent with p
|
||||
p_rghFluid[i] = thermoFluid[i].p() - rhoFluid[i]*ghFluid[i];
|
||||
|
||||
radiation.set
|
||||
(
|
||||
i,
|
||||
radiation::radiationModel::New(thermoFluid[i].T())
|
||||
);
|
||||
|
||||
initialMassFluid[i] = fvc::domainIntegrate(rhoFluid[i]).value();
|
||||
|
||||
const dictionary& simpleDict =
|
||||
fluidRegions[i].solutionDict().subDict("SIMPLE");
|
||||
|
||||
setRefCell
|
||||
(
|
||||
thermoFluid[i].p(),
|
||||
p_rghFluid[i],
|
||||
simpleDict,
|
||||
pRefCellFluid[i],
|
||||
pRefValueFluid[i]
|
||||
);
|
||||
|
||||
simpleDict.readIfPresent("frozenFlow", frozenFlowFluid[i]);
|
||||
|
||||
rhoMax.set(i, new dimensionedScalar(simpleDict.lookup("rhoMax")));
|
||||
rhoMin.set(i, new dimensionedScalar(simpleDict.lookup("rhoMin")));
|
||||
|
||||
Info<< " Adding fvOptions\n" << endl;
|
||||
fluidFvOptions.set
|
||||
(
|
||||
i,
|
||||
new fv::IOoptionList(fluidRegions[i])
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
@ -0,0 +1,24 @@
|
||||
const wordList fluidNames(rp["fluid"]);
|
||||
|
||||
PtrList<fvMesh> fluidRegions(fluidNames.size());
|
||||
|
||||
forAll(fluidNames, i)
|
||||
{
|
||||
Info<< "Create fluid mesh for region " << fluidNames[i]
|
||||
<< " for time = " << runTime.timeName() << nl << endl;
|
||||
|
||||
fluidRegions.set
|
||||
(
|
||||
i,
|
||||
new fvMesh
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
fluidNames[i],
|
||||
runTime.timeName(),
|
||||
runTime,
|
||||
IOobject::MUST_READ
|
||||
)
|
||||
)
|
||||
);
|
||||
}
|
||||
@ -0,0 +1,94 @@
|
||||
{
|
||||
rho = thermo.rho();
|
||||
rho = max(rho, rhoMin[i]);
|
||||
rho = min(rho, rhoMax[i]);
|
||||
rho.relax();
|
||||
|
||||
volScalarField rAU("rAU", 1.0/UEqn().A());
|
||||
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
|
||||
|
||||
volVectorField HbyA("HbyA", U);
|
||||
HbyA = rAU*UEqn().H();
|
||||
UEqn.clear();
|
||||
|
||||
surfaceScalarField phig(-rhorAUf*ghf*fvc::snGrad(rho)*mesh.magSf());
|
||||
|
||||
surfaceScalarField phiHbyA
|
||||
(
|
||||
"phiHbyA",
|
||||
(fvc::interpolate(rho*HbyA) & mesh.Sf())
|
||||
);
|
||||
|
||||
fvOptions.makeRelative(fvc::interpolate(rho), phiHbyA);
|
||||
|
||||
bool closedVolume = adjustPhi(phiHbyA, U, p_rgh);
|
||||
|
||||
phiHbyA += phig;
|
||||
|
||||
// Update the fixedFluxPressure BCs to ensure flux consistency
|
||||
setSnGrad<fixedFluxPressureFvPatchScalarField>
|
||||
(
|
||||
p_rgh.boundaryField(),
|
||||
(
|
||||
phiHbyA.boundaryField()
|
||||
- fvOptions.relative(mesh.Sf().boundaryField() & U.boundaryField())
|
||||
*rho.boundaryField()
|
||||
)/(mesh.magSf().boundaryField()*rhorAUf.boundaryField())
|
||||
);
|
||||
|
||||
dimensionedScalar compressibility = fvc::domainIntegrate(psi);
|
||||
bool compressible = (compressibility.value() > SMALL);
|
||||
|
||||
// Solve pressure
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix p_rghEqn
|
||||
(
|
||||
fvm::laplacian(rhorAUf, p_rgh) == fvc::div(phiHbyA)
|
||||
);
|
||||
|
||||
p_rghEqn.setReference
|
||||
(
|
||||
pRefCell,
|
||||
compressible ? getRefCellValue(p_rgh, pRefCell) : pRefValue
|
||||
);
|
||||
|
||||
p_rghEqn.solve();
|
||||
|
||||
if (nonOrth == nNonOrthCorr)
|
||||
{
|
||||
// Calculate the conservative fluxes
|
||||
phi = phiHbyA - p_rghEqn.flux();
|
||||
|
||||
// Explicitly relax pressure for momentum corrector
|
||||
p_rgh.relax();
|
||||
|
||||
// Correct the momentum source with the pressure gradient flux
|
||||
// calculated from the relaxed pressure
|
||||
U = HbyA + rAU*fvc::reconstruct((phig - p_rghEqn.flux())/rhorAUf);
|
||||
U.correctBoundaryConditions();
|
||||
fvOptions.correct(U);
|
||||
}
|
||||
}
|
||||
|
||||
p = p_rgh + rho*gh;
|
||||
|
||||
#include "continuityErrs.H"
|
||||
|
||||
// For closed-volume cases adjust the pressure level
|
||||
// to obey overall mass continuity
|
||||
if (closedVolume && compressible)
|
||||
{
|
||||
p += (initialMass - fvc::domainIntegrate(thermo.rho()))
|
||||
/compressibility;
|
||||
p_rgh = p - rho*gh;
|
||||
}
|
||||
|
||||
rho = thermo.rho();
|
||||
rho = max(rho, rhoMin[i]);
|
||||
rho = min(rho, rhoMax[i]);
|
||||
rho.relax();
|
||||
|
||||
Info<< "Min/max rho:" << min(rho).value() << ' '
|
||||
<< max(rho).value() << endl;
|
||||
}
|
||||
@ -0,0 +1,5 @@
|
||||
const dictionary& simple = fluidRegions[i].solutionDict().subDict("SIMPLE");
|
||||
|
||||
const int nNonOrthCorr =
|
||||
simple.lookupOrDefault<int>("nNonOrthogonalCorrectors", 0);
|
||||
|
||||
@ -0,0 +1,32 @@
|
||||
const fvMesh& mesh = fluidRegions[i];
|
||||
|
||||
rhoThermo& thermo = thermoFluid[i];
|
||||
thermo.validate(args.executable(), "h", "e");
|
||||
|
||||
volScalarField& rho = rhoFluid[i];
|
||||
volVectorField& U = UFluid[i];
|
||||
surfaceScalarField& phi = phiFluid[i];
|
||||
|
||||
compressible::turbulenceModel& turb = turbulence[i];
|
||||
|
||||
volScalarField& p = thermo.p();
|
||||
const volScalarField& psi = thermo.psi();
|
||||
|
||||
fv::IOoptionList& fvOptions = fluidFvOptions[i];
|
||||
|
||||
const dimensionedScalar initialMass
|
||||
(
|
||||
"initialMass",
|
||||
dimMass,
|
||||
initialMassFluid[i]
|
||||
);
|
||||
|
||||
radiation::radiationModel& rad = radiation[i];
|
||||
|
||||
const label pRefCell = pRefCellFluid[i];
|
||||
const scalar pRefValue = pRefValueFluid[i];
|
||||
const bool frozenFlow = frozenFlowFluid[i];
|
||||
|
||||
volScalarField& p_rgh = p_rghFluid[i];
|
||||
const volScalarField& gh = ghFluid[i];
|
||||
const surfaceScalarField& ghf = ghfFluid[i];
|
||||
@ -0,0 +1,19 @@
|
||||
// Pressure-velocity SIMPLE corrector
|
||||
|
||||
{
|
||||
if (frozenFlow)
|
||||
{
|
||||
#include "EEqn.H"
|
||||
}
|
||||
else
|
||||
{
|
||||
p_rgh.storePrevIter();
|
||||
rho.storePrevIter();
|
||||
|
||||
#include "UEqn.H"
|
||||
#include "EEqn.H"
|
||||
#include "pEqn.H"
|
||||
|
||||
turb.correct();
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,5 @@
|
||||
const dictionary& simple = solidRegions[i].solutionDict().subDict("SIMPLE");
|
||||
|
||||
const int nNonOrthCorr =
|
||||
simple.lookupOrDefault<int>("nNonOrthogonalCorrectors", 0);
|
||||
|
||||
@ -0,0 +1,27 @@
|
||||
{
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix hEqn
|
||||
(
|
||||
(
|
||||
thermo.isotropic()
|
||||
? -fvm::laplacian(betav*thermo.alpha(), h, "laplacian(alpha,h)")
|
||||
: -fvm::laplacian(betav*taniAlpha(), h, "laplacian(alpha,h)")
|
||||
)
|
||||
==
|
||||
fvOptions(rho, h)
|
||||
);
|
||||
|
||||
hEqn.relax();
|
||||
|
||||
fvOptions.constrain(hEqn);
|
||||
|
||||
hEqn.solve();
|
||||
|
||||
fvOptions.correct(h);
|
||||
}
|
||||
}
|
||||
|
||||
thermo.correct();
|
||||
|
||||
Info<< "Min/max T:" << min(thermo.T()) << ' ' << max(thermo.T()) << endl;
|
||||
@ -0,0 +1,37 @@
|
||||
{
|
||||
volScalarField& he = thermo.he();
|
||||
|
||||
fvScalarMatrix EEqn
|
||||
(
|
||||
fvm::ddt(rho, he) + fvm::div(phi, he)
|
||||
+ fvc::ddt(rho, K) + fvc::div(phi, K)
|
||||
+ (
|
||||
he.name() == "e"
|
||||
? fvc::div
|
||||
(
|
||||
fvc::absolute(phi/fvc::interpolate(rho), U),
|
||||
p,
|
||||
"div(phiv,p)"
|
||||
)
|
||||
: -dpdt
|
||||
)
|
||||
- fvm::laplacian(turb.alphaEff(), he)
|
||||
==
|
||||
rad.Sh(thermo)
|
||||
+ fvOptions(rho, he)
|
||||
);
|
||||
|
||||
EEqn.relax();
|
||||
|
||||
fvOptions.constrain(EEqn);
|
||||
|
||||
EEqn.solve(mesh.solver(he.select(finalIter)));
|
||||
|
||||
fvOptions.correct(he);
|
||||
|
||||
thermo.correct();
|
||||
rad.correct();
|
||||
|
||||
Info<< "Min/max T:" << min(thermo.T()).value() << ' '
|
||||
<< max(thermo.T()).value() << endl;
|
||||
}
|
||||
@ -0,0 +1,33 @@
|
||||
// Solve the Momentum equation
|
||||
tmp<fvVectorMatrix> UEqn
|
||||
(
|
||||
fvm::ddt(rho, U)
|
||||
+ fvm::div(phi, U)
|
||||
+ turb.divDevRhoReff(U)
|
||||
==
|
||||
fvOptions(rho, U)
|
||||
);
|
||||
|
||||
UEqn().relax();
|
||||
|
||||
fvOptions.constrain(UEqn());
|
||||
|
||||
if (momentumPredictor)
|
||||
{
|
||||
solve
|
||||
(
|
||||
UEqn()
|
||||
==
|
||||
fvc::reconstruct
|
||||
(
|
||||
(
|
||||
- ghf*fvc::snGrad(rho)
|
||||
- fvc::snGrad(p_rgh)
|
||||
)*mesh.magSf()
|
||||
),
|
||||
mesh.solver(U.select(finalIter))
|
||||
);
|
||||
|
||||
fvOptions.correct(U);
|
||||
K = 0.5*magSqr(U);
|
||||
}
|
||||
@ -0,0 +1,21 @@
|
||||
{
|
||||
dimensionedScalar totalMass = fvc::domainIntegrate(rho);
|
||||
|
||||
scalar sumLocalContErr =
|
||||
(
|
||||
fvc::domainIntegrate(mag(rho - thermo.rho()))/totalMass
|
||||
).value();
|
||||
|
||||
scalar globalContErr =
|
||||
(
|
||||
fvc::domainIntegrate(rho - thermo.rho())/totalMass
|
||||
).value();
|
||||
|
||||
cumulativeContErr[i] += globalContErr;
|
||||
|
||||
Info<< "time step continuity errors (" << mesh.name() << ")"
|
||||
<< ": sum local = " << sumLocalContErr
|
||||
<< ", global = " << globalContErr
|
||||
<< ", cumulative = " << cumulativeContErr[i]
|
||||
<< endl;
|
||||
}
|
||||
@ -0,0 +1,55 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "compressibleCourantNo.H"
|
||||
#include "fvc.H"
|
||||
|
||||
Foam::scalar Foam::compressibleCourantNo
|
||||
(
|
||||
const fvMesh& mesh,
|
||||
const Time& runTime,
|
||||
const volScalarField& rho,
|
||||
const surfaceScalarField& phi
|
||||
)
|
||||
{
|
||||
scalarField sumPhi
|
||||
(
|
||||
fvc::surfaceSum(mag(phi))().internalField()
|
||||
/ rho.internalField()
|
||||
);
|
||||
|
||||
scalar CoNum = 0.5*gMax(sumPhi/mesh.V().field())*runTime.deltaTValue();
|
||||
|
||||
scalar meanCoNum =
|
||||
0.5*(gSum(sumPhi)/gSum(mesh.V().field()))*runTime.deltaTValue();
|
||||
|
||||
Info<< "Region: " << mesh.name() << " Courant Number mean: " << meanCoNum
|
||||
<< " max: " << CoNum << endl;
|
||||
|
||||
return CoNum;
|
||||
}
|
||||
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -0,0 +1,48 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Description
|
||||
Calculates and outputs the mean and maximum Courant Numbers for the fluid
|
||||
regions
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#ifndef compressibleCourantNo_H
|
||||
#define compressibleCourantNo_H
|
||||
|
||||
#include "fvMesh.H"
|
||||
|
||||
namespace Foam
|
||||
{
|
||||
scalar compressibleCourantNo
|
||||
(
|
||||
const fvMesh& mesh,
|
||||
const Time& runTime,
|
||||
const volScalarField& rho,
|
||||
const surfaceScalarField& phi
|
||||
);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -0,0 +1,32 @@
|
||||
scalar CoNum = -GREAT;
|
||||
|
||||
forAll(fluidRegions, regionI)
|
||||
{
|
||||
CoNum = max
|
||||
(
|
||||
compressibleCourantNo
|
||||
(
|
||||
fluidRegions[regionI],
|
||||
runTime,
|
||||
rhoFluid[regionI],
|
||||
phiFluid[regionI]
|
||||
),
|
||||
CoNum
|
||||
);
|
||||
}
|
||||
/*
|
||||
forAll (porousFluidRegions, porousI)
|
||||
{
|
||||
CoNum = max
|
||||
(
|
||||
compressibleCourantNo
|
||||
(
|
||||
porousFluidRegions[porousI],
|
||||
runTime,
|
||||
rhoPorous[porousI],
|
||||
phiPorous[porousI]
|
||||
),
|
||||
CoNum
|
||||
);
|
||||
}
|
||||
*/
|
||||
@ -0,0 +1,204 @@
|
||||
// Initialise fluid field pointer lists
|
||||
PtrList<rhoThermo> thermoFluid(fluidRegions.size());
|
||||
PtrList<volScalarField> rhoFluid(fluidRegions.size());
|
||||
PtrList<volVectorField> UFluid(fluidRegions.size());
|
||||
PtrList<surfaceScalarField> phiFluid(fluidRegions.size());
|
||||
PtrList<uniformDimensionedVectorField> gFluid(fluidRegions.size());
|
||||
PtrList<compressible::turbulenceModel> turbulence(fluidRegions.size());
|
||||
PtrList<volScalarField> p_rghFluid(fluidRegions.size());
|
||||
PtrList<volScalarField> ghFluid(fluidRegions.size());
|
||||
PtrList<surfaceScalarField> ghfFluid(fluidRegions.size());
|
||||
PtrList<radiation::radiationModel> radiation(fluidRegions.size());
|
||||
PtrList<volScalarField> KFluid(fluidRegions.size());
|
||||
PtrList<volScalarField> dpdtFluid(fluidRegions.size());
|
||||
|
||||
List<scalar> initialMassFluid(fluidRegions.size());
|
||||
List<bool> frozenFlowFluid(fluidRegions.size(), false);
|
||||
|
||||
PtrList<fv::IOoptionList> fluidFvOptions(fluidRegions.size());
|
||||
|
||||
// Populate fluid field pointer lists
|
||||
forAll(fluidRegions, i)
|
||||
{
|
||||
Info<< "*** Reading fluid mesh thermophysical properties for region "
|
||||
<< fluidRegions[i].name() << nl << endl;
|
||||
|
||||
Info<< " Adding to thermoFluid\n" << endl;
|
||||
|
||||
thermoFluid.set
|
||||
(
|
||||
i,
|
||||
rhoThermo::New(fluidRegions[i]).ptr()
|
||||
);
|
||||
|
||||
Info<< " Adding to rhoFluid\n" << endl;
|
||||
rhoFluid.set
|
||||
(
|
||||
i,
|
||||
new volScalarField
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rho",
|
||||
runTime.timeName(),
|
||||
fluidRegions[i],
|
||||
IOobject::NO_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
thermoFluid[i].rho()
|
||||
)
|
||||
);
|
||||
|
||||
Info<< " Adding to UFluid\n" << endl;
|
||||
UFluid.set
|
||||
(
|
||||
i,
|
||||
new volVectorField
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"U",
|
||||
runTime.timeName(),
|
||||
fluidRegions[i],
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
fluidRegions[i]
|
||||
)
|
||||
);
|
||||
|
||||
Info<< " Adding to phiFluid\n" << endl;
|
||||
phiFluid.set
|
||||
(
|
||||
i,
|
||||
new surfaceScalarField
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"phi",
|
||||
runTime.timeName(),
|
||||
fluidRegions[i],
|
||||
IOobject::READ_IF_PRESENT,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
linearInterpolate(rhoFluid[i]*UFluid[i])
|
||||
& fluidRegions[i].Sf()
|
||||
)
|
||||
);
|
||||
|
||||
Info<< " Adding to gFluid\n" << endl;
|
||||
gFluid.set
|
||||
(
|
||||
i,
|
||||
new uniformDimensionedVectorField
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"g",
|
||||
runTime.constant(),
|
||||
fluidRegions[i],
|
||||
IOobject::MUST_READ,
|
||||
IOobject::NO_WRITE
|
||||
)
|
||||
)
|
||||
);
|
||||
|
||||
Info<< " Adding to turbulence\n" << endl;
|
||||
turbulence.set
|
||||
(
|
||||
i,
|
||||
compressible::turbulenceModel::New
|
||||
(
|
||||
rhoFluid[i],
|
||||
UFluid[i],
|
||||
phiFluid[i],
|
||||
thermoFluid[i]
|
||||
).ptr()
|
||||
);
|
||||
|
||||
Info<< " Adding to ghFluid\n" << endl;
|
||||
ghFluid.set
|
||||
(
|
||||
i,
|
||||
new volScalarField("gh", gFluid[i] & fluidRegions[i].C())
|
||||
);
|
||||
|
||||
Info<< " Adding to ghfFluid\n" << endl;
|
||||
ghfFluid.set
|
||||
(
|
||||
i,
|
||||
new surfaceScalarField("ghf", gFluid[i] & fluidRegions[i].Cf())
|
||||
);
|
||||
|
||||
p_rghFluid.set
|
||||
(
|
||||
i,
|
||||
new volScalarField
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"p_rgh",
|
||||
runTime.timeName(),
|
||||
fluidRegions[i],
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
fluidRegions[i]
|
||||
)
|
||||
);
|
||||
|
||||
// Force p_rgh to be consistent with p
|
||||
p_rghFluid[i] = thermoFluid[i].p() - rhoFluid[i]*ghFluid[i];
|
||||
|
||||
radiation.set
|
||||
(
|
||||
i,
|
||||
radiation::radiationModel::New(thermoFluid[i].T())
|
||||
);
|
||||
|
||||
initialMassFluid[i] = fvc::domainIntegrate(rhoFluid[i]).value();
|
||||
|
||||
Info<< " Adding to KFluid\n" << endl;
|
||||
KFluid.set
|
||||
(
|
||||
i,
|
||||
new volScalarField
|
||||
(
|
||||
"K",
|
||||
0.5*magSqr(UFluid[i])
|
||||
)
|
||||
);
|
||||
|
||||
Info<< " Adding to dpdtFluid\n" << endl;
|
||||
dpdtFluid.set
|
||||
(
|
||||
i,
|
||||
new volScalarField
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"dpdt",
|
||||
runTime.timeName(),
|
||||
fluidRegions[i]
|
||||
),
|
||||
fluidRegions[i],
|
||||
dimensionedScalar
|
||||
(
|
||||
"dpdt",
|
||||
thermoFluid[i].p().dimensions()/dimTime,
|
||||
0
|
||||
)
|
||||
)
|
||||
);
|
||||
|
||||
const dictionary& pimpleDict =
|
||||
fluidRegions[i].solutionDict().subDict("PIMPLE");
|
||||
pimpleDict.readIfPresent("frozenFlow", frozenFlowFluid[i]);
|
||||
|
||||
Info<< " Adding fvOptions\n" << endl;
|
||||
fluidFvOptions.set
|
||||
(
|
||||
i,
|
||||
new fv::IOoptionList(fluidRegions[i])
|
||||
);
|
||||
}
|
||||
@ -0,0 +1,24 @@
|
||||
const wordList fluidNames(rp["fluid"]);
|
||||
|
||||
PtrList<fvMesh> fluidRegions(fluidNames.size());
|
||||
|
||||
forAll(fluidNames, i)
|
||||
{
|
||||
Info<< "Create fluid mesh for region " << fluidNames[i]
|
||||
<< " for time = " << runTime.timeName() << nl << endl;
|
||||
|
||||
fluidRegions.set
|
||||
(
|
||||
i,
|
||||
new fvMesh
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
fluidNames[i],
|
||||
runTime.timeName(),
|
||||
runTime,
|
||||
IOobject::MUST_READ
|
||||
)
|
||||
)
|
||||
);
|
||||
}
|
||||
@ -0,0 +1 @@
|
||||
List<scalar> cumulativeContErr(fluidRegions.size(), 0.0);
|
||||
@ -0,0 +1,111 @@
|
||||
{
|
||||
bool closedVolume = p_rgh.needReference();
|
||||
dimensionedScalar compressibility = fvc::domainIntegrate(psi);
|
||||
bool compressible = (compressibility.value() > SMALL);
|
||||
|
||||
rho = thermo.rho();
|
||||
|
||||
volScalarField rAU("rAU", 1.0/UEqn().A());
|
||||
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));
|
||||
|
||||
volVectorField HbyA("HbyA", U);
|
||||
HbyA = rAU*UEqn().H();
|
||||
|
||||
surfaceScalarField phig(-rhorAUf*ghf*fvc::snGrad(rho)*mesh.magSf());
|
||||
|
||||
surfaceScalarField phiHbyA
|
||||
(
|
||||
"phiHbyA",
|
||||
(
|
||||
(fvc::interpolate(rho*HbyA) & mesh.Sf())
|
||||
+ rhorAUf*fvc::ddtCorr(rho, U, phi)
|
||||
)
|
||||
+ phig
|
||||
);
|
||||
|
||||
fvOptions.makeRelative(fvc::interpolate(rho), phiHbyA);
|
||||
|
||||
// Update the fixedFluxPressure BCs to ensure flux consistency
|
||||
setSnGrad<fixedFluxPressureFvPatchScalarField>
|
||||
(
|
||||
p_rgh.boundaryField(),
|
||||
(
|
||||
phiHbyA.boundaryField()
|
||||
- fvOptions.relative(mesh.Sf().boundaryField() & U.boundaryField())
|
||||
*rho.boundaryField()
|
||||
)/(mesh.magSf().boundaryField()*rhorAUf.boundaryField())
|
||||
);
|
||||
|
||||
{
|
||||
fvScalarMatrix p_rghDDtEqn
|
||||
(
|
||||
fvc::ddt(rho) + psi*correction(fvm::ddt(p_rgh))
|
||||
+ fvc::div(phiHbyA)
|
||||
);
|
||||
|
||||
// Thermodynamic density needs to be updated by psi*d(p) after the
|
||||
// pressure solution - done in 2 parts. Part 1:
|
||||
thermo.rho() -= psi*p_rgh;
|
||||
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
fvScalarMatrix p_rghEqn
|
||||
(
|
||||
p_rghDDtEqn
|
||||
- fvm::laplacian(rhorAUf, p_rgh)
|
||||
);
|
||||
|
||||
p_rghEqn.solve
|
||||
(
|
||||
mesh.solver
|
||||
(
|
||||
p_rgh.select
|
||||
(
|
||||
(
|
||||
oCorr == nOuterCorr-1
|
||||
&& corr == nCorr-1
|
||||
&& nonOrth == nNonOrthCorr
|
||||
)
|
||||
)
|
||||
)
|
||||
);
|
||||
|
||||
if (nonOrth == nNonOrthCorr)
|
||||
{
|
||||
phi = phiHbyA + p_rghEqn.flux();
|
||||
U = HbyA
|
||||
+ rAU*fvc::reconstruct((phig + p_rghEqn.flux())/rhorAUf);
|
||||
U.correctBoundaryConditions();
|
||||
fvOptions.correct(U);
|
||||
K = 0.5*magSqr(U);
|
||||
}
|
||||
}
|
||||
|
||||
// Second part of thermodynamic density update
|
||||
thermo.rho() += psi*p_rgh;
|
||||
}
|
||||
|
||||
p = p_rgh + rho*gh;
|
||||
|
||||
// Update pressure time derivative if needed
|
||||
if (thermo.dpdt())
|
||||
{
|
||||
dpdt = fvc::ddt(p);
|
||||
}
|
||||
|
||||
// Solve continuity
|
||||
#include "rhoEqn.H"
|
||||
|
||||
// Update continuity errors
|
||||
#include "compressibleContinuityErrors.H"
|
||||
|
||||
// For closed-volume cases adjust the pressure and density levels
|
||||
// to obey overall mass continuity
|
||||
if (closedVolume && compressible)
|
||||
{
|
||||
p += (initialMass - fvc::domainIntegrate(thermo.rho()))
|
||||
/compressibility;
|
||||
rho = thermo.rho();
|
||||
p_rgh = p - rho*gh;
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,10 @@
|
||||
const dictionary& pimple = mesh.solutionDict().subDict("PIMPLE");
|
||||
|
||||
const int nCorr =
|
||||
pimple.lookupOrDefault<int>("nCorrectors", 1);
|
||||
|
||||
const int nNonOrthCorr =
|
||||
pimple.lookupOrDefault<int>("nNonOrthogonalCorrectors", 0);
|
||||
|
||||
const bool momentumPredictor =
|
||||
pimple.lookupOrDefault("momentumPredictor", true);
|
||||
@ -0,0 +1,32 @@
|
||||
fvMesh& mesh = fluidRegions[i];
|
||||
|
||||
rhoThermo& thermo = thermoFluid[i];
|
||||
thermo.validate(args.executable(), "h", "e");
|
||||
|
||||
volScalarField& rho = rhoFluid[i];
|
||||
volVectorField& U = UFluid[i];
|
||||
surfaceScalarField& phi = phiFluid[i];
|
||||
|
||||
compressible::turbulenceModel& turb = turbulence[i];
|
||||
volScalarField& K = KFluid[i];
|
||||
volScalarField& dpdt = dpdtFluid[i];
|
||||
|
||||
volScalarField& p = thermo.p();
|
||||
const volScalarField& psi = thermo.psi();
|
||||
|
||||
volScalarField& p_rgh = p_rghFluid[i];
|
||||
const volScalarField& gh = ghFluid[i];
|
||||
const surfaceScalarField& ghf = ghfFluid[i];
|
||||
|
||||
radiation::radiationModel& rad = radiation[i];
|
||||
|
||||
fv::IOoptionList& fvOptions = fluidFvOptions[i];
|
||||
|
||||
const dimensionedScalar initialMass
|
||||
(
|
||||
"initialMass",
|
||||
dimMass,
|
||||
initialMassFluid[i]
|
||||
);
|
||||
|
||||
const bool frozenFlow = frozenFlowFluid[i];
|
||||
@ -0,0 +1,34 @@
|
||||
if (finalIter)
|
||||
{
|
||||
mesh.data::add("finalIteration", true);
|
||||
}
|
||||
|
||||
if (frozenFlow)
|
||||
{
|
||||
#include "EEqn.H"
|
||||
}
|
||||
else
|
||||
{
|
||||
if (oCorr == 0)
|
||||
{
|
||||
#include "rhoEqn.H"
|
||||
}
|
||||
|
||||
#include "UEqn.H"
|
||||
#include "EEqn.H"
|
||||
|
||||
// --- PISO loop
|
||||
for (int corr=0; corr<nCorr; corr++)
|
||||
{
|
||||
#include "pEqn.H"
|
||||
}
|
||||
|
||||
turb.correct();
|
||||
|
||||
rho = thermo.rho();
|
||||
}
|
||||
|
||||
if (finalIter)
|
||||
{
|
||||
mesh.data::remove("finalIteration");
|
||||
}
|
||||
@ -0,0 +1,2 @@
|
||||
p_rgh.storePrevIter();
|
||||
rho.storePrevIter();
|
||||
@ -0,0 +1,58 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Global
|
||||
setInitialDeltaT
|
||||
|
||||
Description
|
||||
Set the initial timestep for the CHT MultiRegion solver.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
if (adjustTimeStep)
|
||||
{
|
||||
if ((runTime.timeIndex() == 0) && ((CoNum > SMALL) || (DiNum > SMALL)))
|
||||
{
|
||||
if (CoNum < SMALL)
|
||||
{
|
||||
CoNum = SMALL;
|
||||
}
|
||||
|
||||
if (DiNum < SMALL)
|
||||
{
|
||||
DiNum = SMALL;
|
||||
}
|
||||
|
||||
runTime.setDeltaT
|
||||
(
|
||||
min
|
||||
(
|
||||
min(maxCo/CoNum, maxDi/DiNum)*runTime.deltaT().value(),
|
||||
maxDeltaT
|
||||
)
|
||||
);
|
||||
Info<< "deltaT = " << runTime.deltaT().value() << endl;
|
||||
}
|
||||
}
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -0,0 +1,68 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Global
|
||||
setMultiRegionDeltaT
|
||||
|
||||
Description
|
||||
Reset the timestep to maintain a constant maximum courant and
|
||||
diffusion Numbers. Reduction of time-step is immediate, but
|
||||
increase is damped to avoid unstable oscillations.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
if (adjustTimeStep)
|
||||
{
|
||||
if (CoNum == -GREAT)
|
||||
{
|
||||
CoNum = SMALL;
|
||||
}
|
||||
|
||||
if (DiNum == -GREAT)
|
||||
{
|
||||
DiNum = SMALL;
|
||||
}
|
||||
|
||||
scalar maxDeltaTFluid = maxCo/(CoNum + SMALL);
|
||||
scalar maxDeltaTSolid = maxDi/(DiNum + SMALL);
|
||||
|
||||
scalar deltaTFluid =
|
||||
min
|
||||
(
|
||||
min(maxDeltaTFluid, 1.0 + 0.1*maxDeltaTFluid),
|
||||
1.2
|
||||
);
|
||||
|
||||
runTime.setDeltaT
|
||||
(
|
||||
min
|
||||
(
|
||||
min(deltaTFluid, maxDeltaTSolid)*runTime.deltaT().value(),
|
||||
maxDeltaT
|
||||
)
|
||||
);
|
||||
|
||||
Info<< "deltaT = " << runTime.deltaT().value() << endl;
|
||||
}
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -0,0 +1,8 @@
|
||||
// We do not have a top-level mesh. Construct the fvSolution for
|
||||
// the runTime instead.
|
||||
fvSolution solutionDict(runTime);
|
||||
|
||||
const dictionary& pimple = solutionDict.subDict("PIMPLE");
|
||||
|
||||
const int nOuterCorr =
|
||||
pimple.lookupOrDefault<int>("nOuterCorrectors", 1);
|
||||
@ -0,0 +1,107 @@
|
||||
// Initialise solid field pointer lists
|
||||
PtrList<coordinateSystem> coordinates(solidRegions.size());
|
||||
PtrList<solidThermo> thermos(solidRegions.size());
|
||||
PtrList<radiation::radiationModel> radiations(solidRegions.size());
|
||||
PtrList<fv::IOoptionList> solidHeatSources(solidRegions.size());
|
||||
PtrList<volScalarField> betavSolid(solidRegions.size());
|
||||
PtrList<volSymmTensorField> aniAlphas(solidRegions.size());
|
||||
|
||||
// Populate solid field pointer lists
|
||||
forAll(solidRegions, i)
|
||||
{
|
||||
Info<< "*** Reading solid mesh thermophysical properties for region "
|
||||
<< solidRegions[i].name() << nl << endl;
|
||||
|
||||
Info<< " Adding to thermos\n" << endl;
|
||||
thermos.set(i, solidThermo::New(solidRegions[i]));
|
||||
|
||||
Info<< " Adding to radiations\n" << endl;
|
||||
radiations.set(i, radiation::radiationModel::New(thermos[i].T()));
|
||||
|
||||
Info<< " Adding fvOptions\n" << endl;
|
||||
solidHeatSources.set
|
||||
(
|
||||
i,
|
||||
new fv::IOoptionList(solidRegions[i])
|
||||
);
|
||||
|
||||
if (!thermos[i].isotropic())
|
||||
{
|
||||
Info<< " Adding coordinateSystems\n" << endl;
|
||||
coordinates.set
|
||||
(
|
||||
i,
|
||||
coordinateSystem::New(solidRegions[i], thermos[i])
|
||||
);
|
||||
|
||||
tmp<volVectorField> tkappaByCp =
|
||||
thermos[i].Kappa()/thermos[i].Cp();
|
||||
|
||||
aniAlphas.set
|
||||
(
|
||||
i,
|
||||
new volSymmTensorField
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"Anialpha",
|
||||
runTime.timeName(),
|
||||
solidRegions[i],
|
||||
IOobject::NO_READ,
|
||||
IOobject::NO_WRITE
|
||||
),
|
||||
solidRegions[i],
|
||||
dimensionedSymmTensor
|
||||
(
|
||||
"zero",
|
||||
tkappaByCp().dimensions(),
|
||||
symmTensor::zero
|
||||
),
|
||||
zeroGradientFvPatchSymmTensorField::typeName
|
||||
)
|
||||
);
|
||||
|
||||
aniAlphas[i].internalField() =
|
||||
coordinates[i].R().transformVector(tkappaByCp());
|
||||
aniAlphas[i].correctBoundaryConditions();
|
||||
|
||||
}
|
||||
|
||||
IOobject betavSolidIO
|
||||
(
|
||||
"betavSolid",
|
||||
runTime.timeName(),
|
||||
solidRegions[i],
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
);
|
||||
|
||||
if (betavSolidIO.headerOk())
|
||||
{
|
||||
betavSolid.set
|
||||
(
|
||||
i,
|
||||
new volScalarField(betavSolidIO, solidRegions[i])
|
||||
);
|
||||
}
|
||||
else
|
||||
{
|
||||
betavSolid.set
|
||||
(
|
||||
i,
|
||||
new volScalarField
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"betavSolid",
|
||||
runTime.timeName(),
|
||||
solidRegions[i],
|
||||
IOobject::NO_READ,
|
||||
IOobject::NO_WRITE
|
||||
),
|
||||
solidRegions[i],
|
||||
dimensionedScalar("1", dimless, scalar(1.0))
|
||||
)
|
||||
);
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,29 @@
|
||||
const wordList solidsNames(rp["solid"]);
|
||||
|
||||
PtrList<fvMesh> solidRegions(solidsNames.size());
|
||||
|
||||
forAll(solidsNames, i)
|
||||
{
|
||||
Info<< "Create solid mesh for region " << solidsNames[i]
|
||||
<< " for time = " << runTime.timeName() << nl << endl;
|
||||
|
||||
solidRegions.set
|
||||
(
|
||||
i,
|
||||
new fvMesh
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
solidsNames[i],
|
||||
runTime.timeName(),
|
||||
runTime,
|
||||
IOobject::MUST_READ
|
||||
)
|
||||
)
|
||||
);
|
||||
|
||||
// Force calculation of geometric properties to prevent it being done
|
||||
// later in e.g. some boundary evaluation
|
||||
//(void)solidRegions[i].weights();
|
||||
//(void)solidRegions[i].deltaCoeffs();
|
||||
}
|
||||
@ -0,0 +1,4 @@
|
||||
const dictionary& pimple = mesh.solutionDict().subDict("PIMPLE");
|
||||
|
||||
int nNonOrthCorr =
|
||||
pimple.lookupOrDefault<int>("nNonOrthogonalCorrectors", 0);
|
||||
@ -0,0 +1,34 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Global
|
||||
readSolidTimeControls
|
||||
|
||||
Description
|
||||
Read the control parameters used in the solid
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
scalar maxDi = runTime.controlDict().lookupOrDefault<scalar>("maxDi", 10.0);
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -0,0 +1,33 @@
|
||||
fvMesh& mesh = solidRegions[i];
|
||||
solidThermo& thermo = thermos[i];
|
||||
const radiation::radiationModel& radiation = radiations[i];
|
||||
|
||||
tmp<volScalarField> trho = thermo.rho();
|
||||
const volScalarField& rho = trho();
|
||||
|
||||
tmp<volScalarField> tcp = thermo.Cp();
|
||||
const volScalarField& cp = tcp();
|
||||
|
||||
tmp<volSymmTensorField> taniAlpha;
|
||||
if (!thermo.isotropic())
|
||||
{
|
||||
volSymmTensorField& aniAlpha = aniAlphas[i];
|
||||
tmp<volVectorField> tkappaByCp = thermo.Kappa()/cp;
|
||||
const coordinateSystem& coodSys = coordinates[i];
|
||||
|
||||
aniAlpha.internalField() =
|
||||
coodSys.R().transformVector(tkappaByCp());
|
||||
aniAlpha.correctBoundaryConditions();
|
||||
|
||||
taniAlpha = tmp<volSymmTensorField>
|
||||
(
|
||||
new volSymmTensorField(aniAlpha)
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
volScalarField& h = thermo.he();
|
||||
|
||||
const volScalarField& betav = betavSolid[i];
|
||||
|
||||
fv::IOoptionList& fvOptions = solidHeatSources[i];
|
||||
@ -0,0 +1,59 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "solidRegionDiffNo.H"
|
||||
#include "fvc.H"
|
||||
|
||||
Foam::scalar Foam::solidRegionDiffNo
|
||||
(
|
||||
const fvMesh& mesh,
|
||||
const Time& runTime,
|
||||
const volScalarField& Cprho,
|
||||
const volScalarField& kappa
|
||||
)
|
||||
{
|
||||
scalar DiNum = 0.0;
|
||||
scalar meanDiNum = 0.0;
|
||||
|
||||
//- Take care: can have fluid domains with 0 cells so do not test for
|
||||
// zero internal faces.
|
||||
surfaceScalarField kapparhoCpbyDelta
|
||||
(
|
||||
mesh.surfaceInterpolation::deltaCoeffs()
|
||||
* fvc::interpolate(kappa)
|
||||
/ fvc::interpolate(Cprho)
|
||||
);
|
||||
|
||||
DiNum = gMax(kapparhoCpbyDelta.internalField())*runTime.deltaT().value();
|
||||
|
||||
meanDiNum = (average(kapparhoCpbyDelta)).value()*runTime.deltaT().value();
|
||||
|
||||
Info<< "Region: " << mesh.name() << " Diffusion Number mean: " << meanDiNum
|
||||
<< " max: " << DiNum << endl;
|
||||
|
||||
return DiNum;
|
||||
}
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -0,0 +1,48 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Description
|
||||
Calculates and outputs the mean and maximum Diffusion Numbers for the solid
|
||||
regions
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#ifndef solidRegionDiff_H
|
||||
#define solidRegionDiff_H
|
||||
|
||||
#include "fvMesh.H"
|
||||
|
||||
namespace Foam
|
||||
{
|
||||
scalar solidRegionDiffNo
|
||||
(
|
||||
const fvMesh& mesh,
|
||||
const Time& runTime,
|
||||
const volScalarField& Cprho,
|
||||
const volScalarField& kappa
|
||||
);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
// ************************************************************************* //
|
||||
@ -0,0 +1,37 @@
|
||||
scalar DiNum = -GREAT;
|
||||
|
||||
forAll(solidRegions, i)
|
||||
{
|
||||
//- Note: do not use setRegionSolidFields.H to avoid double registering Cp
|
||||
//#include "setRegionSolidFields.H"
|
||||
const solidThermo& thermo = thermos[i];
|
||||
|
||||
tmp<volScalarField> magKappa;
|
||||
if (thermo.isotropic())
|
||||
{
|
||||
magKappa = thermo.kappa();
|
||||
}
|
||||
else
|
||||
{
|
||||
magKappa = mag(thermo.Kappa());
|
||||
}
|
||||
|
||||
tmp<volScalarField> tcp = thermo.Cp();
|
||||
const volScalarField& cp = tcp();
|
||||
|
||||
tmp<volScalarField> trho = thermo.rho();
|
||||
const volScalarField& rho = trho();
|
||||
|
||||
DiNum = max
|
||||
(
|
||||
solidRegionDiffNo
|
||||
(
|
||||
solidRegions[i],
|
||||
runTime,
|
||||
rho*cp,
|
||||
magKappa()
|
||||
),
|
||||
DiNum
|
||||
);
|
||||
|
||||
}
|
||||
@ -0,0 +1,38 @@
|
||||
if (finalIter)
|
||||
{
|
||||
mesh.data::add("finalIteration", true);
|
||||
}
|
||||
|
||||
{
|
||||
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
||||
{
|
||||
tmp<fvScalarMatrix> hEqn
|
||||
(
|
||||
fvm::ddt(betav*rho, h)
|
||||
- (
|
||||
thermo.isotropic()
|
||||
? fvm::laplacian(betav*thermo.alpha(), h, "laplacian(alpha,h)")
|
||||
: fvm::laplacian(betav*taniAlpha(), h, "laplacian(alpha,h)")
|
||||
)
|
||||
==
|
||||
fvOptions(rho, h)
|
||||
);
|
||||
|
||||
hEqn().relax();
|
||||
|
||||
fvOptions.constrain(hEqn());
|
||||
|
||||
hEqn().solve(mesh.solver(h.select(finalIter)));
|
||||
|
||||
fvOptions.correct(h);
|
||||
}
|
||||
}
|
||||
|
||||
thermo.correct();
|
||||
|
||||
Info<< "Min/max T:" << min(thermo.T()) << ' ' << max(thermo.T()) << endl;
|
||||
|
||||
if (finalIter)
|
||||
{
|
||||
mesh.data::remove("finalIteration");
|
||||
}
|
||||
34
applications/solvers/heatTransfer/thermoFoam/EEqn.H
Normal file
34
applications/solvers/heatTransfer/thermoFoam/EEqn.H
Normal file
@ -0,0 +1,34 @@
|
||||
{
|
||||
volScalarField& he = thermo.he();
|
||||
|
||||
fvScalarMatrix EEqn
|
||||
(
|
||||
fvm::ddt(rho, he) + fvm::div(phi, he)
|
||||
+ fvc::ddt(rho, K) + fvc::div(phi, K)
|
||||
+ (
|
||||
he.name() == "e"
|
||||
? fvc::div
|
||||
(
|
||||
fvc::absolute(phi/fvc::interpolate(rho), U),
|
||||
p,
|
||||
"div(phiv,p)"
|
||||
)
|
||||
: -dpdt
|
||||
)
|
||||
- fvm::laplacian(alphaEff, he)
|
||||
==
|
||||
radiation->Sh(thermo)
|
||||
+ fvOptions(rho, he)
|
||||
);
|
||||
|
||||
EEqn.relax();
|
||||
|
||||
fvOptions.constrain(EEqn);
|
||||
|
||||
EEqn.solve();
|
||||
|
||||
fvOptions.correct(he);
|
||||
|
||||
thermo.correct();
|
||||
radiation->correct();
|
||||
}
|
||||
3
applications/solvers/heatTransfer/thermoFoam/Make/files
Normal file
3
applications/solvers/heatTransfer/thermoFoam/Make/files
Normal file
@ -0,0 +1,3 @@
|
||||
thermoFoam.C
|
||||
|
||||
EXE = $(FOAM_APPBIN)/thermoFoam
|
||||
24
applications/solvers/heatTransfer/thermoFoam/Make/options
Normal file
24
applications/solvers/heatTransfer/thermoFoam/Make/options
Normal file
@ -0,0 +1,24 @@
|
||||
EXE_INC = \
|
||||
-I$(LIB_SRC)/finiteVolume/lnInclude \
|
||||
-I$(LIB_SRC)/sampling/lnInclude \
|
||||
-I$(LIB_SRC)/meshTools/lnInclude \
|
||||
-I$(LIB_SRC)/fvOptions/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
|
||||
-I$(LIB_SRC)/thermophysicalModels/radiationModels/lnInclude \
|
||||
-I$(LIB_SRC)/turbulenceModels \
|
||||
-I$(LIB_SRC)/turbulenceModels/compressible/turbulenceModel/lnInclude \
|
||||
-I$(LIB_SRC)/turbulenceModels/compressible/RAS/lnInclude \
|
||||
-I$(LIB_SRC)/turbulenceModels/compressible/LES/lnInclude \
|
||||
-I$(LIB_SRC)/turbulenceModels/LES/LESdeltas/lnInclude
|
||||
|
||||
EXE_LIBS = \
|
||||
-lfiniteVolume \
|
||||
-lsampling \
|
||||
-lmeshTools \
|
||||
-lfvOptions \
|
||||
-lfluidThermophysicalModels \
|
||||
-lradiationModels \
|
||||
-lspecie \
|
||||
-lcompressibleTurbulenceModel \
|
||||
-lcompressibleRASModels \
|
||||
-lcompressibleLESModels
|
||||
54
applications/solvers/heatTransfer/thermoFoam/createFields.H
Normal file
54
applications/solvers/heatTransfer/thermoFoam/createFields.H
Normal file
@ -0,0 +1,54 @@
|
||||
Info<< "Reading thermophysical properties\n" << endl;
|
||||
|
||||
autoPtr<rhoThermo> pThermo(rhoThermo::New(mesh));
|
||||
rhoThermo& thermo = pThermo();
|
||||
thermo.validate(args.executable(), "h", "e");
|
||||
|
||||
volScalarField rho
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"rho",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::NO_WRITE
|
||||
),
|
||||
thermo.rho()
|
||||
);
|
||||
|
||||
volScalarField& p = thermo.p();
|
||||
|
||||
Info<< "Reading field U\n" << endl;
|
||||
volVectorField U
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"U",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::MUST_READ,
|
||||
IOobject::AUTO_WRITE
|
||||
),
|
||||
mesh
|
||||
);
|
||||
|
||||
#include "compressibleCreatePhi.H"
|
||||
|
||||
#include "setAlphaEff.H"
|
||||
|
||||
Info<< "Creating field dpdt\n" << endl;
|
||||
volScalarField dpdt
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"dpdt",
|
||||
runTime.timeName(),
|
||||
mesh
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar("dpdt", p.dimensions()/dimTime, 0)
|
||||
);
|
||||
|
||||
Info<< "Creating field kinetic energy K\n" << endl;
|
||||
volScalarField K("K", 0.5*magSqr(U));
|
||||
93
applications/solvers/heatTransfer/thermoFoam/setAlphaEff.H
Normal file
93
applications/solvers/heatTransfer/thermoFoam/setAlphaEff.H
Normal file
@ -0,0 +1,93 @@
|
||||
Info<< "Creating turbulence model\n" << endl;
|
||||
tmp<volScalarField> talphaEff;
|
||||
|
||||
IOobject turbulenceHeader
|
||||
(
|
||||
"turbulenceProperties",
|
||||
runTime.constant(),
|
||||
mesh,
|
||||
IOobject::MUST_READ
|
||||
);
|
||||
|
||||
IOobject RASHeader
|
||||
(
|
||||
"RASProperties",
|
||||
runTime.constant(),
|
||||
mesh,
|
||||
IOobject::MUST_READ
|
||||
);
|
||||
|
||||
IOobject LESHeader
|
||||
(
|
||||
"LESProperties",
|
||||
runTime.constant(),
|
||||
mesh,
|
||||
IOobject::MUST_READ
|
||||
);
|
||||
|
||||
if (turbulenceHeader.headerOk())
|
||||
{
|
||||
autoPtr<compressible::turbulenceModel> turbulence
|
||||
(
|
||||
compressible::turbulenceModel::New
|
||||
(
|
||||
rho,
|
||||
U,
|
||||
phi,
|
||||
thermo
|
||||
)
|
||||
);
|
||||
|
||||
talphaEff = turbulence->alphaEff();
|
||||
}
|
||||
else if (RASHeader.headerOk())
|
||||
{
|
||||
autoPtr<compressible::RASModel> turbulence
|
||||
(
|
||||
compressible::RASModel::New
|
||||
(
|
||||
rho,
|
||||
U,
|
||||
phi,
|
||||
thermo
|
||||
)
|
||||
);
|
||||
|
||||
talphaEff = turbulence->alphaEff();
|
||||
}
|
||||
else if (LESHeader.headerOk())
|
||||
{
|
||||
autoPtr<compressible::LESModel> turbulence
|
||||
(
|
||||
compressible::LESModel::New
|
||||
(
|
||||
rho,
|
||||
U,
|
||||
phi,
|
||||
thermo
|
||||
)
|
||||
);
|
||||
|
||||
talphaEff = turbulence->alphaEff();
|
||||
}
|
||||
else
|
||||
{
|
||||
talphaEff = tmp<volScalarField>
|
||||
(
|
||||
new volScalarField
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"alphaEff",
|
||||
runTime.timeName(),
|
||||
mesh,
|
||||
IOobject::NO_READ,
|
||||
IOobject::NO_WRITE
|
||||
),
|
||||
mesh,
|
||||
dimensionedScalar("0", dimMass/dimLength/dimTime, 0.0)
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
const volScalarField& alphaEff = talphaEff();
|
||||
107
applications/solvers/heatTransfer/thermoFoam/thermoFoam.C
Normal file
107
applications/solvers/heatTransfer/thermoFoam/thermoFoam.C
Normal file
@ -0,0 +1,107 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration |
|
||||
\\ / A nd | Copyright (C) 2013 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Application
|
||||
thermoFoam
|
||||
|
||||
Description
|
||||
Evolves the thermodynamics on a frozen flow field
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvCFD.H"
|
||||
#include "rhoThermo.H"
|
||||
#include "turbulenceModel.H"
|
||||
#include "RASModel.H"
|
||||
#include "LESModel.H"
|
||||
#include "radiationModel.H"
|
||||
#include "fvIOoptionList.H"
|
||||
#include "simpleControl.H"
|
||||
#include "pimpleControl.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
#include "setRootCase.H"
|
||||
|
||||
#include "createTime.H"
|
||||
#include "createMesh.H"
|
||||
#include "createFields.H"
|
||||
#include "createFvOptions.H"
|
||||
#include "createRadiationModel.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
Info<< "\nEvolving thermodynamics\n" << endl;
|
||||
|
||||
if (mesh.solutionDict().found("SIMPLE"))
|
||||
{
|
||||
simpleControl simple(mesh);
|
||||
|
||||
while (simple.loop())
|
||||
{
|
||||
Info<< "Time = " << runTime.timeName() << nl << endl;
|
||||
|
||||
while (simple.correctNonOrthogonal())
|
||||
{
|
||||
#include "EEqn.H"
|
||||
}
|
||||
|
||||
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
||||
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
||||
<< nl << endl;
|
||||
|
||||
runTime.write();
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
pimpleControl pimple(mesh);
|
||||
|
||||
while (runTime.run())
|
||||
{
|
||||
runTime++;
|
||||
|
||||
Info<< "Time = " << runTime.timeName() << nl << endl;
|
||||
|
||||
while (pimple.correctNonOrthogonal())
|
||||
{
|
||||
#include "EEqn.H"
|
||||
}
|
||||
|
||||
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
||||
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
||||
<< nl << endl;
|
||||
|
||||
runTime.write();
|
||||
}
|
||||
}
|
||||
|
||||
Info<< "End\n" << endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// ************************************************************************* //
|
||||
Reference in New Issue
Block a user