Add the OpenFOAM source tree

This commit is contained in:
Henry
2014-12-10 22:40:10 +00:00
parent ee487c860d
commit 446e5777f0
13379 changed files with 3983377 additions and 0 deletions

View File

@ -0,0 +1,3 @@
wallGradU.C
EXE = $(FOAM_APPBIN)/wallGradU

View File

@ -0,0 +1,6 @@
EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude
EXE_LIBS = \
-lfiniteVolume \
-lgenericPatchFields

View File

@ -0,0 +1,114 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
wallGradU
Description
Calculates and writes the gradient of U at the wall.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "wallFvPatch.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
timeSelector::addOptions();
#include "setRootCase.H"
#include "createTime.H"
instantList timeDirs = timeSelector::select0(runTime, args);
#include "createMesh.H"
forAll(timeDirs, timeI)
{
runTime.setTime(timeDirs[timeI], timeI);
Info<< "Time = " << runTime.timeName() << endl;
IOobject Uheader
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ
);
// Check U exists
if (Uheader.headerOk())
{
mesh.readUpdate();
Info<< " Reading U" << endl;
volVectorField U(Uheader, mesh);
Info<< " Calculating wallGradU" << endl;
volVectorField wallGradU
(
IOobject
(
"wallGradU",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedVector
(
"wallGradU",
U.dimensions()/dimLength,
vector::zero
)
);
const fvPatchList& patches = mesh.boundary();
forAll(wallGradU.boundaryField(), patchi)
{
const fvPatch& currPatch = patches[patchi];
if (isA<wallFvPatch>(currPatch))
{
wallGradU.boundaryField()[patchi] =
-U.boundaryField()[patchi].snGrad();
}
}
wallGradU.write();
}
else
{
Info<< " No U" << endl;
}
}
Info<< "End" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
wallHeatFlux.C
EXE = $(FOAM_APPBIN)/wallHeatFlux

View File

@ -0,0 +1,20 @@
EXE_INC = \
-I$(LIB_SRC)/turbulenceModels \
-I$(LIB_SRC)/turbulenceModels/compressible/turbulenceModel/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/reactionThermo/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/solidThermo/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude
EXE_LIBS = \
-lcompressibleTurbulenceModel \
-lcompressibleRASModels \
-lcompressibleLESModels \
-lLESdeltas \
-lreactionThermophysicalModels \
-lfiniteVolume \
-lgenericPatchFields \
-lspecie \
-lfluidThermophysicalModels \
-lsolidThermo

View File

@ -0,0 +1,56 @@
autoPtr<basicThermo> thermo
(
basicThermo::New(mesh)
);
const volScalarField& h = thermo->he();
// Register copy of thermo density
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh
),
thermo->rho()
);
// Construct turbulence model (if fluid)
autoPtr<volVectorField> UPtr;
autoPtr<surfaceScalarField> phiPtr;
autoPtr<compressible::turbulenceModel> turbulence;
if (isA<fluidThermo>(thermo()))
{
UPtr.reset
(
new volVectorField
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
)
);
const volVectorField& U = UPtr();
#include "compressibleCreatePhi.H"
// Copy phi to autoPtr. Rename to make sure copy is now registered as 'phi'.
phi.rename("phiFluid");
phiPtr.reset(new surfaceScalarField("phi", phi));
turbulence = compressible::turbulenceModel::New
(
rho,
U,
phiPtr(),
refCast<const fluidThermo>(thermo())
);
}

View File

@ -0,0 +1,115 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
wallHeatFlux
Description
Calculates and writes the heat flux for all patches as the boundary field
of a volScalarField and also prints the integrated flux for all wall
patches.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "turbulenceModel.H"
#include "solidThermo.H"
#include "wallFvPatch.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
timeSelector::addOptions();
#include "addRegionOption.H"
#include "setRootCase.H"
#include "createTime.H"
instantList timeDirs = timeSelector::select0(runTime, args);
#include "createNamedMesh.H"
forAll(timeDirs, timeI)
{
runTime.setTime(timeDirs[timeI], timeI);
Info<< "Time = " << runTime.timeName() << endl;
mesh.readUpdate();
#include "createFields.H"
surfaceScalarField heatFlux
(
fvc::interpolate
(
(
turbulence.valid()
? turbulence->alphaEff()()
: thermo->alpha()
)
)*fvc::snGrad(h)
);
const surfaceScalarField::GeometricBoundaryField& patchHeatFlux =
heatFlux.boundaryField();
Info<< "\nWall heat fluxes [W]" << endl;
forAll(patchHeatFlux, patchi)
{
if (isA<wallFvPatch>(mesh.boundary()[patchi]))
{
Info<< mesh.boundary()[patchi].name()
<< " "
<< gSum
(
mesh.magSf().boundaryField()[patchi]
*patchHeatFlux[patchi]
)
<< endl;
}
}
Info<< endl;
volScalarField wallHeatFlux
(
IOobject
(
"wallHeatFlux",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar("wallHeatFlux", heatFlux.dimensions(), 0.0)
);
forAll(wallHeatFlux.boundaryField(), patchi)
{
wallHeatFlux.boundaryField()[patchi] = patchHeatFlux[patchi];
}
wallHeatFlux.write();
}
Info<< "End" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
wallShearStress.C
EXE = $(FOAM_APPBIN)/wallShearStress

View File

@ -0,0 +1,14 @@
EXE_INC = \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/turbulenceModels \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude
EXE_LIBS = \
-lincompressibleTransportModels \
-lincompressibleRASModels \
-lfluidThermophysicalModels \
-lspecie \
-lcompressibleRASModels \
-lfiniteVolume \
-lgenericPatchFields

View File

@ -0,0 +1,215 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
wallShearStress
Description
Calculates and reports wall shear stress for all patches, for the
specified times when using RAS turbulence models.
Default behaviour assumes operating in incompressible mode.
Use the -compressible option for compressible RAS cases.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "incompressible/singlePhaseTransportModel/singlePhaseTransportModel.H"
#include "incompressible/RAS/RASModel/RASModel.H"
#include "fluidThermo.H"
#include "compressible/RAS/RASModel/RASModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
void calcIncompressible
(
const fvMesh& mesh,
const Time& runTime,
const volVectorField& U,
volVectorField& wallShearStress
)
{
#include "createPhi.H"
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible::RASModel> model
(
incompressible::RASModel::New(U, phi, laminarTransport)
);
const volSymmTensorField Reff(model->devReff());
forAll(wallShearStress.boundaryField(), patchI)
{
wallShearStress.boundaryField()[patchI] =
(
-mesh.Sf().boundaryField()[patchI]
/mesh.magSf().boundaryField()[patchI]
) & Reff.boundaryField()[patchI];
}
}
void calcCompressible
(
const fvMesh& mesh,
const Time& runTime,
const volVectorField& U,
volVectorField& wallShearStress
)
{
IOobject rhoHeader
(
"rho",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
);
if (!rhoHeader.headerOk())
{
Info<< " no rho field" << endl;
return;
}
Info<< "Reading field rho\n" << endl;
volScalarField rho(rhoHeader, mesh);
#include "compressibleCreatePhi.H"
autoPtr<fluidThermo> pThermo(fluidThermo::New(mesh));
fluidThermo& thermo = pThermo();
autoPtr<compressible::RASModel> model
(
compressible::RASModel::New
(
rho,
U,
phi,
thermo
)
);
const volSymmTensorField Reff(model->devRhoReff());
forAll(wallShearStress.boundaryField(), patchI)
{
wallShearStress.boundaryField()[patchI] =
(
-mesh.Sf().boundaryField()[patchI]
/mesh.magSf().boundaryField()[patchI]
) & Reff.boundaryField()[patchI];
}
}
int main(int argc, char *argv[])
{
timeSelector::addOptions();
#include "addRegionOption.H"
argList::addBoolOption
(
"compressible",
"calculate compressible wall shear stress"
);
#include "setRootCase.H"
#include "createTime.H"
instantList timeDirs = timeSelector::select0(runTime, args);
#include "createNamedMesh.H"
const bool compressible = args.optionFound("compressible");
forAll(timeDirs, timeI)
{
runTime.setTime(timeDirs[timeI], timeI);
Info<< "Time = " << runTime.timeName() << endl;
mesh.readUpdate();
volVectorField wallShearStress
(
IOobject
(
"wallShearStress",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedVector
(
"wallShearStress",
sqr(dimLength)/sqr(dimTime),
vector::zero
)
);
IOobject UHeader
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
);
if (UHeader.headerOk())
{
Info<< "Reading field U\n" << endl;
volVectorField U(UHeader, mesh);
if (compressible)
{
calcCompressible(mesh, runTime, U, wallShearStress);
}
else
{
calcIncompressible(mesh, runTime, U, wallShearStress);
}
}
else
{
Info<< " no U field" << endl;
}
Info<< "Writing wall shear stress to field " << wallShearStress.name()
<< nl << endl;
wallShearStress.write();
}
Info<< "End" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
yPlusLES.C
EXE = $(FOAM_APPBIN)/yPlusLES

View File

@ -0,0 +1,13 @@
EXE_INC = \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/turbulenceModels \
-I$(LIB_SRC)/turbulenceModels/incompressible/LES/LESModel \
-I$(LIB_SRC)/turbulenceModels/LES/LESdeltas/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/finiteVolume/lnInclude
EXE_LIBS = \
-lincompressibleLESModels \
-lincompressibleTransportModels \
-lfiniteVolume \
-lgenericPatchFields

View File

@ -0,0 +1,24 @@
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
mesh
);
#include "createPhi.H"
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible::LESModel> sgsModel
(
incompressible::LESModel::New(U, phi, laminarTransport)
);
volScalarField::GeometricBoundaryField d(nearWallDist(mesh).y());

View File

@ -0,0 +1,146 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
yPlusLES
Description
Calculates and reports yPlus for all wall patches, for the specified times
when using LES turbulence models.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "incompressible/singlePhaseTransportModel/singlePhaseTransportModel.H"
#include "LESModel.H"
#include "nearWallDist.H"
#include "wallDist.H"
#include "wallFvPatch.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
timeSelector::addOptions();
#include "setRootCase.H"
#include "createTime.H"
instantList timeDirs = timeSelector::select0(runTime, args);
#include "createMesh.H"
forAll(timeDirs, timeI)
{
runTime.setTime(timeDirs[timeI], timeI);
Info<< "Time = " << runTime.timeName() << endl;
fvMesh::readUpdateState state = mesh.readUpdate();
// Wall distance
if (timeI == 0 || state != fvMesh::UNCHANGED)
{
Info<< "Calculating wall distance\n" << endl;
wallDist y(mesh, true);
Info<< "Writing wall distance to field "
<< y.name() << nl << endl;
y.write();
}
volScalarField yPlus
(
IOobject
(
"yPlus",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("yPlus", dimless, 0.0)
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
mesh
);
#include "createPhi.H"
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible::LESModel> sgsModel
(
incompressible::LESModel::New(U, phi, laminarTransport)
);
volScalarField::GeometricBoundaryField d = nearWallDist(mesh).y();
volScalarField nuEff(sgsModel->nuEff());
const fvPatchList& patches = mesh.boundary();
const volScalarField nuLam(sgsModel->nu());
forAll(patches, patchi)
{
const fvPatch& currPatch = patches[patchi];
if (isA<wallFvPatch>(currPatch))
{
yPlus.boundaryField()[patchi] =
d[patchi]
*sqrt
(
nuEff.boundaryField()[patchi]
*mag(U.boundaryField()[patchi].snGrad())
)
/nuLam.boundaryField()[patchi];
const scalarField& Yp = yPlus.boundaryField()[patchi];
Info<< "Patch " << patchi
<< " named " << currPatch.name()
<< " y+ : min: " << gMin(Yp) << " max: " << gMax(Yp)
<< " average: " << gAverage(Yp) << nl << endl;
}
}
Info<< "Writing yPlus to field "
<< yPlus.name() << nl << endl;
yPlus.write();
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -0,0 +1,3 @@
yPlusRAS.C
EXE = $(FOAM_APPBIN)/yPlusRAS

View File

@ -0,0 +1,19 @@
EXE_INC = \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/turbulenceModels \
-I$(LIB_SRC)/turbulenceModels/compressible/RAS/derivedFvPatchFields/wallFunctions/mutWallFunctions \
-I$(LIB_SRC)/turbulenceModels/incompressible/RAS/derivedFvPatchFields/wallFunctions/nutWallFunctions \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/finiteVolume/lnInclude
EXE_LIBS = \
-lincompressibleTransportModels \
-lincompressibleRASModels \
-lfluidThermophysicalModels \
-lspecie \
-lcompressibleRASModels \
-lfiniteVolume \
-lgenericPatchFields \
-lmeshTools \
-lsampling

View File

@ -0,0 +1,269 @@
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
yPlusRAS
Description
Calculates and reports yPlus for all wall patches, for the specified times
when using RAS turbulence models.
Default behaviour assumes operating in incompressible mode.
Use the -compressible option for compressible RAS cases.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "incompressible/singlePhaseTransportModel/singlePhaseTransportModel.H"
#include "incompressible/RAS/RASModel/RASModel.H"
#include "nutWallFunction/nutWallFunctionFvPatchScalarField.H"
#include "fluidThermo.H"
#include "compressible/RAS/RASModel/RASModel.H"
#include "mutWallFunction/mutWallFunctionFvPatchScalarField.H"
#include "wallDist.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
void calcIncompressibleYPlus
(
const fvMesh& mesh,
const Time& runTime,
const volVectorField& U,
volScalarField& yPlus
)
{
typedef incompressible::nutWallFunctionFvPatchScalarField
wallFunctionPatchField;
#include "createPhi.H"
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible::RASModel> RASModel
(
incompressible::RASModel::New(U, phi, laminarTransport)
);
const volScalarField::GeometricBoundaryField nutPatches =
RASModel->nut()().boundaryField();
bool foundNutPatch = false;
forAll(nutPatches, patchi)
{
if (isA<wallFunctionPatchField>(nutPatches[patchi]))
{
foundNutPatch = true;
const wallFunctionPatchField& nutPw =
dynamic_cast<const wallFunctionPatchField&>
(nutPatches[patchi]);
yPlus.boundaryField()[patchi] = nutPw.yPlus();
const scalarField& Yp = yPlus.boundaryField()[patchi];
Info<< "Patch " << patchi
<< " named " << nutPw.patch().name()
<< " y+ : min: " << gMin(Yp) << " max: " << gMax(Yp)
<< " average: " << gAverage(Yp) << nl << endl;
}
}
if (!foundNutPatch)
{
Info<< " no " << wallFunctionPatchField::typeName << " patches"
<< endl;
}
}
void calcCompressibleYPlus
(
const fvMesh& mesh,
const Time& runTime,
const volVectorField& U,
volScalarField& yPlus
)
{
typedef compressible::mutWallFunctionFvPatchScalarField
wallFunctionPatchField;
IOobject rhoHeader
(
"rho",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
);
if (!rhoHeader.headerOk())
{
Info<< " no rho field" << endl;
return;
}
Info<< "Reading field rho\n" << endl;
volScalarField rho(rhoHeader, mesh);
#include "compressibleCreatePhi.H"
autoPtr<fluidThermo> pThermo
(
fluidThermo::New(mesh)
);
fluidThermo& thermo = pThermo();
autoPtr<compressible::RASModel> RASModel
(
compressible::RASModel::New
(
rho,
U,
phi,
thermo
)
);
const volScalarField::GeometricBoundaryField mutPatches =
RASModel->mut()().boundaryField();
bool foundMutPatch = false;
forAll(mutPatches, patchi)
{
if (isA<wallFunctionPatchField>(mutPatches[patchi]))
{
foundMutPatch = true;
const wallFunctionPatchField& mutPw =
dynamic_cast<const wallFunctionPatchField&>
(mutPatches[patchi]);
yPlus.boundaryField()[patchi] = mutPw.yPlus();
const scalarField& Yp = yPlus.boundaryField()[patchi];
Info<< "Patch " << patchi
<< " named " << mutPw.patch().name()
<< " y+ : min: " << gMin(Yp) << " max: " << gMax(Yp)
<< " average: " << gAverage(Yp) << nl << endl;
}
}
if (!foundMutPatch)
{
Info<< " no " << wallFunctionPatchField::typeName << " patches"
<< endl;
}
}
int main(int argc, char *argv[])
{
timeSelector::addOptions();
#include "addRegionOption.H"
argList::addBoolOption
(
"compressible",
"calculate compressible y+"
);
#include "setRootCase.H"
#include "createTime.H"
instantList timeDirs = timeSelector::select0(runTime, args);
#include "createNamedMesh.H"
const bool compressible = args.optionFound("compressible");
forAll(timeDirs, timeI)
{
runTime.setTime(timeDirs[timeI], timeI);
Info<< "Time = " << runTime.timeName() << endl;
fvMesh::readUpdateState state = mesh.readUpdate();
// Wall distance
if (timeI == 0 || state != fvMesh::UNCHANGED)
{
Info<< "Calculating wall distance\n" << endl;
wallDist y(mesh, true);
Info<< "Writing wall distance to field " << y.name() << nl << endl;
y.write();
}
volScalarField yPlus
(
IOobject
(
"yPlus",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("yPlus", dimless, 0.0)
);
IOobject UHeader
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
);
if (UHeader.headerOk())
{
Info<< "Reading field U\n" << endl;
volVectorField U(UHeader, mesh);
if (compressible)
{
calcCompressibleYPlus(mesh, runTime, U, yPlus);
}
else
{
calcIncompressibleYPlus(mesh, runTime, U, yPlus);
}
}
else
{
Info<< " no U field" << endl;
}
Info<< "Writing yPlus to field " << yPlus.name() << nl << endl;
yPlus.write();
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //