turbulenceModels/laminar: Maxwell, Giesekus: Added multi-mode support

By specifying a list of coefficients in turbulenceProperties, e.g. for the
generalised Maxwell model:

        modes
        (
            {
                lambda          0.01;
            }

            {
                lambda          0.04;
            }
        );

of for the generalised Giesekus model:

        modes
        (
            {
                lambda          0.01;
                alphaG          0.05;
            }

            {
                lambda          0.04;
                alphaG          0.2;
            }
        );

Visco-elasticity stress tensors (sigma0, sigma1...) are solved for each mode and
summed to create the effective stress of the complex fluid:

Any number of modes can be specified and if only one mode is required the
'modes' entry is not read and the coefficients are obtained as before.

The mode sigma? fields are read if present otherwise are constructed and
initialised from the sigma field but all of the mode sigma? fields are written
for restart and the sigma field contains the sum.

    References:
        http://en.wikipedia.org/wiki/Generalized_Maxwell_model

        Wiechert, E. (1889). Ueber elastische Nachwirkung.
        (Doctoral dissertation, Hartungsche buchdr.).

        Wiechert, E. (1893).
        Gesetze der elastischen Nachwirkung für constante Temperatur.
        Annalen der Physik, 286(11), 546-570.
This commit is contained in:
Henry Weller
2020-03-11 23:24:08 +00:00
parent 262a3366f9
commit a7eb350536
5 changed files with 285 additions and 60 deletions

View File

@ -23,14 +23,44 @@ laminar
MaxwellCoeffs
{
nuM 0.002;
// Single mode coefficient
lambda 0.03;
// Example 2-mode specification
// modes
// (
// {
// lambda 0.01;
// }
// {
// lambda 0.04;
// }
// );
}
GiesekusCoeffs
{
nuM 0.002;
// Single mode coefficients
lambda 0.03;
alphaG 0.1;
// Example 2-mode specification
// modes
// (
// {
// lambda 0.01;
// alphaG 0.05;
// }
// {
// lambda 0.04;
// alphaG 0.2;
// }
// );
}
printCoeffs on;