Solvers: Added support for extrapolated pressure boundary conditions

The boundary conditions of HbyA are now constrained by the new "constrainHbyA"
function which applies the velocity boundary values for patches for which the
velocity cannot be modified by assignment and pressure extrapolation is
not specified via the new
"fixedFluxExtrapolatedPressureFvPatchScalarField".

The new function "constrainPressure" sets the pressure gradient
appropriately for "fixedFluxPressureFvPatchScalarField" and
"fixedFluxExtrapolatedPressureFvPatchScalarField" boundary conditions to
ensure the evaluated flux corresponds to the known velocity values at
the boundary.

The "fixedFluxPressureFvPatchScalarField" boundary condition operates
exactly as before, ensuring the correct flux at fixed-flux boundaries by
compensating for the body forces (gravity in particular) with the
pressure gradient.

The new "fixedFluxExtrapolatedPressureFvPatchScalarField" boundary
condition may be used for cases with or without body-forces to set the
pressure gradient to compensate not only for the body-force but also the
extrapolated "HbyA" which provides a second-order boundary condition for
pressure.  This is useful for a range a problems including impinging
flow, extrapolated inlet conditions with body-forces or for highly
viscous flows, pressure-induced separation etc.  To test this boundary
condition at walls in the motorBike tutorial case set

    lowerWall
    {
        type            fixedFluxExtrapolatedPressure;
    }

    motorBikeGroup
    {
        type            fixedFluxExtrapolatedPressure;
    }

Currently the new extrapolated pressure boundary condition is supported
for all incompressible and sub-sonic compressible solvers except those
providing implicit and tensorial porosity support.  The approach will be
extended to cover these solvers and options in the future.

Note: the extrapolated pressure boundary condition is experimental and
requires further testing to assess the range of applicability,
stability, accuracy etc.

Henry G. Weller
CFD Direct Ltd.
This commit is contained in:
Henry Weller
2016-02-13 17:48:26 +00:00
parent f58a6652f2
commit acaf72b4b4
95 changed files with 886 additions and 474 deletions

View File

@ -2,7 +2,7 @@
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
@ -125,8 +125,7 @@ int main(int argc, char *argv[])
fvOptions.correct(U);
volScalarField rAU(1.0/UEqn().A());
volVectorField HbyA("HbyA", U);
HbyA = rAU*UEqn().H();
volVectorField HbyA(constrainHbyA(rAU*UEqn().H(), U, p));
UEqn.clear();
surfaceScalarField phiHbyA
(
@ -135,6 +134,9 @@ int main(int argc, char *argv[])
);
adjustPhi(phiHbyA, U, p);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, U, phiHbyA, rAU);
// Non-orthogonal pressure corrector loop
while (simple.correctNonOrthogonal())
{

View File

@ -2,7 +2,7 @@
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
@ -73,9 +73,7 @@ int main(int argc, char *argv[])
while (piso.correct())
{
volScalarField rAU(1.0/UEqn.A());
volVectorField HbyA("HbyA", U);
HbyA = rAU*UEqn.H();
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
surfaceScalarField phiHbyA
(
"phiHbyA",
@ -85,6 +83,9 @@ int main(int argc, char *argv[])
adjustPhi(phiHbyA, U, p);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, U, phiHbyA, rAU);
// Non-orthogonal pressure corrector loop
while (piso.correctNonOrthogonal())
{

View File

@ -2,7 +2,7 @@
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
@ -77,9 +77,7 @@ int main(int argc, char *argv[])
while (piso.correct())
{
volScalarField rAU(1.0/UEqn.A());
volVectorField HbyA("HbyA", U);
HbyA = rAU*UEqn.H();
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
surfaceScalarField phiHbyA
(
"phiHbyA",
@ -89,6 +87,9 @@ int main(int argc, char *argv[])
adjustPhi(phiHbyA, U, p);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, U, phiHbyA, rAU);
// Non-orthogonal pressure corrector loop
while (piso.correctNonOrthogonal())
{

View File

@ -26,6 +26,9 @@ if (pimple.nCorrPISO() <= 1)
UrelEqn.clear();
}
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, Urel, phiHbyA, rAtUrel());
// Non-orthogonal pressure corrector loop
while (pimple.correctNonOrthogonal())
{

View File

@ -1,7 +1,5 @@
volScalarField rAU(1.0/UEqn().A());
volVectorField HbyA("HbyA", U);
HbyA = rAU*UEqn().H();
volVectorField HbyA(constrainHbyA(rAU*UEqn().H(), U, p));
surfaceScalarField phiHbyA
(
"phiHbyA",
@ -28,17 +26,8 @@ if (pimple.nCorrPISO() <= 1)
UEqn.clear();
}
surfaceScalarField rAUf("rAUf", fvc::interpolate(rAtU()));
// Update the fixedFluxPressure BCs to ensure flux consistency
setSnGrad<fixedFluxPressureFvPatchScalarField>
(
p.boundaryField(),
(
phiHbyA.boundaryField()
- MRF.relative(mesh.Sf().boundaryField() & U.boundaryField())
)/(mesh.magSf().boundaryField()*rAUf.boundaryField())
);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, U, phiHbyA, rAtU(), MRF);
// Non-orthogonal pressure corrector loop
while (pimple.correctNonOrthogonal())
@ -46,7 +35,7 @@ while (pimple.correctNonOrthogonal())
// Pressure corrector
fvScalarMatrix pEqn
(
fvm::laplacian(rAUf, p) == fvc::div(phiHbyA)
fvm::laplacian(rAtU(), p) == fvc::div(phiHbyA)
);
pEqn.setReference(pRefCell, pRefValue);

View File

@ -1,7 +1,5 @@
volScalarField rAU(1.0/UEqn().A());
volVectorField HbyA("HbyA", U);
HbyA = rAU*UEqn().H();
volVectorField HbyA(constrainHbyA(rAU*UEqn().H(), U, p));
surfaceScalarField phiHbyA
(
"phiHbyA",
@ -33,24 +31,15 @@ if (pimple.nCorrPISO() <= 1)
UEqn.clear();
}
surfaceScalarField rAUf("rAUf", fvc::interpolate(rAtU()));
// Update the fixedFluxPressure BCs to ensure flux consistency
setSnGrad<fixedFluxPressureFvPatchScalarField>
(
p.boundaryField(),
(
phiHbyA.boundaryField()
- MRF.relative(mesh.Sf().boundaryField() & U.boundaryField())
)/(mesh.magSf().boundaryField()*rAUf.boundaryField())
);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, U, phiHbyA, rAtU(), MRF);
// Non-orthogonal pressure corrector loop
while (pimple.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvm::laplacian(rAUf, p) == fvc::div(phiHbyA)
fvm::laplacian(rAtU(), p) == fvc::div(phiHbyA)
);
pEqn.setReference(pRefCell, pRefValue);

View File

@ -2,7 +2,7 @@
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
@ -39,7 +39,6 @@ Description
#include "pimpleControl.H"
#include "CorrectPhi.H"
#include "fvOptions.H"
#include "fixedFluxPressureFvPatchScalarField.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

View File

@ -2,7 +2,7 @@
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
@ -39,7 +39,6 @@ Description
#include "turbulentTransportModel.H"
#include "pimpleControl.H"
#include "fvOptions.H"
#include "fixedFluxPressureFvPatchScalarField.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

View File

@ -1,6 +1,5 @@
volScalarField rAU(1.0/UEqn.A());
volVectorField HbyA("HbyA", U);
HbyA = rAU*UEqn.H();
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
surfaceScalarField phiHbyA
(
"phiHbyA",
@ -12,6 +11,9 @@ MRF.makeRelative(phiHbyA);
adjustPhi(phiHbyA, U, p);
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, U, phiHbyA, rAU, MRF);
// Non-orthogonal pressure corrector loop
while (piso.correctNonOrthogonal())
{

View File

@ -18,6 +18,9 @@
UrelEqn.clear();
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, Urel, phiHbyA, rAtUrel());
// Non-orthogonal pressure corrector loop
while (simple.correctNonOrthogonal())
{

View File

@ -1,8 +1,6 @@
{
volScalarField rAU(1.0/UEqn().A());
volVectorField HbyA("HbyA", U);
HbyA = rAU*UEqn().H();
volVectorField HbyA(constrainHbyA(rAU*UEqn().H(), U, p));
surfaceScalarField phiHbyA("phiHbyA", fvc::interpolate(HbyA) & mesh.Sf());
MRF.makeRelative(phiHbyA);
adjustPhi(phiHbyA, U, p);
@ -19,6 +17,9 @@
UEqn.clear();
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, U, phiHbyA, rAtU(), MRF);
// Non-orthogonal pressure corrector loop
while (simple.correctNonOrthogonal())
{

View File

@ -1,12 +1,13 @@
volVectorField HbyA("HbyA", U);
tmp<volVectorField> tHbyA;
if (pressureImplicitPorosity)
{
HbyA = trTU()&UEqn().H();
tHbyA = constrainHbyA(trTU()&UEqn().H(), U, p);
}
else
{
HbyA = trAU()*UEqn().H();
tHbyA = constrainHbyA(trAU()*UEqn().H(), U, p);
}
volVectorField& HbyA = tHbyA();
UEqn.clear();
surfaceScalarField phiHbyA("phiHbyA", fvc::interpolate(HbyA) & mesh.Sf());