solvers::XiFluid: New solver module for compressible premixed/partially-premixed combustion
executed with foamRun for single region simulations of foamMultiRun for
multi-region simulations. Replaces XiFoam and all the corresponding
tutorials have been updated and moved to tutorials/modules/XiFluid.
Class
Foam::solvers::XiFluid
Description
Solver module for compressible premixed/partially-premixed combustion with
turbulence modelling.
Combusting RANS code using the b-Xi two-equation model.
Xi may be obtained by either the solution of the Xi transport
equation or from an algebraic expression. Both approaches are
based on Gulder's flame speed correlation which has been shown
to be appropriate by comparison with the results from the
spectral model.
Strain effects are encorporated directly into the Xi equation
but not in the algebraic approximation. Further work need to be
done on this issue, particularly regarding the enhanced removal rate
caused by flame compression. Analysis using results of the spectral
model will be required.
For cases involving very lean Propane flames or other flames which are
very strain-sensitive, a transport equation for the laminar flame
speed is present. This equation is derived using heuristic arguments
involving the strain time scale and the strain-rate at extinction.
the transport velocity is the same as that for the Xi equation.
Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
pseudo-transient and steady simulations.
Optional fvModels and fvConstraints are provided to enhance the simulation
in many ways including adding various sources, chemical reactions,
combustion, Lagrangian particles, radiation, surface film etc. and
constraining or limiting the solution.
Reference:
\verbatim
Greenshields, C. J., & Weller, H. G. (2022).
Notes on Computational Fluid Dynamics: General Principles.
CFD Direct Ltd.: Reading, UK.
\endverbatim
SourceFiles
XiFluid.C
See also
Foam::solvers::fluidSolver
Foam::solvers::isothermalFluid
This commit is contained in:
@ -14,7 +14,9 @@ FoamFile
|
||||
}
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
application XiFoam;
|
||||
application foamRun;
|
||||
|
||||
solver XiFluid;
|
||||
|
||||
startFrom startTime;
|
||||
|
||||
@ -26,18 +26,10 @@ gradSchemes
|
||||
|
||||
divSchemes
|
||||
{
|
||||
default none;
|
||||
div(phi,U) Gauss upwind;
|
||||
div(phi,K) Gauss upwind;
|
||||
div(phid,p) Gauss upwind;
|
||||
div(meshPhi,p) Gauss upwind;
|
||||
div(phi,k) Gauss upwind;
|
||||
div(phi,epsilon) Gauss upwind;
|
||||
div(phi,R) Gauss upwind;
|
||||
div(R) Gauss linear;
|
||||
div(phiXi,Xi) Gauss upwind;
|
||||
div(phiXi,Su) Gauss upwind;
|
||||
div(phiSt,b) Gauss limitedLinear01 1;
|
||||
default none;
|
||||
|
||||
div(phi,U) Gauss upwind;
|
||||
|
||||
div(phi,ft_b_ha_hau) Gauss multivariateSelection
|
||||
{
|
||||
fu limitedLinear01 1;
|
||||
@ -45,12 +37,21 @@ divSchemes
|
||||
b limitedLinear01 1;
|
||||
ha limitedLinear 1;
|
||||
hau limitedLinear 1;
|
||||
ea limitedLinear 1;
|
||||
eau limitedLinear 1;
|
||||
};
|
||||
div(U) Gauss linear;
|
||||
div((Su*n)) Gauss linear;
|
||||
|
||||
div(phi,K) Gauss upwind;
|
||||
div(phi,(p|rho)) Gauss upwind;
|
||||
|
||||
div(phiXi,Xi) Gauss upwind;
|
||||
div(phiSt,b) Gauss limitedLinear01 1;
|
||||
|
||||
div(U) Gauss linear;
|
||||
div((Su*n)) Gauss linear;
|
||||
div((U+((Su*Xi)*n))) Gauss linear;
|
||||
|
||||
div(phi,k) Gauss upwind;
|
||||
div(phi,epsilon) Gauss upwind;
|
||||
|
||||
div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;
|
||||
}
|
||||
|
||||
@ -14,7 +14,9 @@ FoamFile
|
||||
}
|
||||
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||||
|
||||
application XiFoam;
|
||||
application foamRun;
|
||||
|
||||
solver XiFluid;
|
||||
|
||||
startFrom latestTime;
|
||||
|
||||
@ -26,17 +26,10 @@ gradSchemes
|
||||
|
||||
divSchemes
|
||||
{
|
||||
default none;
|
||||
div(phi,U) Gauss limitedLinearV 1;
|
||||
div(phid,p) Gauss limitedLinear 1;
|
||||
div(phi,K) Gauss limitedLinear 1;
|
||||
div(phi,k) Gauss limitedLinear 1;
|
||||
div(phi,epsilon) Gauss limitedLinear 1;
|
||||
div(phi,R) Gauss limitedLinear 1;
|
||||
div(R) Gauss linear;
|
||||
div(phiXi,Xi) Gauss limitedLinear 1;
|
||||
div(phiXi,Su) Gauss limitedLinear 1;
|
||||
div(phiSt,b) Gauss limitedLinear01 1;
|
||||
default none;
|
||||
|
||||
div(phi,U) Gauss limitedLinearV 1;
|
||||
|
||||
div(phi,ft_b_ha_hau) Gauss multivariateSelection
|
||||
{
|
||||
fu limitedLinear01 1;
|
||||
@ -45,15 +38,26 @@ divSchemes
|
||||
ha limitedLinear 1;
|
||||
hau limitedLinear 1;
|
||||
};
|
||||
div(U) Gauss linear;
|
||||
div((Su*n)) Gauss linear;
|
||||
|
||||
div(phi,K) Gauss limitedLinear 1;
|
||||
div(phi,(p|rho)) Gauss upwind;
|
||||
|
||||
div(phiXi,Xi) Gauss limitedLinear 1;
|
||||
div(phiSt,b) Gauss limitedLinear01 1;
|
||||
|
||||
div(U) Gauss linear;
|
||||
div((Su*n)) Gauss linear;
|
||||
div((U+((Su*Xi)*n))) Gauss linear;
|
||||
|
||||
div(phi,k) Gauss limitedLinear 1;
|
||||
div(phi,epsilon) Gauss limitedLinear 1;
|
||||
|
||||
div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;
|
||||
}
|
||||
|
||||
laplacianSchemes
|
||||
{
|
||||
default Gauss linear corrected;
|
||||
default Gauss linear uncorrected;
|
||||
}
|
||||
|
||||
interpolationSchemes
|
||||
@ -63,7 +67,7 @@ interpolationSchemes
|
||||
|
||||
snGradSchemes
|
||||
{
|
||||
default corrected;
|
||||
default uncorrected;
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user