Decomposition/redistribution: Separated choice of mesh decomposition and redistribution methods
When snappyHexMesh is run in parallel it re-balances the mesh during refinement
and layer addition by redistribution which requires a decomposition method
that operates in parallel, e.g. hierachical or ptscotch. decomposePar uses a
decomposition method which operates in serial e.g. hierachical but NOT
ptscotch. In order to run decomposePar followed by snappyHexMesh in parallel it
has been necessary to change the method specified in decomposeParDict but now
this is avoided by separately specifying the decomposition and distribution
methods, e.g. in the incompressible/simpleFoam/motorBike case:
numberOfSubdomains 6;
decomposer hierarchical;
distributor ptscotch;
hierarchicalCoeffs
{
n (3 2 1);
order xyz;
}
The distributor entry is also used for run-time mesh redistribution, e.g. in the
multiphase/interFoam/RAS/floatingObject case re-distribution for load-balancing
is enabled in constant/dynamicMeshDict:
distributor
{
type distributor;
libs ("libfvMeshDistributors.so");
redistributionInterval 10;
}
which uses the distributor specified in system/decomposeParDict:
distributor hierarchical;
This rationalisation provides the structure for development of mesh
redistribution and load-balancing.
This commit is contained in:
@ -0,0 +1,380 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
========= |
|
||||
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||||
\\ / O peration | Website: https://openfoam.org
|
||||
\\ / A nd | Copyright (C) 2011-2021 OpenFOAM Foundation
|
||||
\\/ M anipulation |
|
||||
-------------------------------------------------------------------------------
|
||||
License
|
||||
This file is part of OpenFOAM.
|
||||
|
||||
OpenFOAM is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
#include "fvFieldDecomposer.H"
|
||||
#include "processorFvPatchField.H"
|
||||
#include "processorFvsPatchField.H"
|
||||
#include "processorCyclicFvPatchField.H"
|
||||
#include "processorCyclicFvsPatchField.H"
|
||||
#include "emptyFvPatchFields.H"
|
||||
|
||||
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
|
||||
|
||||
template<class Type>
|
||||
Foam::tmp<Foam::Field<Type>> Foam::fvFieldDecomposer::mapField
|
||||
(
|
||||
const Field<Type>& field,
|
||||
const labelUList& mapAndSign,
|
||||
const bool applyFlip
|
||||
)
|
||||
{
|
||||
tmp<Field<Type>> tfld(new Field<Type>(mapAndSign.size()));
|
||||
Field<Type>& fld = tfld.ref();
|
||||
|
||||
if (applyFlip)
|
||||
{
|
||||
forAll(mapAndSign, i)
|
||||
{
|
||||
if (mapAndSign[i] < 0)
|
||||
{
|
||||
fld[i] = -field[-mapAndSign[i] - 1];
|
||||
}
|
||||
else
|
||||
{
|
||||
fld[i] = field[mapAndSign[i] - 1];
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// Ignore face flipping
|
||||
fld.map(field, mag(mapAndSign) - 1);
|
||||
}
|
||||
return tfld;
|
||||
}
|
||||
|
||||
|
||||
template<class Type>
|
||||
Foam::tmp<Foam::GeometricField<Type, Foam::fvPatchField, Foam::volMesh>>
|
||||
Foam::fvFieldDecomposer::decomposeField
|
||||
(
|
||||
const GeometricField<Type, fvPatchField, volMesh>& field,
|
||||
const bool allowUnknownPatchFields
|
||||
) const
|
||||
{
|
||||
// 1. Create the complete field with dummy patch fields
|
||||
PtrList<fvPatchField<Type>> patchFields(boundaryAddressing_.size());
|
||||
|
||||
forAll(boundaryAddressing_, patchi)
|
||||
{
|
||||
patchFields.set
|
||||
(
|
||||
patchi,
|
||||
fvPatchField<Type>::New
|
||||
(
|
||||
calculatedFvPatchField<Type>::typeName,
|
||||
procMesh_.boundary()[patchi],
|
||||
DimensionedField<Type, volMesh>::null()
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
// Create the field for the processor
|
||||
tmp<GeometricField<Type, fvPatchField, volMesh>> tresF
|
||||
(
|
||||
new GeometricField<Type, fvPatchField, volMesh>
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
field.name(),
|
||||
procMesh_.time().timeName(),
|
||||
procMesh_,
|
||||
IOobject::NO_READ,
|
||||
IOobject::NO_WRITE,
|
||||
false
|
||||
),
|
||||
procMesh_,
|
||||
field.dimensions(),
|
||||
Field<Type>(field.primitiveField(), cellAddressing_),
|
||||
patchFields
|
||||
)
|
||||
);
|
||||
GeometricField<Type, fvPatchField, volMesh>& resF = tresF.ref();
|
||||
|
||||
|
||||
// 2. Change the fvPatchFields to the correct type using a mapper
|
||||
// constructor (with reference to the now correct internal field)
|
||||
|
||||
typename GeometricField<Type, fvPatchField, volMesh>::
|
||||
Boundary& bf = resF.boundaryFieldRef();
|
||||
|
||||
forAll(bf, patchi)
|
||||
{
|
||||
const fvPatch& procPatch = procMesh_.boundary()[patchi];
|
||||
|
||||
label fromPatchi = boundaryAddressing_[patchi];
|
||||
if (fromPatchi < 0 && isA<processorCyclicFvPatch>(procPatch))
|
||||
{
|
||||
const label referPatchi =
|
||||
refCast<const processorCyclicPolyPatch>
|
||||
(procPatch.patch()).referPatchID();
|
||||
if (field.boundaryField()[referPatchi].overridesConstraint())
|
||||
{
|
||||
fromPatchi = boundaryAddressing_[referPatchi];
|
||||
}
|
||||
}
|
||||
|
||||
if (fromPatchi >= 0)
|
||||
{
|
||||
bf.set
|
||||
(
|
||||
patchi,
|
||||
fvPatchField<Type>::New
|
||||
(
|
||||
field.boundaryField()[fromPatchi],
|
||||
procPatch,
|
||||
resF(),
|
||||
*patchFieldDecomposerPtrs_[patchi]
|
||||
)
|
||||
);
|
||||
}
|
||||
else if (isA<processorCyclicFvPatch>(procPatch))
|
||||
{
|
||||
bf.set
|
||||
(
|
||||
patchi,
|
||||
new processorCyclicFvPatchField<Type>
|
||||
(
|
||||
procPatch,
|
||||
resF(),
|
||||
(*processorVolPatchFieldDecomposerPtrs_[patchi])
|
||||
(
|
||||
field.primitiveField()
|
||||
)
|
||||
)
|
||||
);
|
||||
}
|
||||
else if (isA<processorFvPatch>(procPatch))
|
||||
{
|
||||
bf.set
|
||||
(
|
||||
patchi,
|
||||
new processorFvPatchField<Type>
|
||||
(
|
||||
procPatch,
|
||||
resF(),
|
||||
(*processorVolPatchFieldDecomposerPtrs_[patchi])
|
||||
(
|
||||
field.primitiveField()
|
||||
)
|
||||
)
|
||||
);
|
||||
}
|
||||
else if (allowUnknownPatchFields)
|
||||
{
|
||||
bf.set
|
||||
(
|
||||
patchi,
|
||||
new emptyFvPatchField<Type>
|
||||
(
|
||||
procPatch,
|
||||
resF()
|
||||
)
|
||||
);
|
||||
}
|
||||
else
|
||||
{
|
||||
FatalErrorInFunction
|
||||
<< "Unknown type." << abort(FatalError);
|
||||
}
|
||||
}
|
||||
|
||||
// Create the field for the processor
|
||||
return tresF;
|
||||
}
|
||||
|
||||
|
||||
template<class Type>
|
||||
Foam::tmp<Foam::GeometricField<Type, Foam::fvsPatchField, Foam::surfaceMesh>>
|
||||
Foam::fvFieldDecomposer::decomposeField
|
||||
(
|
||||
const GeometricField<Type, fvsPatchField, surfaceMesh>& field
|
||||
) const
|
||||
{
|
||||
// Apply flipping to surfaceScalarFields only
|
||||
const bool doFlip = (pTraits<Type>::nComponents == 1);
|
||||
|
||||
|
||||
// Problem with addressing when a processor patch picks up both internal
|
||||
// faces and faces from cyclic boundaries. This is a bit of a hack, but
|
||||
// I cannot find a better solution without making the internal storage
|
||||
// mechanism for surfaceFields correspond to the one of faces in polyMesh
|
||||
// (i.e. using slices)
|
||||
Field<Type> allFaceField(field.mesh().nFaces());
|
||||
|
||||
forAll(field.primitiveField(), i)
|
||||
{
|
||||
allFaceField[i] = field.primitiveField()[i];
|
||||
}
|
||||
|
||||
forAll(field.boundaryField(), patchi)
|
||||
{
|
||||
const Field<Type> & p = field.boundaryField()[patchi];
|
||||
|
||||
const label patchStart = field.mesh().boundaryMesh()[patchi].start();
|
||||
|
||||
forAll(p, i)
|
||||
{
|
||||
allFaceField[patchStart + i] = p[i];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// 1. Create the complete field with dummy patch fields
|
||||
PtrList<fvsPatchField<Type>> patchFields(boundaryAddressing_.size());
|
||||
|
||||
forAll(boundaryAddressing_, patchi)
|
||||
{
|
||||
patchFields.set
|
||||
(
|
||||
patchi,
|
||||
fvsPatchField<Type>::New
|
||||
(
|
||||
calculatedFvsPatchField<Type>::typeName,
|
||||
procMesh_.boundary()[patchi],
|
||||
DimensionedField<Type, surfaceMesh>::null()
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
tmp<GeometricField<Type, fvsPatchField, surfaceMesh>> tresF
|
||||
(
|
||||
new GeometricField<Type, fvsPatchField, surfaceMesh>
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
field.name(),
|
||||
procMesh_.time().timeName(),
|
||||
procMesh_,
|
||||
IOobject::NO_READ,
|
||||
IOobject::NO_WRITE,
|
||||
false
|
||||
),
|
||||
procMesh_,
|
||||
field.dimensions(),
|
||||
mapField
|
||||
(
|
||||
field,
|
||||
labelList::subList
|
||||
(
|
||||
faceAddressing_,
|
||||
procMesh_.nInternalFaces()
|
||||
),
|
||||
doFlip
|
||||
),
|
||||
patchFields
|
||||
)
|
||||
);
|
||||
GeometricField<Type, fvsPatchField, surfaceMesh>& resF = tresF.ref();
|
||||
|
||||
|
||||
// 2. Change the fvsPatchFields to the correct type using a mapper
|
||||
// constructor (with reference to the now correct internal field)
|
||||
|
||||
typename GeometricField<Type, fvsPatchField, surfaceMesh>::
|
||||
Boundary& bf = resF.boundaryFieldRef();
|
||||
|
||||
forAll(boundaryAddressing_, patchi)
|
||||
{
|
||||
const fvPatch& procPatch = procMesh_.boundary()[patchi];
|
||||
|
||||
if (boundaryAddressing_[patchi] >= 0)
|
||||
{
|
||||
bf.set
|
||||
(
|
||||
patchi,
|
||||
fvsPatchField<Type>::New
|
||||
(
|
||||
field.boundaryField()[boundaryAddressing_[patchi]],
|
||||
procPatch,
|
||||
resF(),
|
||||
*patchFieldDecomposerPtrs_[patchi]
|
||||
)
|
||||
);
|
||||
}
|
||||
else if (isA<processorCyclicFvPatch>(procPatch))
|
||||
{
|
||||
// Do our own mapping. Avoids a lot of mapping complexity.
|
||||
bf.set
|
||||
(
|
||||
patchi,
|
||||
new processorCyclicFvsPatchField<Type>
|
||||
(
|
||||
procPatch,
|
||||
resF(),
|
||||
mapField
|
||||
(
|
||||
allFaceField,
|
||||
procPatch.patchSlice(faceAddressing_),
|
||||
doFlip
|
||||
)
|
||||
)
|
||||
);
|
||||
}
|
||||
else if (isA<processorFvPatch>(procPatch))
|
||||
{
|
||||
// Do our own mapping. Avoids a lot of mapping complexity.
|
||||
bf.set
|
||||
(
|
||||
patchi,
|
||||
new processorFvsPatchField<Type>
|
||||
(
|
||||
procPatch,
|
||||
resF(),
|
||||
mapField
|
||||
(
|
||||
allFaceField,
|
||||
procPatch.patchSlice(faceAddressing_),
|
||||
doFlip
|
||||
)
|
||||
)
|
||||
);
|
||||
}
|
||||
else
|
||||
{
|
||||
FatalErrorInFunction
|
||||
<< "Unknown type." << abort(FatalError);
|
||||
}
|
||||
}
|
||||
|
||||
// Create the field for the processor
|
||||
return tresF;
|
||||
}
|
||||
|
||||
|
||||
template<class GeoField>
|
||||
void Foam::fvFieldDecomposer::decomposeFields
|
||||
(
|
||||
const PtrList<GeoField>& fields
|
||||
) const
|
||||
{
|
||||
forAll(fields, fieldi)
|
||||
{
|
||||
decomposeField(fields[fieldi])().write();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ************************************************************************* //
|
||||
Reference in New Issue
Block a user