Commit Graph

19 Commits

Author SHA1 Message Date
fe4ec3a2dc test: Simplified dimensionless specification from [0 0 0 0 0 0 0] -> [] 2023-08-31 12:05:40 +01:00
5c7131288c foamPostProcess: New volAverage and volIntegrate packaged function objects
These additions mean that the volume-weighted average or volume integral
of a field can be conveniently post-processed. This can be done
interactively using foamPostProcess:

    foamPostProcess -func "volAverage(U)"
    foamPostProcess -func "volIntegrate(rho)"

Or at run-time by adding to the functions sub-section of the
controlDict:

    #includeFunc volAverage(U)
    #includeFunc volIntegrate(rho)
2023-04-19 16:54:00 +01:00
dc85d509b0 #includeFunc, #includeModel, #includeConstraint: Changed entry renaming option to "name"
This is a more intuitive keyword than "funcName" or "entryName". A
function object's name and corresponding output directory can now be
renamed as follows:

    #includeFunc patchAverage
    (
        name=cylinderT, // <-- was funcName=... or entryName=...
        region=fluid,
        patch=fluid_to_solid,
        field=T
    )

Some packaged functions previously relied on a "name" argument that
related to an aspect of the function; e.g., the name of the faceZone
used by the faceZoneFlowRate function. These have been disambiguated.
This has also made them consistent with the preferred input syntax of
the underlying function objects.

Examples of the changed #includeFunc entries are shown below:

    #includeFunc faceZoneAverage
    (
        faceZone=f0, // <-- was name=f0
        U
    )

    #includeFunc faceZoneFlowRate
    (
        faceZone=f0 // <-- was name=f0
    )

    #includeFunc populationBalanceSizeDistribution
    (
        populationBalance=bubbles,
        regionType=cellZone,
        cellZone=injection, // <-- was name=injection
        functionType=volumeDensity,
        coordinateType=diameter,
        normalise=yes
    )

    #includeFunc triSurfaceAverage
    (
        triSurface=mid.obj, // <-- was name=mid.obj
        p
    )

    #includeFunc triSurfaceVolumetricFlowRate
    (
        triSurface=mid.obj // <-- was name=mid.obj
    )

    #includeFunc uniform
    (
        fieldType=volScalarField,
        fieldName=alpha, // <-- was name=alpha
        dimensions=[0 0 0 0 0 0 0],
        value=0.2
    )
2023-02-01 12:40:40 +00:00
c5d70f03c4 caseDicts/postProcessing: Added triSurfaceAverage packaged function object
This is a packaged function object that conveniently computes averages
of fields on tri-surfaces. It can be executed on the command line as
follows:

    foamPostProcess -func "triSurfaceAverage(name=mid.obj, p)"

This will compute the average of the field "p" on a surface file in
"constant/geometry/mid.obj".

The calculation could also be done at run-time by adding the following
entry to the functions section of the system/controlDict

    #includeFunc triSurfaceAverage(name=mid.obj, p)
2022-08-17 15:41:34 +01:00
bfa40570ad bin/tools/RunFunctions: Added getSolver function for use with foamPostProcess 2022-08-10 09:37:10 +01:00
19f984d58d test/postProcessing/channel/Allrun: updated postProcess to foamPostProcess
Resolves bug-report https://bugs.openfoam.org/view.php?id=3873#c12708
2022-08-10 09:27:00 +01:00
968e60148a New modular solver framework for single- and multi-region simulations
in which different solver modules can be selected in each region to for complex
conjugate heat-transfer and other combined physics problems such as FSI
(fluid-structure interaction).

For single-region simulations the solver module is selected, instantiated and
executed in the PIMPLE loop in the new foamRun application.

For multi-region simulations the set of solver modules, one for each region, are
selected, instantiated and executed in the multi-region PIMPLE loop of new the
foamMultiRun application.

This provides a very general, flexible and extensible framework for complex
coupled problems by creating more solver modules, either by converting existing
solver applications or creating new ones.

The current set of solver modules provided are:

isothermalFluid
    Solver module for steady or transient turbulent flow of compressible
    isothermal fluids with optional mesh motion and mesh topology changes.

    Created from the rhoSimpleFoam, rhoPimpleFoam and buoyantFoam solvers but
    without the energy equation, hence isothermal.  The buoyant pressure
    formulation corresponding to the buoyantFoam solver is selected
    automatically by the presence of the p_rgh pressure field in the start-time
    directory.

fluid
    Solver module for steady or transient turbulent flow of compressible fluids
    with heat-transfer for HVAC and similar applications, with optional
    mesh motion and mesh topology changes.

    Derived from the isothermalFluid solver module with the addition of the
    energy equation from the rhoSimpleFoam, rhoPimpleFoam and buoyantFoam
    solvers, thus providing the equivalent functionality of these three solvers.

multicomponentFluid
    Solver module for steady or transient turbulent flow of compressible
    reacting fluids with optional mesh motion and mesh topology changes.

    Derived from the isothermalFluid solver module with the addition of
    multicomponent thermophysical properties energy and specie mass-fraction
    equations from the reactingFoam solver, thus providing the equivalent
    functionality in reactingFoam and buoyantReactingFoam.  Chemical reactions
    and/or combustion modelling may be optionally selected to simulate reacting
    systems including fires, explosions etc.

solid
    Solver module for turbulent flow of compressible fluids for conjugate heat
    transfer, HVAC and similar applications, with optional mesh motion and mesh
    topology changes.

    The solid solver module may be selected in solid regions of a CHT case, with
    either the fluid or multicomponentFluid solver module in the fluid regions
    and executed with foamMultiRun to provide functionality equivalent
    chtMultiRegionFoam but in a flexible and extensible framework for future
    extension to more complex coupled problems.

All the usual fvModels, fvConstraints, functionObjects etc. are available with
these solver modules to support simulations including body-forces, local sources,
Lagrangian clouds, liquid films etc. etc.

Converting compressibleInterFoam and multiphaseEulerFoam into solver modules
would provide a significant enhancement to the CHT capability and incompressible
solvers like pimpleFoam run in conjunction with solidDisplacementFoam in
foamMultiRun would be useful for a range of FSI problems.  Many other
combinations of existing solvers converted into solver modules could prove
useful for a very wide range of complex combined physics simulations.

All tutorials from the rhoSimpleFoam, rhoPimpleFoam, buoyantFoam, reactingFoam,
buoyantReactingFoam and chtMultiRegionFoam solver applications replaced by
solver modules have been updated and moved into the tutorials/modules directory:

modules
├── CHT
│   ├── coolingCylinder2D
│   ├── coolingSphere
│   ├── heatedDuct
│   ├── heatExchanger
│   ├── reverseBurner
│   └── shellAndTubeHeatExchanger
├── fluid
│   ├── aerofoilNACA0012
│   ├── aerofoilNACA0012Steady
│   ├── angledDuct
│   ├── angledDuctExplicitFixedCoeff
│   ├── angledDuctLTS
│   ├── annularThermalMixer
│   ├── BernardCells
│   ├── blockedChannel
│   ├── buoyantCavity
│   ├── cavity
│   ├── circuitBoardCooling
│   ├── decompressionTank
│   ├── externalCoupledCavity
│   ├── forwardStep
│   ├── helmholtzResonance
│   ├── hotRadiationRoom
│   ├── hotRadiationRoomFvDOM
│   ├── hotRoom
│   ├── hotRoomBoussinesq
│   ├── hotRoomBoussinesqSteady
│   ├── hotRoomComfort
│   ├── iglooWithFridges
│   ├── mixerVessel2DMRF
│   ├── nacaAirfoil
│   ├── pitzDaily
│   ├── prism
│   ├── shockTube
│   ├── squareBend
│   ├── squareBendLiq
│   └── squareBendLiqSteady
└── multicomponentFluid
    ├── aachenBomb
    ├── counterFlowFlame2D
    ├── counterFlowFlame2D_GRI
    ├── counterFlowFlame2D_GRI_TDAC
    ├── counterFlowFlame2DLTS
    ├── counterFlowFlame2DLTS_GRI_TDAC
    ├── cylinder
    ├── DLR_A_LTS
    ├── filter
    ├── hotBoxes
    ├── membrane
    ├── parcelInBox
    ├── rivuletPanel
    ├── SandiaD_LTS
    ├── simplifiedSiwek
    ├── smallPoolFire2D
    ├── smallPoolFire3D
    ├── splashPanel
    ├── verticalChannel
    ├── verticalChannelLTS
    └── verticalChannelSteady

Also redirection scripts are provided for the replaced solvers which call
foamRun -solver <solver module name> or foamMultiRun in the case of
chtMultiRegionFoam for backward-compatibility.

Documentation for foamRun and foamMultiRun:

Application
    foamRun

Description
    Loads and executes an OpenFOAM solver module either specified by the
    optional \c solver entry in the \c controlDict or as a command-line
    argument.

    Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
    pseudo-transient and steady simulations.

Usage
    \b foamRun [OPTION]

      - \par -solver <name>
        Solver name

      - \par -libs '(\"lib1.so\" ... \"libN.so\")'
        Specify the additional libraries loaded

    Example usage:
      - To run a \c rhoPimpleFoam case by specifying the solver on the
        command line:
        \verbatim
            foamRun -solver fluid
        \endverbatim

      - To update and run a \c rhoPimpleFoam case add the following entries to
        the controlDict:
        \verbatim
            application     foamRun;

            solver          fluid;
        \endverbatim
        then execute \c foamRun

Application
    foamMultiRun

Description
    Loads and executes an OpenFOAM solver modules for each region of a
    multiregion simulation e.g. for conjugate heat transfer.

    The region solvers are specified in the \c regionSolvers dictionary entry in
    \c controlDict, containing a list of pairs of region and solver names,
    e.g. for a two region case with one fluid region named
    liquid and one solid region named tubeWall:
    \verbatim
        regionSolvers
        {
            liquid          fluid;
            tubeWall        solid;
        }
    \endverbatim

    The \c regionSolvers entry is a dictionary to support name substitutions to
    simplify the specification of a single solver type for a set of
    regions, e.g.
    \verbatim
        fluidSolver     fluid;
        solidSolver     solid;

        regionSolvers
        {
            tube1             $fluidSolver;
            tubeWall1         solid;
            tube2             $fluidSolver;
            tubeWall2         solid;
            tube3             $fluidSolver;
            tubeWall3         solid;
        }
    \endverbatim

    Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
    pseudo-transient and steady simulations.

Usage
    \b foamMultiRun [OPTION]

      - \par -libs '(\"lib1.so\" ... \"libN.so\")'
        Specify the additional libraries loaded

    Example usage:
      - To update and run a \c chtMultiRegion case add the following entries to
        the controlDict:
        \verbatim
            application     foamMultiRun;

            regionSolvers
            {
                fluid           fluid;
                solid           solid;
            }
        \endverbatim
        then execute \c foamMultiRun
2022-08-04 21:11:35 +01:00
d67aecf0cb functionObjects: New function to reconstruct cell velocity from face flux
This is a simple function that provides a convenient way for a user to
call fvc::reconstruct for the purposes of post-processing flux fields;
e.g., to construct a cell velocity from a face flux.

It can be used to generate output during a run by adding the following
settings to a case's controlDict:

    functions
    {
        #includeFunc reconstruct(phi)
    }

Or it can be executed as a postProcessing step by calling:

    postProcess -func "reconstruct(phi)"
2022-04-21 09:27:01 +01:00
d40ecd78eb buoyantFoam: Merged buoyantSimpleFoam and buoyantPimpleFoam
Solver for steady or transient buoyant, turbulent flow of compressible fluids
for ventilation and heat-transfer, with optional mesh motion and mesh topology
changes.  Created by merging buoyantSimpleFoam and buoyantPimpleFoam to provide
a more general solver and simplify maintenance.
2022-02-18 12:20:54 +00:00
bf042b39a7 Merge branch 'master' of github.com-OpenFOAM:OpenFOAM/OpenFOAM-dev 2021-12-08 13:39:12 +00:00
7dfb7146ea tutorials::blockMeshDict: Removed redundant mergePatchPairs and edges entries 2021-12-08 13:02:40 +00:00
053eed714d functionObjects: layerAverage: Replacment for postChannel
This function generates plots of fields averaged over the layers in the
mesh. It is a generalised replacement for the postChannel utility, which
has been removed. An example of this function's usage is as follows:

    layerAverage1
    {
        type            layerAverage;
        libs            ("libfieldFunctionObjects.so");

        writeControl    writeTime;

        setFormat       raw;

        // Patches and/or zones from which layers extrude
        patches         (bottom);
        zones           (quarterPlane threeQuartersPlane);

        // Spatial component against which to plot
        component       y;

        // Is the geometry symmetric around the centre layer?
        symmetric       true;

        // Fields to average and plot
        fields          (pMean pPrime2Mean UMean UPrime2Mean k);
    }
2021-12-08 12:48:54 +00:00
1a6b662b41 surfaceInterpolate: Made consistent with other function objects
The surfaceInterpolate function object is now a field expression. This
means it works in the same way as mag, grad, etc... It also now has a
packaged configuration and has been included into the postProcessing
test case.

It can be used in the following ways. On the command line:

   postProcess -func "surfaceInterpolate(rho, result=rhof)"

   rhoPimpleFoam -postProcess -func "surfaceInterpolate(thermo:rho, result=rhof)"

In the controlDict:

   functions
   {
       #includeFunc surfaceInterpolate(rho, result=rhof)
   }

By running:

   foamGet surfaceInterpolate

Then editing the resulting system/surfaceInterpolate file and then
running postProcess or adding an #includeFunc entry without arguments.
2021-10-08 09:10:27 +01:00
9765f87202 test/postProcessing/channel: Updated for changes in topoSet syntax 2021-08-12 10:58:51 +01:00
97e5fc3781 test: Renamed thermophysicalProperties files to physicalProperties 2021-08-12 10:53:52 +01:00
0a3a6312e5 test/postProcessing/channel/system/controlDict: Updated turbulenceFields functionObject call
muEff -> nuEff
2021-08-09 21:41:02 +01:00
15a27fee87 topoSet: the sourceInfo sub-dictionary of the topoSetDict actions is now optional
and only needed if there is a name clash between entries in the source
specification and the set specification, e.g. "name":

    {
        name    rotorCells;
        type    cellSet;
        action  new;
        source  zoneToCell;
        sourceInfo
        {
            name    cylinder;
        }
    }
2021-07-27 14:07:37 +01:00
e9733e50ba functionObjects: Renamed streamLine and streamLines to streamlines 2021-07-14 10:35:02 +01:00
5d0d9a4fa3 postProcess: Improve usability of packaged function objects
Packaged function objects can now be deployed equally effectively by
(a) using a locally edited copy of the configuration file, or by
(b) passing parameters as arguments to the global configuration file.

For example, to post-process the pressure field "p" at a single location
"(1 2 3)", the user could first copy the "probes" packaged function
object file to their system directory by calling "foamGet probes". They
could then edit the file to contain the following entries:

    points ((1 2 3));
    field  p;

The function object can then be executed by the postProcess application:

    postProcess -func probes

Or it can be called at run-time, by including from within the functions
section of the system/controlDict file:

    #includeFunc probes

Alternatively, the field and points parameters could be passed as
arguments either to the postProcess application by calling:

    postProcess -func "probes(points=((1 2 3)), p)"

Or by using the #includeFunc directive:

    #includeFunc probes(points=((1 2 3)), p)

In both cases, mandatory parameters that must be either edited or
provided as arguments are denoted in the configuration files with
angle-brackets, e.g.:

    points  (<points>);

Many of the packaged function objects have been split up to make them
more specific to a particular use-case. For example, the "surfaces"
function has been split up into separate functions for each surface
type; "cutPlaneSurface", "isoSurface", and "patchSurface". This
splitting means that the packaged functions now only contain one set of
relevant parameters so, unlike previously, they now work effectively
with their parameters passed as arguments. To ensure correct usage, all
case-dependent parameters are considered mandatory.

For example, the "streamlines" packaged function object has been split
into specific versions; "streamlinesSphere", "streamlinesLine",
"streamlinesPatch" and "streamlinesPoints". The name ending denotes the
seeding method. So, the following command creates ten streamlines with
starting points randomly seeded within a sphere with a specified centre
and radius:

    postProcess -func "streamlinesSphere(nPoints=10, centre=(0 0 0), radius=1)"

The equivalent #includeFunc approach would be:

    #includeFunc streamlinesSphere(nPoints=10, centre=(0 0 0), radius=1)

When passing parameters as arguments, error messages report accurately
which mandatory parameters are missing and provide instructions to
correct the format of the input. For example, if "postProcess -func
graphUniform" is called, then the code prints the following error message:

    --> FOAM FATAL IO ERROR:

    Essential value for keyword 'start' not set
    Essential value for keyword 'end' not set
    Essential value for keyword 'nPoints' not set
    Essential value for keyword 'fields' not set

    In function entry:
        graphUniform

    In command:
        postProcess -func graphUniform

    The function entry should be:
        graphUniform(start = <point>, end = <point>, nPoints = <number>, fields = (<fieldNames>))

    file: controlDict/functions/graphUniform from line 15 to line 25.

As always, a full list of all packaged function objects can be obtained
by running "postProcess -list", and a description of each function can
be obtained by calling "foamInfo <functionName>". An example case has
been added at "test/postProcessing/channel" which executes almost all
packaged function objects using both postProcess and #includeFunc. This
serves both as an example of syntax and as a unit test for maintenance.
2021-07-14 10:32:49 +01:00