Commit Graph

209 Commits

Author SHA1 Message Date
0433bd3e00 genericFields: Library reorganisation and reduce duplication 2023-08-25 09:46:40 +01:00
795d408dce extrudeMesh, splitMeshRegions: Removed the redundant writing of dummy fvSchemes and fvSolution files 2023-07-15 21:56:07 +01:00
0657826ab9 Replaced all remaining addTimeOptions.H includes with the more flexible timeSelector 2023-06-23 15:24:06 +01:00
1e9e0c141b checkMesh: Added the region name to the postProcessing directory for the output from writeSets option 2023-06-12 12:21:34 +01:00
08544446e8 Time, functionObjectList: Refactored to simplify construction and switching-off functionObjects 2023-06-06 08:17:52 +01:00
ca72b0a963 fvPatchFields: Removed all fvPatchFields requiring user specified data from the null-constructor table
This avoids potential hidden run-time errors caused by solvers running with
boundary conditions which are not fully specified.  Note that "null-constructor"
here means the constructor from patch and internal field only, no data is
provided.

Constraint and simple BCs such as 'calculated', 'zeroGradient' and others which
do not require user input to fully specify their operation remain on the
null-constructor table for the construction of fields with for example all
'calculated' or all 'zeroGradient' BCs.

A special version of the 'inletOutlet' fvPatchField named 'zeroInletOutlet' has
been added in which the inlet value is hard-coded to zero which allows this BC
to be included on the null-constructor table.  This is useful for the 'age'
functionObject to avoid the need to provide the 'age' volScalarField at time 0
unless special inlet or outlet BCs are required.  Also for isothermalFilm in
which the 'alpha' field is created automatically from the 'delta' field if it is
not present and can inherit 'zeroInletOutlet' from 'delta' if appropriate.  If a
specific 'inletValue' is require or other more complex BCs then the 'alpha'
field file must be provided to specify these BCs as before.

Following this improvement it will now be possible to remove the
null-constructors from all fvPatchFields not added to the null-constructor
table, which is most of them, thus reducing the amount of code and maintenance
overhead and making easier and more obvious to write new fvPatchField types.
2023-05-27 16:56:10 +01:00
5e8d1ff99e createBaffles: Fixed owner/neighbour indexing bug when operating in parallel
Resolves bug report https://bugs.openfoam.org/view.php?id=3970
2023-04-13 17:09:29 +01:00
25dd524c84 generic.*Patch: Moved to new genericPatches library
genericPatches is linked into mesh generation and manipulation utilities but not
solvers so that the solvers now check for the availability of the specified
patch types.  Bugs in the tutorials exposed by this check have been corrected.
2023-03-03 09:03:47 +00:00
4dbc23c141 ListOps::identity -> identityMap
to avoid confusion with the tensor identity.
2023-02-03 17:12:31 +00:00
260a8502f0 solvers::movingMesh: New solver module to move the mesh
Executes the mover, topoChanger and distributor specified in the
dynamicMeshDict.

Replaces the moveMesh and earlier moveDynamicMesh utilities.
2023-01-27 14:27:52 +00:00
a3681c3428 DemandDrivenMeshObject: Templated abstract base-class for demand-driven mesh objects
Replaces MeshObject, providing a formalised method for creating demand-driven
mesh objects, optionally supporting update functions called by the mesh
following mesh changes.

Class
    Foam::DemandDrivenMeshObject

Description
    Templated abstract base-class for demand-driven mesh objects used to
    automate their allocation to the mesh database and the mesh-modifier
    event-loop.

    DemandDrivenMeshObject is templated on the type of mesh it is allocated
    to, the type of the mesh object (TopologicalMeshObject, GeometricMeshObject,
    MoveableMeshObject, DistributeableMeshObject, UpdateableMeshObject) and the
    type of the actual object it is created for example:

    \verbatim
    class leastSquaresVectors
    :
        public DemandDrivenMeshObject
        <
            fvMesh,
            MoveableMeshObject,
            leastSquaresVectors
        >
    {
    .
    .
    .
        //- Delete the least square vectors when the mesh moves
        virtual bool movePoints();
    };
    \endverbatim

    MeshObject types:

    - TopologicalMeshObject: mesh object to be deleted on topology change
    - GeometricMeshObject: mesh object to be deleted on geometry change
    - MoveableMeshObject: mesh object to be updated in movePoints
    - UpdateableMeshObject: mesh object to be updated in topoChange or
        movePoints
    - PatchMeshObject: mesh object to be additionally updated patch changes

    DemandDrivenMeshObject should always be constructed and accessed via the New
    methods provided so that they are held and maintained by the objectRegistry.
    To ensure this use constructors of the concrete derived types should be
    private or protected and friendship with the DemandDrivenMeshObject
    base-class declared so that the New functions can call the the constructors.

Additionally the mesh-object types (TopologicalMeshObject, GeometricMeshObject,
MoveableMeshObject, DistributeableMeshObject, UpdateableMeshObject) can now be
used as mix-in types for normally allocated objects providing the same interface
to mesh-change update functions, see the Fickian fluid
thermophysicalTransportModel or anisotropic solid thermophysicalTransportModel.
This new approach to adding mesh-update functions to classes will be applied to
other existing classes and future developments to simplify the support and
maintenance of run-time mesh changes, in particular mesh refinement/unrefinement
and mesh-to-mesh mapping.
2022-12-13 18:29:20 +00:00
2f4dd4fe27 Code simplification: GeometricField<Type, fvPatchField, volMesh> -> VolField<Type>
Using the VolField<Type> partial specialisation of
GeometricField<Type, fvPatchField, volMesh>
simplifies the code and improves readability.
2022-12-02 22:04:45 +00:00
fe368d5332 Code simplification: GeometricField<Type, fvsPatchField, surfaceMesh> -> SurfaceField<Type>
Using the SurfaceField<Type> partial specialisation of
GeometricField<Type, fvsPatchField, surfaceMesh>
simplifies the code and improves readability.
2022-12-02 19:02:15 +00:00
e84300d124 Code simplification: GeometricField<Type, pointPatchField, pointMesh> -> PointField<Type>
Using the PointField<Type> partial specialisation of GeometricField<Type,
pointPatchField, pointMesh> simplified the code and improves readability.
2022-12-02 15:24:50 +00:00
ed7e703040 Time::timeName(): no longer needed, calls replaced by name()
The timeName() function simply returns the dimensionedScalar::name() which holds
the user-time name of the current time and now that timeName() is no longer
virtual the dimensionedScalar::name() can be called directly.  The timeName()
function implementation is maintained for backward-compatibility.
2022-11-30 15:53:51 +00:00
052a4803f0 regionModels: Refactored to remove the now redundant regionModel base class 2022-11-23 14:23:12 +00:00
095f4b03f1 checkMesh: Added writing of NCC coverage
If checkMesh is executed with the -allGeometry option, then surface
files containing the NCC coverage will now be written out. Coverage is
the ratio between coupled area magnitude and total area magnitude. This
is useful for locating parts of the boundary mesh that are in error.
Errors (such as folds and pinches) typically manifest as a coverage
value that deviates significantly from a value of one.

This is comparable to the writing of AMI patches's weight sums, which
also used to occur when the -allGeometry option was selected.
2022-11-01 10:42:13 +00:00
5b11f5a833 functionObjects: Standardised file paths for functions applied to regions
Function objects now write to the following path when applied to a
non-default region of a multi-region case:

    postProcessing/<regionName>/<functionName>/<time>/

Previously the order of <regionName> and <functionName> was not
consistent between the various function objects.

Resolves bug report https://bugs.openfoam.org/view.php?id=3907
2022-10-13 11:28:26 +01:00
f4ac5f8748 AMIInterpolation, cyclicAMI: Removed
AMIInterpolation and cyclicAMI have been superseded by patchToPatch and
nonConformalCoupled, respectively.

The motivation behind this change is explained in the following article:

    https://cfd.direct/openfoam/free-software/non-conformal-coupling/

Information about how to convert a case which uses cyclicAMI to
nonConformalCoupled can be found here:

    https://cfd.direct/openfoam/free-software/using-non-conformal-coupling/
2022-09-22 10:05:41 +01:00
50aac13df5 typeGlobal, typeGlobalFile: Changed to trait structure
This allows for partial specialisation, so the different variants of the
global IO containers do not need the function to be overloaded for each
contained type. This also fixes an ommission in providing overloads of
these functions for some of the global IO containers.

Resolves bug report https://bugs.openfoam.org/view.php?id=3890
2022-09-20 16:39:05 +01:00
fef0206bdb IOList, GlobalIOList, CompactIOList: Templated on container type
This reduces duplication and inconsistency between the List, Field, Map,
and PtrList variants. It also allows for future extension to other
container types such as DynamicList.
2022-09-16 09:16:58 +01:00
e8ac5f424e mergePoints: Removed unused point merging code 2022-09-14 08:21:08 +01:00
8d229041dd mappedPatchBase: Separated into mapped and mappedInternal
The mappedPatchBase has been separated into a type which maps from
another patch (still called mappedPatchBase) and one that maps from
internal cell values (mappedInternalPatchBase). This prevents the user
needing to specify settings for mapping procedures that are not being
used, and potentially don't even make sense given the context in which
they are being applied. It also removes a lot of fragile logic and error
states in the mapping engine and its derivatives regarding the mode of
operation. Mapping from any face in the boundary is no longer supported.

Most region-coupling mapping patches are generated automatically by
utilities like splitMeshRegions and extrudeToRegionMesh. Cases which
create region-coupling mapped patches in this way will likely require no
modification.

Explicitly user-specified mapping will need modifying, however. For
example, where an inlet boundary is mapped to a downstream position in
order to evolve a developed profile. Or if a multi-region simulation is
constructed manually, without using one of the region-generating
utilities.

The available mapped patch types are now as follows:

  - mapped: Maps values from one patch to another. Typically used for
    inlets and outlets; to map values from an outlet patch to an inlet
    patch in order to evolve a developed inlet profile, or to permit
    flow between regions. Example specification in blockMesh:

        inlet
        {
            type    mapped;
            neighbourRegion region0;  // Optional. Defaults to the same
                                      // region as the patch.
            neighbourPatch outlet;
            faces   ( ... );
        }

    Note that any transformation between the patches is now determined
    automatically. Alternatively, it can be explicitly specified using
    the same syntax as for cyclic patches. The "offset" and "distance"
    keywords are no longer used.

  - mappedWall: As mapped, but treated as a wall for the purposes of
    modelling (wall distance). No transformation. Typically used for
    thermally coupling different regions. Usually created automatically
    by meshing utilities. Example:

        fluid_to_solid
        {
            type    mappedWall;
            neighbourRegion solid;
            neighbourPatch solid_to_fluid;
            method  intersection;     // The patchToPatch method. See
                                      // below.
            faces   ( ... );
        }

  - mappedExtrudedWall: As mapped wall, but with corrections to account
    for the thickness of an extruded mesh. Used for region coupling
    involving film and thermal baffle models. Almost always generated
    automatically by extrudeToRegionMesh (so no example given).

  - mappedInternal: Map values from internal cells to a patch. Typically
    used for inlets; to map values from internal cells to the inlet in
    order to evolve a developed inlet profile. Example:

        inlet
        {
            type    mappedInternal;
            distance 0.05;            // Normal distance from the patch
                                      // from which to map cell values
            //offset  (0.05 0 0);     // Offset from the patch from
                                      // which to map cell values
            faces   ( ... );
        }

    Note that an "offsetMode" entry is no longer necessary. The mode
    will be inferred from the presence of the distance or offset
    entries. If both are provided, then offsetMode will also be required
    to choose which setting applies.

The mapped, mappedWall and mappedExtrudedWall patches now permit
specification of a "method". This selects a patchToPatch object and
therefore determines how values are transferred or interpolated between
the patches. Valid options are:

  - nearest: Copy the value from the nearest face in the neighbouring
    patch.

  - matching: As nearest, but with checking to make sure that the
    mapping is one-to-one. This is appropriate for patches that are
    identically meshed.

  - inverseDistance: Inverse distance weighting from a small stencil of
    nearby faces in the neighbouring patch.

  - intersection: Weighting based on the overlapping areas with faces in
    the neighbouring patch. Equivalent to the previous AMI-based mapping
    mode.

If a method is not specfied, then the pre-existing approach will apply.
This should be equivalent to the "nearest" method (though in most such
cases, "matching" is probably more appropriate). This fallback may be
removed in the future once the patchToPatch methods have been proven
robust.

The important mapped boundary conditions are now as follows:

  - mappedValue: Maps values from one patch to another, and optionally
    modify the mapped values to recover a specified average. Example:

        inlet
        {
            type    mappedValue;
            field   U;                // Optional. Defaults to the same
                                      // as this field.
            average (10 0 0);         // The presence of this entry now
                                      // enables setting of the average,
                                      // so "setAverage" is not needed
            value   uniform 0.1;
        }

  - mappedInternalValue: Map values from cells to a patch, and
    optionally specify the average as in mappedValue. Example:

        inlet
        {
            type    mappedValue;
            field   k;                // Optional. Defaults to the same
                                      // as this field.
            interpolationScheme cell;
            value   uniform 0.1;
        }

  - mappedFlowRateVelocity: Maps the flow rate from one patch to
    another, and use this to set a patch-normal velocity. Example:

        inlet
        {
            type    mappedFlowRate;
            value   uniform (0 0 0);
        }

Of these, mappedValue and mappedInternalValue can override the
underlying mapped patch's settings by additionally specifying mapping
information (i.e., the neighbourPatch, offset, etc... settings usually
supplied for the patch). This also means these boundary condtions can be
applied to non-mapped patches. This functionality used to be provided
with a separate "mappedField" boundary condition, which has been removed
as it is no longer necessary.

Other mapped boundary conditions are either extremely niche (e.g.,
mappedVelocityFlux), are always automatically generated (e.g.,
mappedValueAndPatchInternalValue), or their usage has not changed (e.g.,
compressible::turbulentTemperatureCoupledBaffleMixed and
compressible::turbulentTemperatureRadCoupledMixed). Use foamInfo to
obtain further details about these conditions.
2022-09-09 10:03:58 +01:00
8c13ec4a8a polyPatch: Removed unnecessary constructors and clone functions
Poly patches should not hold non-uniform physical data that needs
mapping on mesh changes (decomposition, reconstruction, topology change,
etc ...). They should only hold uniform data that can be user-specified,
or non-uniform data that can be constructed on the fly from the poly
mesh.

With the recent changes to mappedPatchBase and extrudeToRegionMesh, this
has now been consistenly enforced, and a number of incomplete
implementations of poly patch mapping have therefore been removed.
2022-08-26 14:43:32 +01:00
ceac941f4c createNonConformalCouples: Support patchType overrides
Field settings can now be specified within
createNonConformalCouplesDict. This allows for patchType overrides; for
example to create a jump condition over the coupling.

An alternate syntax has been added to facilitate this. If patch fields
do not need overriding then the old syntax can be used where patches
that are to be coupled are specified as a pair of names; e.g.:

    fields      yes;

    nonConformalCouples
    {
        fan
        {
            patches         (fan0 fan1);
            transform       none;
        }
    }

If patch fields do need overriding, then instead of the "patches" entry,
separate "owner" and "neighbour" sub-dictionaries should be used. These
can both contain a "patchFields" section detailing the boundary
conditions that apply to the newly created patches:

    fields      yes;

    nonConformalCouples
    {
        fan
        {
            owner
            {
                patch       fan0;

                patchFields
                {
                    p
                    {
                        type        fanPressureJump;
                        patchType   nonConformalCyclic;
                        jump        uniform 0;
                        value       uniform 0;
                        jumpTable   polynomial 1((100 0));
                    }
                }
            }

            neighbour
            {
                patch       fan1;

                patchFields
                {
                    $../../owner/patchFields;
                }
            }

            transform       none;
        }
    }

In this example, only the pressure boundary condition is overridden on
the newly created non-conformal cyclic. All other fields will have the
basic constraint type (i.e., nonConformalCyclic) applied.
2022-08-10 16:26:18 +01:00
b1d6e64d02 createNonConformalCouples: Put non-conformal couple settings in a sub dictionary
Settings for the individual non-conformal couples can now be put in a
"nonConformalCouples" sub-dictionary of the
system/createNonConformalCouplesDict. For example:

    fields  no;

    nonConformalCouples // <-- new sub-dictionary
    {
        nonConformalCouple_none
        {
            patches         (nonCouple1 nonCouple2);
            transform       none;
        }

        nonConformalCouple_30deg
        {
            patches         (nonCoupleBehind nonCoupleAhead);
            transform       rotational;
            rotationAxis    (-1 0 0);
            rotationCentre  (0 0 0);
            rotationAngle   30;
        }
    }

This permits settings to be #include-d from files that themselves
contain sub-dictionaries without the utility treating those
sub-dictionaries as if they specify a non-conformal coupling. It also
makes the syntax more comparable to that of createBafflesDict.

The new "nonConformalCouples" sub-dictionary is optional, so this change
is backwards compatible. The new syntax is recommended, however, and all
examples have been changed accordingly.
2022-08-10 16:25:54 +01:00
73ad954f78 pimpleNoLoopControl: added moveMeshOuterCorrectors 2022-08-07 14:54:00 +01:00
968e60148a New modular solver framework for single- and multi-region simulations
in which different solver modules can be selected in each region to for complex
conjugate heat-transfer and other combined physics problems such as FSI
(fluid-structure interaction).

For single-region simulations the solver module is selected, instantiated and
executed in the PIMPLE loop in the new foamRun application.

For multi-region simulations the set of solver modules, one for each region, are
selected, instantiated and executed in the multi-region PIMPLE loop of new the
foamMultiRun application.

This provides a very general, flexible and extensible framework for complex
coupled problems by creating more solver modules, either by converting existing
solver applications or creating new ones.

The current set of solver modules provided are:

isothermalFluid
    Solver module for steady or transient turbulent flow of compressible
    isothermal fluids with optional mesh motion and mesh topology changes.

    Created from the rhoSimpleFoam, rhoPimpleFoam and buoyantFoam solvers but
    without the energy equation, hence isothermal.  The buoyant pressure
    formulation corresponding to the buoyantFoam solver is selected
    automatically by the presence of the p_rgh pressure field in the start-time
    directory.

fluid
    Solver module for steady or transient turbulent flow of compressible fluids
    with heat-transfer for HVAC and similar applications, with optional
    mesh motion and mesh topology changes.

    Derived from the isothermalFluid solver module with the addition of the
    energy equation from the rhoSimpleFoam, rhoPimpleFoam and buoyantFoam
    solvers, thus providing the equivalent functionality of these three solvers.

multicomponentFluid
    Solver module for steady or transient turbulent flow of compressible
    reacting fluids with optional mesh motion and mesh topology changes.

    Derived from the isothermalFluid solver module with the addition of
    multicomponent thermophysical properties energy and specie mass-fraction
    equations from the reactingFoam solver, thus providing the equivalent
    functionality in reactingFoam and buoyantReactingFoam.  Chemical reactions
    and/or combustion modelling may be optionally selected to simulate reacting
    systems including fires, explosions etc.

solid
    Solver module for turbulent flow of compressible fluids for conjugate heat
    transfer, HVAC and similar applications, with optional mesh motion and mesh
    topology changes.

    The solid solver module may be selected in solid regions of a CHT case, with
    either the fluid or multicomponentFluid solver module in the fluid regions
    and executed with foamMultiRun to provide functionality equivalent
    chtMultiRegionFoam but in a flexible and extensible framework for future
    extension to more complex coupled problems.

All the usual fvModels, fvConstraints, functionObjects etc. are available with
these solver modules to support simulations including body-forces, local sources,
Lagrangian clouds, liquid films etc. etc.

Converting compressibleInterFoam and multiphaseEulerFoam into solver modules
would provide a significant enhancement to the CHT capability and incompressible
solvers like pimpleFoam run in conjunction with solidDisplacementFoam in
foamMultiRun would be useful for a range of FSI problems.  Many other
combinations of existing solvers converted into solver modules could prove
useful for a very wide range of complex combined physics simulations.

All tutorials from the rhoSimpleFoam, rhoPimpleFoam, buoyantFoam, reactingFoam,
buoyantReactingFoam and chtMultiRegionFoam solver applications replaced by
solver modules have been updated and moved into the tutorials/modules directory:

modules
├── CHT
│   ├── coolingCylinder2D
│   ├── coolingSphere
│   ├── heatedDuct
│   ├── heatExchanger
│   ├── reverseBurner
│   └── shellAndTubeHeatExchanger
├── fluid
│   ├── aerofoilNACA0012
│   ├── aerofoilNACA0012Steady
│   ├── angledDuct
│   ├── angledDuctExplicitFixedCoeff
│   ├── angledDuctLTS
│   ├── annularThermalMixer
│   ├── BernardCells
│   ├── blockedChannel
│   ├── buoyantCavity
│   ├── cavity
│   ├── circuitBoardCooling
│   ├── decompressionTank
│   ├── externalCoupledCavity
│   ├── forwardStep
│   ├── helmholtzResonance
│   ├── hotRadiationRoom
│   ├── hotRadiationRoomFvDOM
│   ├── hotRoom
│   ├── hotRoomBoussinesq
│   ├── hotRoomBoussinesqSteady
│   ├── hotRoomComfort
│   ├── iglooWithFridges
│   ├── mixerVessel2DMRF
│   ├── nacaAirfoil
│   ├── pitzDaily
│   ├── prism
│   ├── shockTube
│   ├── squareBend
│   ├── squareBendLiq
│   └── squareBendLiqSteady
└── multicomponentFluid
    ├── aachenBomb
    ├── counterFlowFlame2D
    ├── counterFlowFlame2D_GRI
    ├── counterFlowFlame2D_GRI_TDAC
    ├── counterFlowFlame2DLTS
    ├── counterFlowFlame2DLTS_GRI_TDAC
    ├── cylinder
    ├── DLR_A_LTS
    ├── filter
    ├── hotBoxes
    ├── membrane
    ├── parcelInBox
    ├── rivuletPanel
    ├── SandiaD_LTS
    ├── simplifiedSiwek
    ├── smallPoolFire2D
    ├── smallPoolFire3D
    ├── splashPanel
    ├── verticalChannel
    ├── verticalChannelLTS
    └── verticalChannelSteady

Also redirection scripts are provided for the replaced solvers which call
foamRun -solver <solver module name> or foamMultiRun in the case of
chtMultiRegionFoam for backward-compatibility.

Documentation for foamRun and foamMultiRun:

Application
    foamRun

Description
    Loads and executes an OpenFOAM solver module either specified by the
    optional \c solver entry in the \c controlDict or as a command-line
    argument.

    Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
    pseudo-transient and steady simulations.

Usage
    \b foamRun [OPTION]

      - \par -solver <name>
        Solver name

      - \par -libs '(\"lib1.so\" ... \"libN.so\")'
        Specify the additional libraries loaded

    Example usage:
      - To run a \c rhoPimpleFoam case by specifying the solver on the
        command line:
        \verbatim
            foamRun -solver fluid
        \endverbatim

      - To update and run a \c rhoPimpleFoam case add the following entries to
        the controlDict:
        \verbatim
            application     foamRun;

            solver          fluid;
        \endverbatim
        then execute \c foamRun

Application
    foamMultiRun

Description
    Loads and executes an OpenFOAM solver modules for each region of a
    multiregion simulation e.g. for conjugate heat transfer.

    The region solvers are specified in the \c regionSolvers dictionary entry in
    \c controlDict, containing a list of pairs of region and solver names,
    e.g. for a two region case with one fluid region named
    liquid and one solid region named tubeWall:
    \verbatim
        regionSolvers
        {
            liquid          fluid;
            tubeWall        solid;
        }
    \endverbatim

    The \c regionSolvers entry is a dictionary to support name substitutions to
    simplify the specification of a single solver type for a set of
    regions, e.g.
    \verbatim
        fluidSolver     fluid;
        solidSolver     solid;

        regionSolvers
        {
            tube1             $fluidSolver;
            tubeWall1         solid;
            tube2             $fluidSolver;
            tubeWall2         solid;
            tube3             $fluidSolver;
            tubeWall3         solid;
        }
    \endverbatim

    Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
    pseudo-transient and steady simulations.

Usage
    \b foamMultiRun [OPTION]

      - \par -libs '(\"lib1.so\" ... \"libN.so\")'
        Specify the additional libraries loaded

    Example usage:
      - To update and run a \c chtMultiRegion case add the following entries to
        the controlDict:
        \verbatim
            application     foamMultiRun;

            regionSolvers
            {
                fluid           fluid;
                solid           solid;
            }
        \endverbatim
        then execute \c foamMultiRun
2022-08-04 21:11:35 +01:00
dafe3fa004 decomposePar, reconstructPar: Renamed cellDist to cellProc
The cellProc field is the field of cell-processor labels.

The names "distribution" and "dist" have been removed as these are
ambiguous in relation to other forms of distribution and to distance.
2022-07-22 09:46:34 +01:00
2db5626304 createNonConformalCouples: Added -fields option
When this option is enabled, non-conformal boundary conditions will be
added to all the fields. It enables exactly the same behaviour as the
"fields" entry that is available when using this utility with a settings
dictionary (system/createNonConformalCouplesDict).
2022-07-21 08:57:32 +01:00
31da3ac2c6 moveMesh: The deprecated moveMesh utility replaced by moveDynamicMesh
and moveDynamicMesh renamed to moveMesh

Description
    Mesh motion and topological mesh change utility.

    Executes the mover, topoChanger and distributor specified in the
    dynamicMeshDict in a time-loop.
2022-07-01 15:51:30 +01:00
eeccdceb26 Merge branch 'master' of github.com-OpenFOAM:OpenFOAM/OpenFOAM-dev 2022-06-14 14:10:39 +01:00
f0d3be60da utilities: Updated moveMesh -> setPoints
Mesh manipulation utilities do not need to generate or use mesh-motion fluxes so
it is more efficient to use setPoints rather than moveMesh.
2022-06-14 14:09:06 +01:00
da7286bc1d createNonConformalCyclics: Corrected overwrite
The handling of existing constant/fvMesh/polyFaces data has been
corrected so that it no longer interferes with the construction
of a new couple.
2022-06-14 11:52:16 +01:00
737d737b22 polyMesh::setPoints: New function to reset the points
without calculating the mesh-motion fluxes or cache the old points.  Used for
efficient reconstruction of moving mesh cases run in parallel.
2022-06-14 00:21:51 +01:00
f93300ee11 createBaffles: Simplified input syntax
This utility now always creates two patches, and only creates duplicate
faces when they connect to different cells and point in opposite
directions. Now that ACMI has been removed, there is no need to create
duplicate faces on the same cell and with similar orientations. This is
unituitive and is now considered an invalid mesh topology.

The preferred syntax for createBaffles is now as follows:

    internalFacesOnly true;

    baffles
    {
        cyclics
        {
            type        faceZone;
            zoneName    cyclicFaces;

            owner
            {
                name            cyclicLeft;
                type            cyclic;
                neighbourPatch  cyclicRight;
            }

            neighbour
            {
                name            cyclicRight;
                type            cyclic;
                neighbourPatch  cyclicLeft;
            }
        }
    }

Note that the 'patches' sub-dictionary is not needed any more; the
'owner' and 'neighbour' sub-dictionaries can be in the same dictionary
as the parameters with which faces are selected. For backwards
compatibility, however, a 'patches' sub-dictionary is still permitted,
as are keywords 'master' and 'slave' (in place of 'owner' and
'neighbour', respectively).

The 'patchPairs' syntax has been removed. Whilst consise, this syntax
made a number of assumptions and decisions regarding naming conventions
that were not sufficiently intuitive for the user to understand without
extensive reference to the code. If identical boundaries are desired on
both sides of the patch, dictionary substitution provides a more
intuitive way of minimising the amount of specifiection required. For
example, to create two back-to-back walls, the following specification
could be used:

    internalFacesOnly true;

    fields true;

    baffles
    {
        walls
        {
            type        faceZone;
            zoneName    wallFaces;

            owner
            {
                name            baffleWallLeft;
                type            wall;

                patchFields
                {
                    p
                    {
                        type            zeroGradient;
                    }

                    U
                    {
                        type            noSlip;
                    }
                }
            }

            neighbour
            {
                name            baffleWallRight;
                $owner; // <-- Use the same settings as for the owner
            }
        }
    }
2022-05-27 13:39:34 +01:00
9302074836 createPatch: Simplification and removed unused dictionaries
The 'pointSync' setting in createPatchDict is now optional and defaults
to false. This setting is very rarely used. A number of unused
'createPatchDict' files have also been removed and obsolete information
has been removed from the annotated example dictionaries.
2022-05-20 14:04:17 +01:00
8f8fa29e3e createNonConformalCouples: linked genericPatchFields library 2022-05-19 16:42:52 +01:00
94132c3a55 createNonConformalCouples: Added the option to modify fields
This utility can now add boundary conditions to fields which correspond
to the non-conformal patches that it adds to the mesh. This action is
enabled by means of a 'fields true;' flag which can be added to the
'system/createNonConformalCouplesDict'. No additional control is needed,
because all patches created by this utility are of constraint type.
2022-05-19 11:39:31 +01:00
569fa31d09 Non-Conformal Coupled (NCC): Conservative coupling of non-conforming patches
This major development provides coupling of patches which are
non-conformal, i.e. where the faces of one patch do not match the faces
of the other. The coupling is fully conservative and second order
accurate in space, unlike the Arbitrary Mesh Interface (AMI) and
associated ACMI and Repeat AMI methods which NCC replaces.

Description:

A non-conformal couple is a connection between a pair of boundary
patches formed by projecting one patch onto the other in a way that
fills the space between them. The intersection between the projected
surface and patch forms new faces that are incorporated into the finite
volume mesh. These new faces are created identically on both sides of
the couple, and therefore become equivalent to internal faces within the
mesh. The affected cells remain closed, meaning that the area vectors
sum to zero for all the faces of each cell. Consequently, the main
benefits of the finite volume method, i.e. conservation and accuracy,
are not undermined by the coupling.

A couple connects parts of mesh that are otherwise disconnected and can
be used in the following ways:

+ to simulate rotating geometries, e.g. a propeller or stirrer, in which
  a part of the mesh rotates with the geometry and connects to a
  surrounding mesh which is not moving;
+ to connect meshes that are generated separately, which do not conform
  at their boundaries;
+ to connect patches which only partially overlap, in which the
  non-overlapped section forms another boundary, e.g. a wall;
+ to simulate a case with a geometry which is periodically repeating by
  creating multiple couples with different transformations between
  patches.

The capability for simulating partial overlaps replaces the ACMI
functionality, currently provided by the 'cyclicACMI' patch type, and
which is unreliable unless the couple is perfectly flat. The capability
for simulating periodically repeating geometry replaces the Repeat AMI
functionality currently provided by the 'cyclicRepeatAMI' patch type.

Usage:

The process of meshing for NCC is very similar to existing processes for
meshing for AMI. Typically, a mesh is generated with an identifiable set
of internal faces which coincide with the surface through which the mesh
will be coupled. These faces are then duplicated by running the
'createBaffles' utility to create two boundary patches. The points are
then split using 'splitBaffles' in order to permit independent motion of
the patches.

In AMI, these patches are assigned the 'cyclicAMI' patch type, which
couples them using AMI interpolation methods.

With NCC, the patches remain non-coupled, e.g. a 'wall' type. Coupling
is instead achieved by running the new 'createNonConformalCouples'
utility, which creates additional coupled patches of type
'nonConformalCyclic'. These appear in the 'constant/polyMesh/boundary'
file with zero faces; they are populated with faces in the finite volume
mesh during the connection process in NCC.

For a single couple, such as that which separates the rotating and
stationary sections of a mesh, the utility can be called using the
non-coupled patch names as arguments, e.g.

    createNonConformalCouples -overwrite rotatingZoneInner rotatingZoneOuter

where 'rotatingZoneInner' and 'rotatingZoneOuter' are the names of the
patches.

For multiple couples, and/or couples with transformations,
'createNonConformalCouples' should be run without arguments. Settings
will then be read from a configuration file named
'system/createNonConformalCouplesDict'. See
'$FOAM_ETC/caseDicts/annotated/createNonConformalCouplesDict' for
examples.

Boundary conditions must be specified for the non-coupled patches. For a
couple where the patches fully overlap, boundary conditions
corresponding to a slip wall are typically applied to fields, i.e
'movingWallSlipVelocity' (or 'slip' if the mesh is stationary) for
velocity U, 'zeroGradient' or 'fixedFluxPressure' for pressure p, and
'zeroGradient' for other fields.  For a couple with
partially-overlapping patches, boundary conditions are applied which
physically represent the non-overlapped region, e.g. a no-slip wall.

Boundary conditions also need to be specified for the
'nonConformalCyclic' patches created by 'createNonConformalCouples'. It
is generally recommended that this is done by including the
'$FOAM_ETC/caseDicts/setConstraintTypes' file in the 'boundaryField'
section of each of the field files, e.g.

    boundaryField
    {
        #includeEtc "caseDicts/setConstraintTypes"

        inlet
        {
             ...
        }

        ...
    }

For moving mesh cases, it may be necessary to correct the mesh fluxes
that are changed as a result of the connection procedure. If the
connected patches do not conform perfectly to the mesh motion, then
failure to correct the fluxes can result in noise in the pressure
solution.

Correction for the mesh fluxes is enabled by the 'correctMeshPhi' switch
in the 'PIMPLE' (or equivalent) section of 'system/fvSolution'. When it
is enabled, solver settings are required for 'MeshPhi'. The solution
just needs to distribute the error enough to dissipate the noise. A
smooth solver with a loose tolerance is typically sufficient, e.g. the
settings in 'system/fvSolution' shown below:

    solvers
    {
        MeshPhi
        {
            solver          smoothSolver;
            smoother        symGaussSeidel;
            tolerance       1e-2;
            relTol          0;
        }
        ...
    }

    PIMPLE
    {
         correctMeshPhi      yes;
         ...
    }

The solution of 'MeshPhi' is an inexpensive computation since it is
applied only to a small subset of the mesh adjacent to the
couple. Conservation is maintained whether or not the mesh flux
correction is enabled, and regardless of the solution tolerance for
'MeshPhi'.

Advantages of NCC:

+ NCC maintains conservation which is required for many numerical
  schemes and algorithms to operate effectively, in particular those
  designed to maintain boundedness of a solution.

+ Closed-volume systems no longer suffer from accumulation or loss of
  mass, poor convergence of the pressure equation, and/or concentration
  of error in the reference cell.

+ Partially overlapped simulations are now possible on surfaces that are
  not perfectly flat. The projection fills space so no overlaps or
  spaces are generated inside contiguously overlapping sections, even if
  those sections have sharp angles.

+ The finite volume faces created by NCC have geometrically accurate
  centres. This makes the method second order accurate in space.

+ The polyhedral mesh no longer requires duplicate boundary faces to be
  generated in order to run a partially overlapped simulation.

+ Lagrangian elements can now transfer across non-conformal couplings in
  parallel.

+ Once the intersection has been computed and applied to the finite
  volume mesh, it can use standard cyclic or processor cyclic finite
  volume boundary conditions, with no need for additional patch types or
  matrix interfaces.

+ Parallel communication is done using the standard
  processor-patch-field system. This is more efficient than alternative
  systems since it has been carefully optimised for use within the
  linear solvers.

+ Coupled patches are disconnected prior to mesh motion and topology
  change and reconnected afterwards. This simplifies the boundary
  condition specification for mesh motion fields.

Resolved Bug Reports:

+ https://bugs.openfoam.org/view.php?id=663
+ https://bugs.openfoam.org/view.php?id=883
+ https://bugs.openfoam.org/view.php?id=887
+ https://bugs.openfoam.org/view.php?id=1337
+ https://bugs.openfoam.org/view.php?id=1388
+ https://bugs.openfoam.org/view.php?id=1422
+ https://bugs.openfoam.org/view.php?id=1829
+ https://bugs.openfoam.org/view.php?id=1841
+ https://bugs.openfoam.org/view.php?id=2274
+ https://bugs.openfoam.org/view.php?id=2561
+ https://bugs.openfoam.org/view.php?id=3817

Deprecation:

NCC replaces the functionality provided by AMI, ACMI and Repeat AMI.
ACMI and Repeat AMI are insufficiently reliable to warrant further
maintenance so are removed in an accompanying commit to OpenFOAM-dev.
AMI is more widely used so will be retained alongside NCC for the next
version release of OpenFOAM and then subsequently removed from
OpenFOAM-dev.
2022-05-18 10:25:43 +01:00
137a40ef56 Documentation: Moved "Notes" entries into the corresponding "Description" or "Usage"
This simplifies parsing the headers and ensures the notes are included in the
text they relate to by both Doxygen and foamInfo.
2022-05-12 09:51:14 +01:00
774ff647b0 transformPoints: Added option to restrict transformation to a point set
Transformation can now be restricted to a specific point set by means of
a new -pointSet option. For example, to move the rotating part of a
geometry through 45 degrees around the Z axis, the following command
could be used:

    transformPoints -pointSet rotating "Rz=45"

This assumes a point set called "rotating" has been defined during
meshing or by calling topoSet.
2022-05-07 15:21:16 +01:00
b8ce733e4b fvMesh: Separated fvMesh::move() and fvMesh::update()
fvMesh::update() now executes at the beginning of the time-step, before time is
incremented and handles topology change, mesh to mesh mapping and redistribution
without point motion.  Following each of these mesh changes fields are mapped
from the previous mesh state to new mesh state in a conservative manner.  These
mesh changes not occur at most once per time-step.

fvMesh::move() is executed after time is incremented and handles point motion
mesh morphing during the time-step in an Arbitrary Lagrangian Eulerian approach
requiring the mesh motion flux to match the cell volume change.  fvMesh::move()
can be called any number of times during the time-step to allow iterative update
of the coupling between the mesh motion and field solution.
2022-04-08 18:46:12 +01:00
98fa8df9a1 motionSolvers::motionSolverList: Updated as a PtrDictionary
so that the input is now dictionary rather than list of dictionaries which
provides support for dictionary substitutions within the motionSolver
sub-dictionaries and also simplifies lookup of specific motionSolvers within the
list.  For example the dynamicMeshDict for the floatingObject case with a second
floating object would be:

mover
{
    type            motionSolver;

    libs            ("libfvMeshMovers.so" "librigidBodyMeshMotion.so");

    motionSolver       motionSolverList;

    solvers
    {
        floatingObject
        {
            motionSolver rigidBodyMotion;

            report          on;

            solver
            {
                type Newmark;
            }

            accelerationRelaxation 0.7;

            bodies
            {
                floatingObject
                {
                    type            cuboid;
                    parent          root;

                    // Cuboid dimensions
                    Lx              0.3;
                    Ly              0.2;
                    Lz              0.5;

                    // Density of the cuboid
                    rho             500;

                    // Cuboid mass
                    mass            #calc "$rho*$Lx*$Ly*$Lz";
                    L               ($Lx $Ly $Lz);
                    centreOfMass    (0 0 0.25);
                    transform       (1 0 0 0 1 0 0 0 1) (0.5 0.45 0.1);

                    joint
                    {
                        type            composite;
                        joints
                        (
                            {
                                type Py;
                            }
                            {
                                type Ry;
                            }
                        );
                    }

                    patches         (floatingObject);
                    innerDistance   0.05;
                    outerDistance   0.35;
                }
            }
        }

        anotherFloatingObject
        {
        .
        .
        .
        }
    }
}
2022-04-04 16:38:20 +01:00
7592a81c6e polyMeshMap: New mesh to mesh map for the new mapping update function mapMesh(const polyMeshMap&)
This new mapping structure is designed to support run-time mesh-to-mesh mapping
to allow arbitrary changes to the mesh structure, for example during extreme
motion requiring significant topology change including region disconnection etc.
2022-04-04 11:15:41 +01:00
6047f27aac polyDistributionMap: renamed from polyMeshDistributionMap for consistency with polyTopoChangeMap 2022-03-31 23:44:47 +01:00
3ace8f434b polyTopoChangeMap: Renamed from mapPolyMesh to clarify purpose and scope
The polyTopoChangeMap is the map specifically relating to polyMesh topological
changes generated by polyTopoChange and used to update and map mesh related
types and fields following the topo-change.
2022-03-31 22:05:37 +01:00
ddbf2d7853 fvMesh: fvSchemes and fvSolution are now demand-driven
fvMesh is no longer derived from fvSchemes and fvSolution, these are now
demand-driven and accessed by the member functions schemes() and solution()
respectively.  This means that the system/fvSchemes and system/fvSolution files
are no longer required during fvMesh constructions simplifying the mesh
generation and manipulation phase; theses files are read on the first call of
their access functions.

The fvSchemes member function names have also been simplified taking advantage
of the context in which they are called, for example

    mesh.ddtScheme(fieldName) -> mesh.schemes().ddt(fieldName)
2022-03-23 16:23:55 +00:00
a578586c2c processorTopology: Un-templated
The template parameters were only ever polyBoundaryMesh and
processorPolyPatch. Un-templating makes mainteance and bug-fixing
quicker as it means minor modifications no longer cause a full rebuild
of OpenFOAM.
2022-03-17 11:58:06 +00:00
ec3187fa52 splitBaffles: Added support for hexRef8
so that the pointLevel file is updated for use by hexRef8 in subsequent mesh
manipulations, refinement/unrefinement etc.
2022-03-16 12:17:25 +00:00