Commit Graph

13 Commits

Author SHA1 Message Date
1e9e0c141b checkMesh: Added the region name to the postProcessing directory for the output from writeSets option 2023-06-12 12:21:34 +01:00
095f4b03f1 checkMesh: Added writing of NCC coverage
If checkMesh is executed with the -allGeometry option, then surface
files containing the NCC coverage will now be written out. Coverage is
the ratio between coupled area magnitude and total area magnitude. This
is useful for locating parts of the boundary mesh that are in error.
Errors (such as folds and pinches) typically manifest as a coverage
value that deviates significantly from a value of one.

This is comparable to the writing of AMI patches's weight sums, which
also used to occur when the -allGeometry option was selected.
2022-11-01 10:42:13 +00:00
5b11f5a833 functionObjects: Standardised file paths for functions applied to regions
Function objects now write to the following path when applied to a
non-default region of a multi-region case:

    postProcessing/<regionName>/<functionName>/<time>/

Previously the order of <regionName> and <functionName> was not
consistent between the various function objects.

Resolves bug report https://bugs.openfoam.org/view.php?id=3907
2022-10-13 11:28:26 +01:00
25a6d068f0 sampledSets, streamlines: Various improvements
Sampled sets and streamlines now write all their fields to the same
file. This prevents excessive duplication of the geometry and makes
post-processing tasks more convenient.

"axis" entries are now optional in sampled sets and streamlines. When
omitted, a default entry will be used, which is chosen appropriately for
the coordinate set and the write format. Some combinations are not
supported. For example, a scalar ("x", "y", "z" or "distance") axis
cannot be used to write in the vtk format, as vtk requires 3D locations
with which to associate data. Similarly, a point ("xyz") axis cannot be
used with the gnuplot format, as gnuplot needs a single scalar to
associate with the x-axis.

Streamlines can now write out fields of any type, not just scalars and
vectors, and there is no longer a strict requirement for velocity to be
one of the fields.

Streamlines now output to postProcessing/<functionName>/time/<file> in
the same way as other functions. The additional "sets" subdirectory has
been removed.

The raw set writer now aligns columns correctly.

The handling of segments in coordSet and sampledSet has been
fixed/completed. Segments mean that a coordinate set can represent a
number of contiguous lines, disconnected points, or some combination
thereof. This works in parallel; segments remain contiguous across
processor boundaries. Set writers now only need one write method, as the
previous "writeTracks" functionality is now handled by streamlines
providing the writer with the appropriate segment structure.

Coordinate sets and set writers now have a convenient programmatic
interface. To write a graph of A and B against some coordinate X, in
gnuplot format, we can call the following:

    setWriter::New("gnuplot")->write
    (
        directoryName,
        graphName,
        coordSet(true, "X", X), // <-- "true" indicates a contiguous
        "A",                    //     line, "false" would mean
        A,                      //     disconnected points
        "B",
        B
    );

This write function is variadic. It supports any number of
field-name-field pairs, and they can be of any primitive type.

Support for Jplot and Xmgrace formats has been removed. Raw, CSV,
Gnuplot, VTK and Ensight formats are all still available.

The old "graph" functionality has been removed from the code, with the
exception of the randomProcesses library and associated applications
(noise, DNSFoam and boxTurb). The intention is that these should also
eventually be converted to use the setWriters. For now, so that it is
clear that the "graph" functionality is not to be used elsewhere, it has
been moved into a subdirectory of the randomProcesses library.
2021-12-07 11:18:27 +00:00
dae463dbd8 TimePaths: Rationalised path methods 2021-06-24 14:20:00 +01:00
f4a65fbada sampling: Renamed and moved classes from fileFormats
The writer class has been renamed setWriter in order to clarify its
usage. The coordSet and setWriter classes have been moved into the
sampling library, as this fits their usage.
2021-06-18 13:57:11 +01:00
ee777e4083 Standardise on British spelling: -ize -> -ise
OpenFOAM is predominantly written in Britain with British spelling conventions
so -ise is preferred to -ize.
2021-06-01 19:11:58 +01:00
bf54ab67e1 Updated OpenFOAM Foundation web-link in headers 2018-07-06 21:42:54 +01:00
87e32ab499 Code style: Updated line comments to start with a space
//This is a comment   ->   // This is a comment
2018-05-01 11:57:50 +01:00
7c301dbff4 Parallel IO: New collated file format
When an OpenFOAM simulation runs in parallel, the data for decomposed fields and
mesh(es) has historically been stored in multiple files within separate
directories for each processor.  Processor directories are named 'processorN',
where N is the processor number.

This commit introduces an alternative "collated" file format where the data for
each decomposed field (and mesh) is collated into a single file, which is
written and read on the master processor.  The files are stored in a single
directory named 'processors'.

The new format produces significantly fewer files - one per field, instead of N
per field.  For large parallel cases, this avoids the restriction on the number
of open files imposed by the operating system limits.

The file writing can be threaded allowing the simulation to continue running
while the data is being written to file.  NFS (Network File System) is not
needed when using the the collated format and additionally, there is an option
to run without NFS with the original uncollated approach, known as
"masterUncollated".

The controls for the file handling are in the OptimisationSwitches of
etc/controlDict:

OptimisationSwitches
{
    ...

    //- Parallel IO file handler
    //  uncollated (default), collated or masterUncollated
    fileHandler uncollated;

    //- collated: thread buffer size for queued file writes.
    //  If set to 0 or not sufficient for the file size threading is not used.
    //  Default: 2e9
    maxThreadFileBufferSize 2e9;

    //- masterUncollated: non-blocking buffer size.
    //  If the file exceeds this buffer size scheduled transfer is used.
    //  Default: 2e9
    maxMasterFileBufferSize 2e9;
}

When using the collated file handling, memory is allocated for the data in the
thread.  maxThreadFileBufferSize sets the maximum size of memory in bytes that
is allocated.  If the data exceeds this size, the write does not use threading.

When using the masterUncollated file handling, non-blocking MPI communication
requires a sufficiently large memory buffer on the master node.
maxMasterFileBufferSize sets the maximum size in bytes of the buffer.  If the
data exceeds this size, the system uses scheduled communication.

The installation defaults for the fileHandler choice, maxThreadFileBufferSize
and maxMasterFileBufferSize (set in etc/controlDict) can be over-ridden within
the case controlDict file, like other parameters.  Additionally the fileHandler
can be set by:
- the "-fileHandler" command line argument;
- a FOAM_FILEHANDLER environment variable.

A foamFormatConvert utility allows users to convert files between the collated
and uncollated formats, e.g.
    mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated

An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/IO/fileHandling

The work was undertaken by Mattijs Janssens, in collaboration with Henry Weller.
2017-07-07 11:39:56 +01:00
1e6c9a0a54 Updated UPstream::commsTypes to use the C++11 enum class 2017-03-10 19:54:55 +00:00
0072b61124 checkMesh: Added option to write sets
- the checking for point-connected multiple-regions now also writes the
    conflicting points to a pointSet
  - with the -writeSets option it now also reconstructs & writes pointSets
2016-07-22 16:57:37 +01:00
621432fea5 checkMesh: Added writing of faceSets and cellSets containing errors
In parallel the sets are reconstructed. e.g.

mpirun -np 6 checkMesh -parallel -allGeometry -allTopology -writeSets vtk

will create a postProcessing/ folder with the vtk files of the
(reconstructed) faceSets and cellSets.

Also improved analysis of disconnected regions now also checks for point
connectivity with is useful for detecting if AMI regions have duplicate
points.

Patch contributed by Mattijs Janssens
2016-06-12 20:51:07 +01:00