executed with foamRun for single region simulations of foamMultiRun for
multi-region simulations. Replaces solidDisplacementFoam and
solidEquilibriumDisplacementFoam and all the corresponding tutorials have been
updated and moved to tutorials/modules/solidDisplacement.
Class
Foam::solvers::solidDisplacement
Description
Solver module for steady or transient segregated finite-volume solution of
linear-elastic, small-strain deformation of a solid body, with optional
thermal diffusion and thermal stresses.
Solves for the displacement vector field D, also generating the stress
tensor field sigma, including the thermal stress contribution if selected.
SourceFiles
solidDisplacement.C
The accelerationFactor option in solidEquilibriumDisplacementFoam is now
available in solidDisplacementFoam when running steady-state, providing a >5x
speed-up to convergence of the updated beamEndLoad case. This makes
solidEquilibriumDisplacementFoam redundant and it has been removed.
so that the same BC can be used for both solidDisplacementFoam and
solidEquilibriumDisplacementFoam. Also updated the beamEndLoad tutorial and
added a solidDisplacementFoam version to test the combined BC.
executed with foamRun for single region simulations of foamMultiRun for
multi-region simulations. Replaces XiFoam and all the corresponding
tutorials have been updated and moved to tutorials/modules/XiFluid.
Class
Foam::solvers::XiFluid
Description
Solver module for compressible premixed/partially-premixed combustion with
turbulence modelling.
Combusting RANS code using the b-Xi two-equation model.
Xi may be obtained by either the solution of the Xi transport
equation or from an algebraic expression. Both approaches are
based on Gulder's flame speed correlation which has been shown
to be appropriate by comparison with the results from the
spectral model.
Strain effects are encorporated directly into the Xi equation
but not in the algebraic approximation. Further work need to be
done on this issue, particularly regarding the enhanced removal rate
caused by flame compression. Analysis using results of the spectral
model will be required.
For cases involving very lean Propane flames or other flames which are
very strain-sensitive, a transport equation for the laminar flame
speed is present. This equation is derived using heuristic arguments
involving the strain time scale and the strain-rate at extinction.
the transport velocity is the same as that for the Xi equation.
Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
pseudo-transient and steady simulations.
Optional fvModels and fvConstraints are provided to enhance the simulation
in many ways including adding various sources, chemical reactions,
combustion, Lagrangian particles, radiation, surface film etc. and
constraining or limiting the solution.
Reference:
\verbatim
Greenshields, C. J., & Weller, H. G. (2022).
Notes on Computational Fluid Dynamics: General Principles.
CFD Direct Ltd.: Reading, UK.
\endverbatim
SourceFiles
XiFluid.C
See also
Foam::solvers::fluidSolver
Foam::solvers::isothermalFluid
executed with foamRun for single region simulations of foamMultiRun for
multi-region simulations. Replaces interFoam and all the corresponding
tutorials have been updated and moved to tutorials/modules/incompressibleVoF.
Both incompressibleVoF and compressibleVoF solver modules are derived from the
common two-phase VoF base-class solvers::VoFSolver which handles the
complexities of VoF interface-compression, boundedness and conservation with
2nd-order schemes in space and time using the semi-implicit MULES limiter and
solution proceedure. This maximises code re-use, improves readability and
simplifies maintenance.
Class
Foam::solvers::incompressibleVoF
Description
Solver module for for 2 incompressible, isothermal immiscible fluids using a
VOF (volume of fluid) phase-fraction based interface capturing approach,
with optional mesh motion and mesh topology changes including adaptive
re-meshing.
The momentum and other fluid properties are of the "mixture" and a single
momentum equation is solved.
Either mixture or two-phase transport modelling may be selected. In the
mixture approach a single laminar, RAS or LES model is selected to model the
momentum stress. In the Euler-Euler two-phase approach separate laminar,
RAS or LES selected models are selected for each of the phases.
Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
pseudo-transient and steady simulations.
Optional fvModels and fvConstraints are provided to enhance the simulation
in many ways including adding various sources, Lagrangian
particles, surface film etc. and constraining or limiting the solution.
SourceFiles
incompressibleVoF.C
See also
Foam::solvers::VoFSolver
Foam::solvers::compressibleVoF
Tests have shown that the alphaDByAf phase-pressure diffusion coefficient
provides better stability without the optional (1 - phase) prefactor without
introducing excessive smearing of the solution.
In order to ensure temperature consistency between the phases it is necessary to
solve for the mixture temperature rather than the mixture energy or phase
energies which makes it very difficult to conserve energy. The new temperature
equation is a temperature correction on the combined phase energy equations
which will conserve the phase and mixture energies at convergence. The
heat-flux (Laplacian) term is maintained in mixture temperature form so
heat-transfer boundary conditions, in particular for CHT, remain in terms of the
mixture kappaEff. The fvModels are applied to the phase energy equations and
the implicit part converted into an implicit term in the temperature correction
part of the equation to improve convergence and stability.
This development has required some change to the alphaEqn.H and interFoam has
been updated for consistency in preparation for conversion into the
solvers::incompressibleVoF modular module.
All compressibleVoF fvModels and tutorial cases have been updated for the above
change. Note that two entries are now required for the convection terms in the
temperature equation, one for explicit phase energy terms and another for the
implicit phase temperature correction terms, e.g.
tutorials/modules/compressibleVoF/ballValve
div(alphaRhoPhi,e) Gauss limitedLinear 1;
div(alphaRhoPhi,T) Gauss upwind;
In the above the upwind scheme is selected for the phase temperature correction
terms as they are corrections and will converge to a zero contribution. However
there may be cases which converge better if the same scheme is used for both the
energy and temperature terms, more testing is required.
Some momentumTransportModels like the laminar Stokes and generalisedNewtonian
models do no solve transport equations and the transport coefficients they
provide can be predicted at the beginning of the time-step rather than corrected
at the end, after conservative fluxes are available. A particular advantage of
this approach is that complex data cached in the momentumTransportModels
can now be deleted following mesh topology changes and recreated in the
predict() call which is more efficient than attempting to register and map the
data.
Currently the predict() function is only used for the Stokes and
generalisedNewtonian models but it will be extended in the future to cover many
LES models which also do not require the solution of transport equations.
All solvers and solver modules have been update to call the
momentumTransportModel::predict() function at the beginning of the time-step,
controlled by the new PIMPLE transportPredictionFirst control as appropriate.
None of the current thermophysicalTransportModels solve transport equations in
order to evaluate the thermophysical transport properties so it makes more sense
that the evaluation occurs at the beginning of the time-step rather than at the
end where conservative fluxes are available for transport solution. To enable
this the correct() functions have been renamed predict() and called in the
prePredictor() step of foamRun and foamMultiRun and at the beginning of the
time-step in the legacy solvers. A particular advantage of this approach is
that complex data cached in the thermophysicalTransportModels can now be deleted
following mesh topology changes and recreated in the predict() call which is
more efficient than attempting to register and map the data.
An empty correct() function is included in addition to the new predict()
function in thermophysicalTransportModel to support scalar flux transport
closure in the future if needed.
Additionally the two transport model corrector function calls in foamRun and
foamMultiRun have been combined into a single postCorrector() call to allow
greater flexibility in transport property prediction and correction in the
modular solvers.
Replaces MeshObject, providing a formalised method for creating demand-driven
mesh objects, optionally supporting update functions called by the mesh
following mesh changes.
Class
Foam::DemandDrivenMeshObject
Description
Templated abstract base-class for demand-driven mesh objects used to
automate their allocation to the mesh database and the mesh-modifier
event-loop.
DemandDrivenMeshObject is templated on the type of mesh it is allocated
to, the type of the mesh object (TopologicalMeshObject, GeometricMeshObject,
MoveableMeshObject, DistributeableMeshObject, UpdateableMeshObject) and the
type of the actual object it is created for example:
\verbatim
class leastSquaresVectors
:
public DemandDrivenMeshObject
<
fvMesh,
MoveableMeshObject,
leastSquaresVectors
>
{
.
.
.
//- Delete the least square vectors when the mesh moves
virtual bool movePoints();
};
\endverbatim
MeshObject types:
- TopologicalMeshObject: mesh object to be deleted on topology change
- GeometricMeshObject: mesh object to be deleted on geometry change
- MoveableMeshObject: mesh object to be updated in movePoints
- UpdateableMeshObject: mesh object to be updated in topoChange or
movePoints
- PatchMeshObject: mesh object to be additionally updated patch changes
DemandDrivenMeshObject should always be constructed and accessed via the New
methods provided so that they are held and maintained by the objectRegistry.
To ensure this use constructors of the concrete derived types should be
private or protected and friendship with the DemandDrivenMeshObject
base-class declared so that the New functions can call the the constructors.
Additionally the mesh-object types (TopologicalMeshObject, GeometricMeshObject,
MoveableMeshObject, DistributeableMeshObject, UpdateableMeshObject) can now be
used as mix-in types for normally allocated objects providing the same interface
to mesh-change update functions, see the Fickian fluid
thermophysicalTransportModel or anisotropic solid thermophysicalTransportModel.
This new approach to adding mesh-update functions to classes will be applied to
other existing classes and future developments to simplify the support and
maintenance of run-time mesh changes, in particular mesh refinement/unrefinement
and mesh-to-mesh mapping.
Momentum transport in the modular solvers is generalised and run-time
selectable, supporting laminar, generalised laminar or non-Newtonian as well LES
or RAS turbulence modelling so it is clearer to name the momentum transport
model instance 'momentumTransport' rather than 'turbulence'.
With the addition of the compressibleInterPhaseThermophysicalTransportModel
thermophysicalTransportModel the compressibleVoF modular solver now support
conjugate heat transfer (CHT).
Th new tutorials/modules/CHT/VoFcoolingCylinder2D tutorial case is provided to
demonstrate this functionality and shows a heated ceramic rod with air flowing
over the top and water underneath.
Simplifies the setting of the scheme for the phase pressure, e.g. choosing localMax
interpolationSchemes
{
default linear;
pPrime localMax;
}
improves stability and reduces chequerboarding in the solution at higher Courant
numbers.
In order that the phase-fractions sum to 1 it is necessary that the same
diffusivity is used for ALL phases in the implicitPhasePressure option. This is
guaranteed by the new alphaDByAf function which returns a single
surfaceScalarField diffusivity to be used when forming the Laplacian term in the
implicit phase-fraction diffusion correction equation in phaseSystemSolve.
The phase-pressure and turbulent dispersion interface terms are summed over all
phases and interfaces in alphaDByAf to form a single diffusivity.
The timeName() function simply returns the dimensionedScalar::name() which holds
the user-time name of the current time and now that timeName() is no longer
virtual the dimensionedScalar::name() can be called directly. The timeName()
function implementation is maintained for backward-compatibility.
Description
Uniform or non-uniform constant solid thermodynamic properties
Each physical property can specified as either \c uniform in which case the
value entry is read, \c zonal in which case the value entry and zone list
are read or \c file in which case the field file in read from the constant
directory.
Usage
Example of uniform constant solid properties specification:
\verbatim
thermoType constSolidThermo;
rho
{
type uniform;
value 8940;
}
Cv
{
type uniform;
value 385;
}
kappa
{
type uniform;
value 380;
}
\endverbatim
Example of zonal constant solid properties specification where kappa is
different in different zones:
\verbatim
thermoType constSolidThermo;
rho
{
type uniform;
value 8940;
}
Cv
{
type uniform;
value 385;
}
kappa
{
type zonal;
value 380;
zones
{
heater 560;
insulation 100;
}
}
\endverbatim
Example of non-uniform constant solid properties specification:
\verbatim
thermoType constSolidThermo;
rho
{
type file;
}
Cv
{
type file;
}
kappa
{
type file;
}
\endverbatim
where each of the field files are read from the constant directory.
Now fluxes are updated from the mapped fields following mesh topology change
with or without implicit continuity correction enabled by the optional
correctPhi switch.
Given that the number of solid solver modules is currently 1 and unlikely to
exceed 3 it is not very useful to maintain solid and fluid sub-directories and
easier to see the correspondence between the solver modules and tutorial cases
without.
This adds cavitation modelling to the multiphaseEuler solver module as a
phaseTransfer model. The underlying cavitation modelling is the same as
for the compressibleVoF module.
An example specification in constant/phaseProperties is shown below:
phaseTransfer
{
gas_liquid
{
type cavitation;
model Kunz;
liquid water;
pSat 80000;
UInf 5.33;
tInf 0.028142589;
Cc 100;
Cv 100;
}
}
Based on code contributed by Petteri Peltonen, VTT.
The cavitation models used by the compressibleVoF module can now have a
temperature-dependent saturation pressure model specified. For example,
in the constant/fvModels file of a compressibleVoF case:
VoFCavitation
{
type VoFCavitation;
libs ("libcompressibleVoFCavitation.so");
model SchnerrSauer;
liquid water;
// Constant saturation pressure
//pSat 2300;
// Antoine equation for temperature-dependent saturation pressure
pSat
{
type Antoine;
A 22;
B -3000;
C -500;
}
n 1.6e+13;
dNuc 2.0e-06;
Cc 1;
Cv 1;
}
The cavitation models used by the interFoam solver and the
compressibleVoF solver module can now be applied regardless of the
ordering of the liquid and vapour phases. A "liquid" keyword is now
required in the model specification in order to control which phase is
considered to be the condensed liquid state. Previously the liquid phase
was assumed to be the first of the two phases.
The multiphaseEuler module now uses saturation models from the
centralised thermophysical properties library.
The control of these models is slightly different than for the previous
multiphaseEuler-specific saturation models. Where previously a
"saturationPressure" or "saturationTemperature" sub-dictionary was
employed, now "pSat" and "Tsat" entries are used which can be specified
flexibly in a similar manner to function1-s. See the previous commit for
details.
For high-speed flow cases benefiting from extrapolated pressure, e.g. IC engine
piston motion the fixedFluxExtrapolatedPressure pressure BC can now be used with
the transonic pressure solution option.
Class
Foam::coupledMultiphaseTemperatureFvPatchScalarField
Description
Mixed boundary condition for the phase temperature of a phase in an
Euler-Euler multiphase simulation, to be used for heat-transfer with another
region in a CHT case. Optional thin wall material layer resistances can be
specified through thicknessLayers and kappaLayers entries.
See also
Foam::coupledTemperatureFvPatchScalarField
The new tutorial case tutorials/modules/CHT/multiphaseCoolingCylinder2D is a
variant of the coolingCylinder2D case in which a 10% oil droplets in water
mixture flows over and cools a hot cylinder. The case in run with the
foamMultiRun multi-solver executor.