There is now only one -listSwitches argument available to the
applications; -listUnsetSwitches and -listRegisteredSwitches have been
removed. -listSwitches prints everything, now also including the values.
It also categorises the output based on whether the switch has a
default, if it has the same value as that default, and whether or not it
is registered with a re-reader.
The list of debug switches in etc/controlDict has been reduced to only
the switches which have non-zero values. In general the list of valid
switches varies per application and per library, so it is not possible
to keep a single definitive list of all switches. The -listSwitches
argument provides the definitive list on a per applicaton basis.
Setting of defaults for named enum optimisation switches has been added.
The reactingtTwoPhaseEulerFoam solver has been replaced by the more general
multiphaseEulerFoam solver which supports two-phase and multiphase systems
containing fluid and stationary phases, compressible or incompressible, with
heat and mass transfer, reactions, size distribution and all the usual phase
interaction and transfer models.
All reactingtTwoPhaseEulerFoam tutorials have been ported to multiphaseEulerFoam
to demonstrate two-phase capability with a wide range of phase and
phase-interaction models.
When running with two-phases the optional referencePhase entry in
phaseProperties can be used to specify which phase fraction should not be
solved, providing compatibility with reactingtTwoPhaseEulerFoam, see
tutorials/multiphase/multiphaseEulerFoam/RAS/fluidisedBed
tutorials/multiphase/multiphaseEulerFoam/laminar/bubbleColumn
for examples.
The new multiphaseEulerFoam is based on reactingMultiphaseEulerFoam with some
improvements and rationalisation to assist maintenance and further development.
The phase system solution has been enhanced to handle two phases more
effectively and all two-phase specific models updated for compatibility so that
multiphaseEulerFoam can also replace reactingTwoPhaseEulerFoam.
When running multiphaseEulerFoam with only two-phases the default behaviour is
to solve for both phase-fractions but optionally a reference phase can be
specified so that only the other phase-fraction is solved, providing better
compatibility with the behaviour of reactingTwoPhaseEulerFoam.
All reactingMultiphaseEulerFoam and reactingTwoPhaseEulerFoam tutorials have
been updated for multiphaseEulerFoam.
providing the shear-stress term in the momentum equation for incompressible and
compressible Newtonian, non-Newtonian and visco-elastic laminar flow as well as
Reynolds averaged and large-eddy simulation of turbulent flow.
The general deviatoric shear-stress term provided by the MomentumTransportModels
library is named divDevTau for compressible flow and divDevSigma (sigma =
tau/rho) for incompressible flow, the spherical part of the shear-stress is
assumed to be either included in the pressure or handled separately. The
corresponding stress function sigma is also provided which in the case of
Reynolds stress closure returns the effective Reynolds stress (including the
laminar contribution) or for other Reynolds averaged or large-eddy turbulence
closures returns the modelled Reynolds stress or sub-grid stress respectively.
For visco-elastic flow the sigma function returns the effective total stress
including the visco-elastic and Newtonian contributions.
For thermal flow the heat-flux generated by thermal diffusion is now handled by
the separate ThermophysicalTransportModels library allowing independent run-time
selection of the heat-flux model.
During the development of the MomentumTransportModels library significant effort
has been put into rationalising the components and supporting libraries,
removing redundant code, updating names to provide a more logical, consistent
and extensible interface and aid further development and maintenance. All
solvers and tutorials have been updated correspondingly and backward
compatibility of the input dictionaries provided.
Henry G. Weller
CFD Direct Ltd.
With the selection of the Boussinesq equation of state the general buoyancy
solvers buoyantSimpleFoam and buoyantPimpleFoam can be used instead of the
specialised Boussinesq solvers avoiding the need for special implementation of
thermal and pressure boundary conditions and providing support for radiation and
fvOptions which would not have been feasible or practical in the Boussinesq
solvers.
Other incompressible equations of state are also supported; for most gaseous
problems the incompressiblePerfectGas equation of state is likely to be more
accurate than the Boussinesq equation of state.
The buoyantBoussinesq[SP]impleFoam tutorials have been updated and moved to the
corresponding buoyant[SP]impleFoam directories.
for consistency with WM_PROJECT. Now "etc" files are assumed to be in etc
sub-directories of WM_PROJECT_SITE and WM_PROJECT_INST_DIR allowing other files
to be stored in those directories. The search order is now:
Search for files from user/group/shipped directories.
The search scheme allows for version-specific and
version-independent files using the following hierarchy:
- \b user settings:
- ~/.OpenFOAM/\<VERSION\>/
- ~/.OpenFOAM/
- \b group (site) settings (when $WM_PROJECT_SITE is set):
- $WM_PROJECT_SITE/\<VERSION\>/etc/
- $WM_PROJECT_SITE/etc/
- \b group (site) settings (when $WM_PROJECT_SITE is not set):
- $WM_PROJECT_INST_DIR/site/\<VERSION\>/etc/
- $WM_PROJECT_INST_DIR/site/etc/
- \b other (shipped) settings:
- $WM_PROJECT_DIR/etc/
\return The list of full paths of all the matching files or
an empty list if the name cannot be found.
Optionally abort if the file cannot be found.
Optionally stop search after the first file has been found.
This change was proposed and agreed by the sponsors of the OpenFOAM project on
the OpenFOAM Hub, see https://openfoam.org/maintenance/
The sonicFoam, sonicDyMFoam and sonicLiquidFoam functionality has been merged
into the transonic option of the latest rhoPimpleFoam solver and the
corresponding tutorials moved into the rhoPimpleFoam tutorials directory.
To run rhoPimpleFoam in transonic mode set the transonic option in the
PIMPLE sub-dictionary of fvSolution:
PIMPLE
{
.
.
.
transonic yes;
}
When typing OpenFOAM commands, the bash completion system will
complete option names, e.g. -help, -parallel, etc. After typing an
option that includes an argument, e.g. -case <dir>, completion will
adjust to the type of argument, e.g. present directories if the
argument is a directory. Similarly, for applications with mandarory
file arguments, file (and directory) names will appear on the
completion list.