The new multiphaseEulerFoam is based on reactingMultiphaseEulerFoam with some
improvements and rationalisation to assist maintenance and further development.
The phase system solution has been enhanced to handle two phases more
effectively and all two-phase specific models updated for compatibility so that
multiphaseEulerFoam can also replace reactingTwoPhaseEulerFoam.
When running multiphaseEulerFoam with only two-phases the default behaviour is
to solve for both phase-fractions but optionally a reference phase can be
specified so that only the other phase-fraction is solved, providing better
compatibility with the behaviour of reactingTwoPhaseEulerFoam.
All reactingMultiphaseEulerFoam and reactingTwoPhaseEulerFoam tutorials have
been updated for multiphaseEulerFoam.
Description
This functionObject writes the phase-fraction map field alpha.map with
incremental value ranges for each phase
e.g., with values 0-1 for water, 1-2 for air, 2-3 for oil etc.
Example of function object specification:
\verbatim
phaseMap
{
type phaseMap;
libs ("libreactingEulerFoamFunctionObjects.so");
writeControl writeTime;
}
\endverbatim
Usage
\table
Property | Description | Required | Default value
type | type name: phaseMap | yes |
\endtable
This replaces the alphas functionality previously built-in to
reactingMultiphaseEulerFoam so that the storage, calculation and writing of the
phase map field is now under user control.
Rather than specifying the controls per field it is simpler to use a single set
of controls for all the fields in the list and use separate instances of the
fieldAverage functionObject for different control sets:
Example of function object specification setting all the optional parameters:
fieldAverage1
{
type fieldAverage;
libs ("libfieldFunctionObjects.so");
writeControl writeTime;
restartOnRestart false;
restartOnOutput false;
periodicRestart false;
restartPeriod 0.002;
base time;
window 10.0;
windowName w1;
mean yes;
prime2Mean yes;
fields (U p);
}
This allows for a simple specification with the optional prime2Mean entry using
#includeFunc fieldAverage(U, p, prime2Mean = yes)
or if the prime2Mean is not needed just
#includeFunc fieldAverage(U, p)
to support the more convenient #includeFunc specification in both
#includeFunc fieldAverage(U.air, U.water, alpha.air, p)
and
#includeFunc fieldAverage(fields = (U.air, U.water, alpha.air, p))
forms.
The mean, prime2Mean and base now have default values:
{
mean on; // (default = on)
prime2Mean on; // (default = off)
base time; // time or iteration (default = time)
window 200; // optional averaging window
windowName w1; // optional window name (default = "")
}
so for the majority of cases for which these defaults are appropriate the
fieldAverage functionObject can now be specified in the functions entry in
controlDict thus:
functions
{
fieldAverage1
{
#includeEtc "caseDicts/postProcessing/fields/fieldAverage.cfg"
fields
(
U.air
U.water
alpha.air
p
);
}
}
also utilising the new fieldAverage.cfg file.
For cases in which these defaults are not appropriate, e.g. the prime2Mean is
also required the optional entries can be specified within sub-dictionaries for
each field, e.g.
fieldAverage1
{
#includeEtc "caseDicts/postProcessing/fields/fieldAverage.cfg"
fields
(
U
{
prime2Mean yes;
}
p
{
prime2Mean yes;
}
);
}
The total enthalpy is calculated as
Ha = ha + K
where
ha is absolute enthalpy
K is the kinetic energy: 1/2*magSqr(U)
The total enthalpy or a particular phase can be calculated by specifying the
optional "phase" name, e.g.
#includeFunc totalEnthalpy(phase = liquid)
Both the functionObject call context (the command line for postProcess, and the
controlDict path for run-time post-precessing) and the configuration file
context where the arguments are substituted are now printed in the error
message, e.g.
postProcess -func 'patchAverage(name=inlet, ields=(p U))'
generates the message
--> FOAM FATAL IO ERROR:
Essential value for keyword 'fields' not set in function entry
patchAverage(name=inlet, ields=(p U))
in command line postProcess -func patchAverage(name=inlet, ields=(p U))
Placeholder value is <field_names>
file: /home/dm2/henry/OpenFOAM/OpenFOAM-dev/etc/caseDicts/postProcessing/surfaceFieldValue/patchAverage from line 13 to line 17.
and with the following in controlDict
functions
{
#includeFunc patchAverage(name=inlet, ields=(p U))
}
generates the message
--> FOAM FATAL IO ERROR:
Essential value for keyword 'fields' not set in function entry
patchAverage(name=inlet, ields=(p U))
in file /home/dm2/henry/OpenFOAM/OpenFOAM-dev/tutorials/incompressible/pimpleFoam/RAS/pitzDaily/system/controlDict at line 55
Placeholder value is <field_names>
file: /home/dm2/henry/OpenFOAM/OpenFOAM-dev/etc/caseDicts/postProcessing/surfaceFieldValue/patchAverage from line 13 to line 17.
This object calculates a field of the age of fluid in the domain; i.e.,
the time taken for a fluid particle to travel to a location from an
inlet. It outputs a field, named age, with dimensions of time, and
requires a solver and a div(phi,age) scheme to be specified. A number of
corrections for the solution procedure can be set, as well as the name
of the flux and density fields.
Example specification:
age1
{
type age;
libs ("libfieldFunctionObjects.so");
nCorr 10;
phi phi;
rho rho;
}
Example usage:
postProcess -func age -fields "(phi)" -latestTime
This work was supported by Robert Secor and Lori Holmes, at 3M
Description
Calculates the natural logarithm of the specified scalar field.
Performs \f$ln(max(x, a))\f$ where \f$x\f$ is the field and \f$a\f$ an
optional clip to handle 0 or negative \f$x\f$.
The etc/caseDicts/postProcessing/fields/log configuration file is provided so
that the simple #includeFunc can be used to execute this functionObject during
the run, e.g. for some dimensionless field x
functions
{
#includeFunc log(x)
}
or if x might be 0 or negative in some regions the optional clip may be applied:
functions
{
#includeFunc log(p,clip=1e-6)
}
Description
Evaluates and writes the turbulence intensity field 'I'.
The turbulence intensity field 'I' is the root-mean-square of the turbulent
velocity fluctuations normalised by the local velocity magnitude:
\f[
I \equiv \frac{\sqrt{\frac{2}{3}\, k}}{U}
\f]
To avoid spurious extrema and division by 0 I is limited to 1 where the
velocity magnitude is less than the turbulent velocity fluctuations.
Example of function object specification:
\verbatim
functions
{
.
.
.
turbulenceIntensity
{
type turbulenceIntensity;
libs ("libfieldFunctionObjects.so");
}
.
.
.
}
\endverbatim
or using the standard configuration file:
\verbatim
functions
{
.
.
.
#includeFunc turbulenceIntensity
.
.
.
}
\endverbatim
with the more general and flexible 'postProcess' utility and '-postProcess' solver option
Rationale
---------
Both the 'postProcess' utility and '-postProcess' solver option use the
same extensive set of functionObjects available for data-processing
during the run avoiding the substantial code duplication necessary for
the 'foamCalc' and 'postCalc' utilities and simplifying maintenance.
Additionally consistency is guaranteed between solver data processing
and post-processing.
The functionObjects have been substantially re-written and generalized
to simplify development and encourage contribution.
Configuration
-------------
An extensive set of simple functionObject configuration files are
provided in
OpenFOAM-dev/etc/caseDicts/postProcessing
and more will be added in the future. These can either be copied into
'<case>/system' directory and included into the 'controlDict.functions'
sub-dictionary or included directly from 'etc/caseDicts/postProcessing'
using the '#includeEtc' directive or the new and more convenient
'#includeFunc' directive which searches the
'<etc>/caseDicts/postProcessing' directories for the selected
functionObject, e.g.
functions
{
#includeFunc Q
#includeFunc Lambda2
}
'#includeFunc' first searches the '<case>/system' directory in case
there is a local configuration.
Description of #includeFunc
---------------------------
Specify a functionObject dictionary file to include, expects the
functionObject name to follow (without quotes).
Search for functionObject dictionary file in
user/group/shipped directories.
The search scheme allows for version-specific and
version-independent files using the following hierarchy:
- \b user settings:
- ~/.OpenFOAM/\<VERSION\>/caseDicts/postProcessing
- ~/.OpenFOAM/caseDicts/postProcessing
- \b group (site) settings (when $WM_PROJECT_SITE is set):
- $WM_PROJECT_SITE/\<VERSION\>/caseDicts/postProcessing
- $WM_PROJECT_SITE/caseDicts/postProcessing
- \b group (site) settings (when $WM_PROJECT_SITE is not set):
- $WM_PROJECT_INST_DIR/site/\<VERSION\>/caseDicts/postProcessing
- $WM_PROJECT_INST_DIR/site/caseDicts/postProcessing
- \b other (shipped) settings:
- $WM_PROJECT_DIR/etc/caseDicts/postProcessing
An example of the \c \#includeFunc directive:
\verbatim
#includeFunc <funcName>
\endverbatim
postProcess
-----------
The 'postProcess' utility and '-postProcess' solver option provide the
same set of controls to execute functionObjects after the run either by
reading a specified set of fields to process in the case of
'postProcess' or by reading all fields and models required to start the
run in the case of '-postProcess' for each selected time:
postProcess -help
Usage: postProcess [OPTIONS]
options:
-case <dir> specify alternate case directory, default is the cwd
-constant include the 'constant/' dir in the times list
-dict <file> read control dictionary from specified location
-field <name> specify the name of the field to be processed, e.g. U
-fields <list> specify a list of fields to be processed, e.g. '(U T p)' -
regular expressions not currently supported
-func <name> specify the name of the functionObject to execute, e.g. Q
-funcs <list> specify the names of the functionObjects to execute, e.g.
'(Q div(U))'
-latestTime select the latest time
-newTimes select the new times
-noFunctionObjects
do not execute functionObjects
-noZero exclude the '0/' dir from the times list, has precedence
over the -withZero option
-parallel run in parallel
-region <name> specify alternative mesh region
-roots <(dir1 .. dirN)>
slave root directories for distributed running
-time <ranges> comma-separated time ranges - eg, ':10,20,40:70,1000:'
-srcDoc display source code in browser
-doc display application documentation in browser
-help print the usage
pimpleFoam -postProcess -help
Usage: pimpleFoam [OPTIONS]
options:
-case <dir> specify alternate case directory, default is the cwd
-constant include the 'constant/' dir in the times list
-dict <file> read control dictionary from specified location
-field <name> specify the name of the field to be processed, e.g. U
-fields <list> specify a list of fields to be processed, e.g. '(U T p)' -
regular expressions not currently supported
-func <name> specify the name of the functionObject to execute, e.g. Q
-funcs <list> specify the names of the functionObjects to execute, e.g.
'(Q div(U))'
-latestTime select the latest time
-newTimes select the new times
-noFunctionObjects
do not execute functionObjects
-noZero exclude the '0/' dir from the times list, has precedence
over the -withZero option
-parallel run in parallel
-postProcess Execute functionObjects only
-region <name> specify alternative mesh region
-roots <(dir1 .. dirN)>
slave root directories for distributed running
-time <ranges> comma-separated time ranges - eg, ':10,20,40:70,1000:'
-srcDoc display source code in browser
-doc display application documentation in browser
-help print the usage
The functionObjects to execute may be specified on the command-line
using the '-func' option for a single functionObject or '-funcs' for a
list, e.g.
postProcess -func Q
postProcess -funcs '(div(U) div(phi))'
In the case of 'Q' the default field to process is 'U' which is
specified in and read from the configuration file but this may be
overridden thus:
postProcess -func 'Q(Ua)'
as is done in the example above to calculate the two forms of the divergence of
the velocity field. Additional fields which the functionObjects may depend on
can be specified using the '-field' or '-fields' options.
The 'postProcess' utility can only be used to execute functionObjects which
process fields present in the time directories. However, functionObjects which
depend on fields obtained from models, e.g. properties derived from turbulence
models can be executed using the '-postProcess' of the appropriate solver, e.g.
pisoFoam -postProcess -func PecletNo
or
sonicFoam -postProcess -func MachNo
In this case all required fields will have already been read so the '-field' or
'-fields' options are not be needed.
Henry G. Weller
CFD Direct Ltd.
This changes simplifies the specification of functionObjects in
controlDict and is consistent with the 'libs' option in controlDict to
load special solver libraries.
Support for the old 'functionObjectLibs' name is supported for backward compatibility.
to have the prefix 'write' rather than 'output'
So outputTime() -> writeTime()
but 'outputTime()' is still supported for backward-compatibility.
Also removed the redundant secondary-writing functionality from Time
which has been superseded by the 'writeRegisteredObject' functionObject.
for consistency with the time controls in controlDict and to avoid
unnecessary confusion. All code and tutorials have been updated.
The old names 'outputControl' and 'outputInterval' are but supported for
backward compatibility but deprecated.