foamDictionary executions are now wrapped by runApplication like any
other execution so that they do not print during a test loop.
foamDictionary does not produce a conforming log, however, so
log.foamDictionary has been filtered out of the formation of the test
loop report so that false failures are not reported.
The new optional 'slash' scoping syntax is now the default and provides a more
intuitive and flexible syntax than the previous 'dot' syntax, corresponding to
the common directory/file access syntax used in UNIX, providing support for
reading entries from other dictionary files.
In the 'slash' syntax
'/' is the scope operator
'../' is the parent dictionary scope operator
'!' is the top-level dictionary scope operator
Examples:
internalField 3.4;
active
{
type fixedValue;
value.air $internalField;
}
inactive
{
type anotherFixedValue;
value $../active/value.air;
anotherValue $!active/value.air;
sub
{
value $../../active/value.air;
anotherValue $!active/value.air;
}
}
"U.*"
{
solver GAMG;
}
e.air
{
$U.air;
}
external
{
value $testSlashDict2!active/value.air;
}
active2
{
$testSlashDict2!active;
}
If there is a part of the keyword before the '!' then this is taken to be the
file name of the dictionary from which the entry will be looked-up using the
part of the keyword after the '!'. For example given a file testSlashDict containing
internalField 5.6;
active
{
type fixedValue;
value.air $internalField;
}
entries from it can be read directly from another file, e.g.
external
{
value $testSlashDict2!active/value.air;
}
active2
{
$testSlashDict2!active;
}
which expands to
external
{
value 5.6;
}
active2
{
type fixedValue;
value.air 5.6;
}
These examples are provided in applications/test/dictionary.
The the default syntax can be changed from 'slash' to 'dot' in etc/controlDict
to revert to the previous behaviour:
OptimisationSwitches
{
.
.
.
// Default dictionary scoping syntax
inputSyntax slash; // Change to dot for previous behaviour
}
or within a specific dictionary by adding the entry
See applications/test/dictionary/testDotDict.
Added optional pressure reference pRef to p_rgh in buoyantPimpleFoam,
buoyantSimpleFoam and chtMultiRegionFoam which handles cases in which the
pressure variation is small compared to the pressure level more accurately.
The pRef value is provided in the optional constant/pRef file.
All tutorials and templates have been updated to use pRef as appropriate.
The solid is currently assumed incompressible (the solid pressure is not
updated) and in general would be near incompressible so internal energy is a
more appropriate energy choice than enthalpy which would require a pressure work
term currently not implemented. Additionally due to the way in which the
conduction is handled in terms of the gradient of energy the accuracy of the
current enthalpy implementation is sensitive to the pressure distribution as
this introduces an enthalpy gradient from the p/rho term which would need to be
corrected; this issue is avoided by solving for internal energy instead.
This improvement requires the scheme and solver settings for the solids in
chtMultiRegionFoam cases to be changed from "h" to "e" and the thermo-physical
properties in <solid>/thermophysicalProperties to be set to the corresponding
internal energy forms, e.g.:
thermo eConst;
.
.
.
energy sensibleInternalEnergy;
All tutorials have be updated to reflect this and provide guidance when updating
cases.
providing the shear-stress term in the momentum equation for incompressible and
compressible Newtonian, non-Newtonian and visco-elastic laminar flow as well as
Reynolds averaged and large-eddy simulation of turbulent flow.
The general deviatoric shear-stress term provided by the MomentumTransportModels
library is named divDevTau for compressible flow and divDevSigma (sigma =
tau/rho) for incompressible flow, the spherical part of the shear-stress is
assumed to be either included in the pressure or handled separately. The
corresponding stress function sigma is also provided which in the case of
Reynolds stress closure returns the effective Reynolds stress (including the
laminar contribution) or for other Reynolds averaged or large-eddy turbulence
closures returns the modelled Reynolds stress or sub-grid stress respectively.
For visco-elastic flow the sigma function returns the effective total stress
including the visco-elastic and Newtonian contributions.
For thermal flow the heat-flux generated by thermal diffusion is now handled by
the separate ThermophysicalTransportModels library allowing independent run-time
selection of the heat-flux model.
During the development of the MomentumTransportModels library significant effort
has been put into rationalising the components and supporting libraries,
removing redundant code, updating names to provide a more logical, consistent
and extensible interface and aid further development and maintenance. All
solvers and tutorials have been updated correspondingly and backward
compatibility of the input dictionaries provided.
Henry G. Weller
CFD Direct Ltd.
Following the generalisation of the TurbulenceModels library to support
non-Newtonian laminar flow including visco-elasticity and extensible to other
form of non-Newtonian behaviour the name TurbulenceModels is misleading and does
not properly represent how general the OpenFOAM solvers now are. The
TurbulenceModels now provides an interface to momentum transport modelling in
general and the plan is to rename it MomentumTransportModels and in preparation
for this the turbulenceProperties dictionary has been renamed momentumTransport
to properly reflect its new more general purpose.
The old turbulenceProperties name is supported for backward-compatibility.
renaming the legacy keywords
RASModel -> model
LESModel -> model
laminarModel -> model
which is simpler and clear within the context in which they are specified, e.g.
RAS
{
model kOmegaSST;
turbulence on;
printCoeffs on;
}
rather than
RAS
{
RASModel kOmegaSST;
turbulence on;
printCoeffs on;
}
The old keywords are supported for backward compatibility.
This significant improvement is flexibility of SemiImplicitSource required a
generalisation of the source specification syntax and all tutorials have been
updated accordingly.
Description
Semi-implicit source, described using an input dictionary. The injection
rate coefficients are specified as pairs of Su-Sp coefficients, i.e.
\f[
S(x) = S_u + S_p x
\f]
where
\vartable
S(x) | net source for field 'x'
S_u | explicit source contribution
S_p | linearised implicit contribution
\endvartable
Example tabulated heat source specification for internal energy:
\verbatim
volumeMode absolute; // specific
sources
{
e
{
explicit table ((0 0) (1.5 $power));
implicit 0;
}
}
\endverbatim
Example coded heat source specification for enthalpy:
\verbatim
volumeMode absolute; // specific
sources
{
h
{
explicit
{
type coded;
name heatInjection;
code
#{
// Power amplitude
const scalar powerAmplitude = 1000;
// x is the current time
return mag(powerAmplitude*sin(x));
#};
}
implicit 0;
}
}
\endverbatim
Description
Reciprocal polynomial equation of state for liquids and solids
\f[
1/\rho = C_0 + C_1 T + C_2 T^2 - C_3 p - C_4 p T
\f]
This polynomial for the reciprocal of the density provides a much better fit
than the equivalent polynomial for the density and has the advantage that it
support coefficient mixing to support liquid and solid mixtures in an
efficient manner.
Usage
\table
Property | Description
C | Density polynomial coefficients
\endtable
Example of the specification of the equation of state for pure water:
\verbatim
equationOfState
{
C (0.001278 -2.1055e-06 3.9689e-09 4.3772e-13 -2.0225e-16);
}
\endverbatim
Note: This fit is based on the small amount of data which is freely
available for the range 20-65degC and 1-100bar.
This equation of state is a much better fit for water and other liquids than
perfectFluid and in general polynomials for the reciprocal of the density
converge much faster than polynomials of the density. Currently rPolynomial is
quadratic in the temperature and linear in the pressure which is sufficient for
modest ranges of pressure typically encountered in CFD but could be extended to
higher order in pressure and/temperature if necessary. The other huge advantage
in formulating the equation of state in terms of the reciprocal of the density
is that coefficient mixing is simple.
Given these advantages over the perfectFluid equation of state the libraries and
tutorial cases have all been updated to us rPolynomial rather than perfectFluid
for liquids and water in particular.
kappa is now obtained from the fluidThermo for laminar regions, the turbulence
model for turbulent regions and the solidThermo for solid regions. The "lookup"
option previously supported allowed for energy-temperature inconsistent and
incorrect specification of kappa and was not used. Without this incorrect
option there is now no need to specify a kappaMethod thus significantly
simplifying the use boundary conditions derived from temperatureCoupledBase.
which are now read directly from the thermophysicalProperties dictionary for
consistency with non-reacting mixture thermodynamics. The species thermo and
reactions lists can still be in separate files if convenient and included into
the thermophysicalProperties file using the standard dictionary #include.
to avoid the need to evaluate departure functions and simplify evaluation of the
temperature. In general it makes more sense to use and e/Cv based
thermodynamics when solving for internal energy rather than h/Cp and have
convert between the energy forms.
All related tutorials and test cases have also been updated.
Changed liquid thermo from sensibleEnthalpy to sensibleInternalEnergy in
tutorials. It is generally more convergent and stable to solve for internal
energy if the fluid is incompressible or weakly compressible.
runApplication isn't needed for foamDictionary as it doesn't log
anything of consequence. Using runApplication leads to false unconfirmed
completion warnings in the test loop as foamDictionary does not generate
an end statement.