foamDictionary executions are now wrapped by runApplication like any
other execution so that they do not print during a test loop.
foamDictionary does not produce a conforming log, however, so
log.foamDictionary has been filtered out of the formation of the test
loop report so that false failures are not reported.
The solid is currently assumed incompressible (the solid pressure is not
updated) and in general would be near incompressible so internal energy is a
more appropriate energy choice than enthalpy which would require a pressure work
term currently not implemented. Additionally due to the way in which the
conduction is handled in terms of the gradient of energy the accuracy of the
current enthalpy implementation is sensitive to the pressure distribution as
this introduces an enthalpy gradient from the p/rho term which would need to be
corrected; this issue is avoided by solving for internal energy instead.
This improvement requires the scheme and solver settings for the solids in
chtMultiRegionFoam cases to be changed from "h" to "e" and the thermo-physical
properties in <solid>/thermophysicalProperties to be set to the corresponding
internal energy forms, e.g.:
thermo eConst;
.
.
.
energy sensibleInternalEnergy;
All tutorials have be updated to reflect this and provide guidance when updating
cases.
Following the generalisation of the TurbulenceModels library to support
non-Newtonian laminar flow including visco-elasticity and extensible to other
form of non-Newtonian behaviour the name TurbulenceModels is misleading and does
not properly represent how general the OpenFOAM solvers now are. The
TurbulenceModels now provides an interface to momentum transport modelling in
general and the plan is to rename it MomentumTransportModels and in preparation
for this the turbulenceProperties dictionary has been renamed momentumTransport
to properly reflect its new more general purpose.
The old turbulenceProperties name is supported for backward-compatibility.
renaming the legacy keywords
RASModel -> model
LESModel -> model
laminarModel -> model
which is simpler and clear within the context in which they are specified, e.g.
RAS
{
model kOmegaSST;
turbulence on;
printCoeffs on;
}
rather than
RAS
{
RASModel kOmegaSST;
turbulence on;
printCoeffs on;
}
The old keywords are supported for backward compatibility.
kappa is now obtained from the fluidThermo for laminar regions, the turbulence
model for turbulent regions and the solidThermo for solid regions. The "lookup"
option previously supported allowed for energy-temperature inconsistent and
incorrect specification of kappa and was not used. Without this incorrect
option there is now no need to specify a kappaMethod thus significantly
simplifying the use boundary conditions derived from temperatureCoupledBase.
This tutorial serves as a reference of how to create a multi-region
mesh with layer addition.
The multiRegionHeater tutorial and it's variants have been removed as
the geometry is not meaningful and the functionality is now all
represented elsewhere.