providing the shear-stress term in the momentum equation for incompressible and
compressible Newtonian, non-Newtonian and visco-elastic laminar flow as well as
Reynolds averaged and large-eddy simulation of turbulent flow.
The general deviatoric shear-stress term provided by the MomentumTransportModels
library is named divDevTau for compressible flow and divDevSigma (sigma =
tau/rho) for incompressible flow, the spherical part of the shear-stress is
assumed to be either included in the pressure or handled separately. The
corresponding stress function sigma is also provided which in the case of
Reynolds stress closure returns the effective Reynolds stress (including the
laminar contribution) or for other Reynolds averaged or large-eddy turbulence
closures returns the modelled Reynolds stress or sub-grid stress respectively.
For visco-elastic flow the sigma function returns the effective total stress
including the visco-elastic and Newtonian contributions.
For thermal flow the heat-flux generated by thermal diffusion is now handled by
the separate ThermophysicalTransportModels library allowing independent run-time
selection of the heat-flux model.
During the development of the MomentumTransportModels library significant effort
has been put into rationalising the components and supporting libraries,
removing redundant code, updating names to provide a more logical, consistent
and extensible interface and aid further development and maintenance. All
solvers and tutorials have been updated correspondingly and backward
compatibility of the input dictionaries provided.
Henry G. Weller
CFD Direct Ltd.
which are now read directly from the thermophysicalProperties dictionary for
consistency with non-reacting mixture thermodynamics. The species thermo and
reactions lists can still be in separate files if convenient and included into
the thermophysicalProperties file using the standard dictionary #include.
With the inclusion of boundary layer modelling in the gas, the
separation of wave perturbation from and mean flow became less useful,
and potentially prevents further extension to support similar boundary
layer modelling in the liquid.
The mean velocity entry, UMean, is now needed in the
constant/waveProperties file rather than in the waveVelocity boundary
condition.
In order to increase the flexibility of the wave library, the mean flow
handling has been removed from the waveSuperposition class. This makes
waveSuperposition work purely in terms of perturbations to a mean
background flow.
The input has also been split, with waves now defined as region-wide
settings in constant/waveProperties. The mean flow parameters are sill
defined by the boundary conditions.
The new format of the velocity boundary is much simpler. Only a mean
flow velocity is required.
In 0/U:
boundaryField
{
inlet
{
type waveVelocity;
UMean (2 0 0);
}
// etc ...
}
Other wave boundary conditions have not changed.
The constant/waveProperties file contains the wave model selections and
the settings to define the associated coordinate system and scaling
functions:
In constant/waveProperties:
origin (0 0 0);
direction (1 0 0);
waves
(
Airy
{
length 300;
amplitude 2.5;
phase 0;
angle 0;
}
);
scale table ((1200 1) (1800 0));
crossScale constant 1;
setWaves has been changed to use a system/setWavesDict file rather than
relying on command-line arguments. It also now requires a mean velocity
to be specified in order to prevent ambiguities associated with multiple
inlet patches. An example is shown below:
In system/setWavesDict:
alpha alpha.water;
U U;
liquid true;
UMean (1 0 0);
This is to make it clear that the value supplied is the scalar mean
velocity normal to the patch, and to distinguish it from other instances
of the keyword "UMean" which take a vector quantity.