Previously this was creating simple processorCyclic fields on the
nonConformalProcessorCyclic patches using a patchType override. The fact
that this worked is an encouraging indication of the system's
robustness, but it is more logical to create a field which directly
corresponds to the underlying patch type.
When an fvModel source introduces fluid into a simulation it should also
create a corresponding source term for all properties transported into
the domain by that injection. The source is, effectively, an alternative
form of inlet boundary, on which all transported properties need an
inlet value specified.
These values are now specified in the property field files. The
following is an example of a 0/U file in which the velocity of fluid
introduced by a fvModel source called "injection1" is set to a fixed
value of (-1 0 0):
dimensions [0 1 -1 0 0 0 0];
internalField uniform (0 0 0);
boundaryField
{
#includeEtc "caseDicts/setConstraintTypes"
wall
{
type noSlip;
}
atmosphere
{
type pressureInletOutletVelocity;
value $internalField;
}
}
// *** NEW ***
sources
{
injection1
{
type uniformFixedValue;
uniformValue (-1 0 0);
}
}
And the following entry in the 0/k file specifies the turbulent kinetic
energy introduced as a fraction of the mean flow kinetic energy:
sources
{
injection1
{
type turbulentIntensityKineticEnergy;
intensity 0.05;
}
}
The specification is directly analogous to boundary conditions. The
conditions are run-time selectable and can be concisely implemented.
They can access each other and be inter-dependent (e.g., the above,
where turbulent kinetic energy depends on velocity). The syntax keeps
field data localised and makes the source model (e.g., massSource,
volumeSource, ...) specification independent from what other models and
fields are present in the simulation. The 'fieldValues' entry previously
required by source models is now no longer required.
If source values need specifying and no source condition has been
supplied in the relevant field file then an error will be generated.
This error is similar to that generated for missing boundary conditions.
This replaces the behaviour where sources such as these would introduce
a value of zero, either silently or with a warning. This is now
considered unacceptable. Zero might be a tolerable default for certain
fields (U, k), but is wholly inappropriate for others (T, epsilon, rho).
This change additionally makes it possible to inject fluid into a
multicomponent solver with a specified temperature. Previously, it was
not possible to do this as there was no means of evaluating the energy
of fluid with the injected composition.
DecomposePar and reconstructPar now interleave the processing of
multiple regions. This means that with the -allRegions option, the
earlier times are completed in their entirety before later times are
considered. It also lets regions to access each other during
decomposition and reconstruction, which will be important for
non-conformal region interfaces.
To aid interpretation of the log, region prefixing is now used by both
utilities in the same way as is done by foamMultiRun.
DecomposePar has been overhauled so that it matches reconstructPar much
more closely, both in terms of output and of iteration sequence. All
meshes and addressing are loaded simultaneously and each field is
considered in turn. Previously, all the fields were loaded, and each
process and addressing set was considered in turn. This new strategy
optimises memory usage for cases with lots of fields.