Commit Graph

1 Commits

Author SHA1 Message Date
b7ea5fcc29 solvers::XiFluid: New solver module for compressible premixed/partially-premixed combustion
executed with foamRun for single region simulations of foamMultiRun for
multi-region simulations.  Replaces XiFoam and all the corresponding
tutorials have been updated and moved to tutorials/modules/XiFluid.

Class
    Foam::solvers::XiFluid

Description
    Solver module for compressible premixed/partially-premixed combustion with
    turbulence modelling.

    Combusting RANS code using the b-Xi two-equation model.
    Xi may be obtained by either the solution of the Xi transport
    equation or from an algebraic expression.  Both approaches are
    based on Gulder's flame speed correlation which has been shown
    to be appropriate by comparison with the results from the
    spectral model.

    Strain effects are encorporated directly into the Xi equation
    but not in the algebraic approximation.  Further work need to be
    done on this issue, particularly regarding the enhanced removal rate
    caused by flame compression.  Analysis using results of the spectral
    model will be required.

    For cases involving very lean Propane flames or other flames which are
    very strain-sensitive, a transport equation for the laminar flame
    speed is present.  This equation is derived using heuristic arguments
    involving the strain time scale and the strain-rate at extinction.
    the transport velocity is the same as that for the Xi equation.

    Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
    pseudo-transient and steady simulations.

    Optional fvModels and fvConstraints are provided to enhance the simulation
    in many ways including adding various sources, chemical reactions,
    combustion, Lagrangian particles, radiation, surface film etc. and
    constraining or limiting the solution.

    Reference:
    \verbatim
        Greenshields, C. J., & Weller, H. G. (2022).
        Notes on Computational Fluid Dynamics: General Principles.
        CFD Direct Ltd.: Reading, UK.
    \endverbatim

SourceFiles
    XiFluid.C

See also
    Foam::solvers::fluidSolver
    Foam::solvers::isothermalFluid
2022-12-29 23:53:33 +00:00