genericPatches is linked into mesh generation and manipulation utilities but not
solvers so that the solvers now check for the availability of the specified
patch types. Bugs in the tutorials exposed by this check have been corrected.
The keyword 'select' is now used to specify the cell, face or point set
selection method consistently across all classes requiring this functionality.
'select' replaces the inconsistently named 'regionType' and 'selectionMode'
keywords used previously but backwards-compatibility is provided for user
convenience. All configuration files and tutorials have been updated.
Examples of 'select' from the tutorial cases:
functionObjects:
cellZoneAverage
{
type volFieldValue;
libs ("libfieldFunctionObjects.so");
writeControl writeTime;
writeInterval 1;
fields (p);
select cellZone;
cellZone injection;
operation volAverage;
writeFields false;
}
#includeFunc populationBalanceSizeDistribution
(
name=numberDensity,
populationBalance=aggregates,
select=cellZone,
cellZone=outlet,
functionType=numberDensity,
coordinateType=projectedAreaDiameter,
allCoordinates=yes,
normalise=yes,
logTransform=yes
)
fvModel:
cylinderHeat
{
type heatSource;
select all;
q 5e7;
}
fvConstraint:
momentumForce
{
type meanVelocityForce;
select all;
Ubar (0.1335 0 0);
}
This is a more intuitive keyword than "funcName" or "entryName". A
function object's name and corresponding output directory can now be
renamed as follows:
#includeFunc patchAverage
(
name=cylinderT, // <-- was funcName=... or entryName=...
region=fluid,
patch=fluid_to_solid,
field=T
)
Some packaged functions previously relied on a "name" argument that
related to an aspect of the function; e.g., the name of the faceZone
used by the faceZoneFlowRate function. These have been disambiguated.
This has also made them consistent with the preferred input syntax of
the underlying function objects.
Examples of the changed #includeFunc entries are shown below:
#includeFunc faceZoneAverage
(
faceZone=f0, // <-- was name=f0
U
)
#includeFunc faceZoneFlowRate
(
faceZone=f0 // <-- was name=f0
)
#includeFunc populationBalanceSizeDistribution
(
populationBalance=bubbles,
regionType=cellZone,
cellZone=injection, // <-- was name=injection
functionType=volumeDensity,
coordinateType=diameter,
normalise=yes
)
#includeFunc triSurfaceAverage
(
triSurface=mid.obj, // <-- was name=mid.obj
p
)
#includeFunc triSurfaceVolumetricFlowRate
(
triSurface=mid.obj // <-- was name=mid.obj
)
#includeFunc uniform
(
fieldType=volScalarField,
fieldName=alpha, // <-- was name=alpha
dimensions=[0 0 0 0 0 0 0],
value=0.2
)
so that the same option with a rational name is also available for #includeModel
and #includeConstraint. Support for funcName is maintained for
backwards-compatibility.
executed with foamRun for single region simulations of foamMultiRun for
multi-region simulations. Replaces multiphaseEulerFoam and all the
corresponding tutorials have been updated and moved to
tutorials/modules/multiphaseEuler.
Class
Foam::solvers::multiphaseEuler
Description
Solver module for a system of any number of compressible fluid phases with a
common pressure, but otherwise separate properties. The type of phase model
is run time selectable and can optionally represent multiple species and
in-phase reactions. The phase system is also run time selectable and can
optionally represent different types of momentum, heat and mass transfer.
Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
pseudo-transient and steady simulations.
Optional fvModels and fvConstraints are provided to enhance the simulation
in many ways including adding various sources, Lagrangian
particles, surface film etc. and constraining or limiting the solution.
SourceFiles
multiphaseEuler.C
See also
Foam::solvers::compressibleVoF
Foam::solvers::fluidSolver
Foam::solvers::incompressibleFluid