Commit Graph

4 Commits

Author SHA1 Message Date
d1cb329706 tutorials: movingCone: Corrected and simplified
The '-region' option has been leveraged to significantly simplify the
meshing and decomposition in the movingCone cases. These cases have also
been corrected to restore the variation in decomposition between the
different meshes, which is important for thoroughly testing the patch
field mapping. The shockFluid case has also had its duration extended a
little in order to span the final mesh mapping time.
2023-02-07 16:14:30 +00:00
513578ebd0 tutorials/modules/shockFluid/shockTube: Apply nOuterCorrectors
applying 2 outer correctors allows an increase in time-step from 1e-6 to 5e-6
without introducing numerical wiggles in the solution.
2023-01-25 15:53:04 +00:00
9fadb7fccf solvers::shockFluid: Now solves for rho, U and e while conserving rho*U and rho*E
By solving for U and e rather than rhoU and rhoE the convection and stress
matrices can be combined and solved together avoiding the need for Strang
splitting.  Conservation of rho*U and rho*E is ensured by constructing and
solving the three equations in sequence, constructing each using the results of
the solution of the previous equations.
2023-01-24 18:17:46 +00:00
fe5a991ade solvers::shockFluid: New solver module for density-based solution of compressible flow
executed with foamRun for single region simulations of foamMultiRun for
multi-region simulations.  Replaces rhoCentralFoam and all the corresponding
tutorials have been updated and moved to tutorials/modules/shockFluid.

Unlike rhoCentralFoam shockFluid supports mesh refinement/unrefinement, topology
change, run-time mesh-to-mesh mapping, load-balancing in addition to general
mesh-motion.

The tutorials/modules/shockFluid/movingCone case has been updated to demonstrate
run-time mesh-to-mesh mapping mesh topology change based on the
tutorials/modules/incompressibleFluid/movingCone.  shockFluid s

Description
    Solver module for density-based solution of compressible flow

    Based on central-upwind schemes of Kurganov and Tadmor with support for
    mesh-motion and topology change.

    Reference:
    \verbatim
        Greenshields, C. J., Weller, H. G., Gasparini, L.,
        & Reese, J. M. (2010).
        Implementation of semi‐discrete, non‐staggered central schemes
        in a colocated, polyhedral, finite volume framework,
        for high‐speed viscous flows.
        International journal for numerical methods in fluids, 63(1), 1-21.
    \endverbatim

SourceFiles
    shockFluid.C

See also
    Foam::solvers::fluidSolver
    Foam::solvers::incompressibleFluid
2023-01-18 14:10:48 +00:00