to the <case>/<time>/uniform or <case>/<processor>/<time>/uniform directory.
Adding a new form of IOdictionary for this purpose allows significant
simplification and rationalisation of regIOobject::writeObject, removing the
need for explicit treatment of different file types.
to provide a single consistent code and user interface to the specification of
physical properties in both single-phase and multi-phase solvers. This redesign
simplifies usage and reduces code duplication in run-time selectable solver
options such as 'functionObjects' and 'fvModels'.
* physicalProperties
Single abstract base-class for all fluid and solid physical property classes.
Physical properties for a single fluid or solid within a region are now read
from the 'constant/<region>/physicalProperties' dictionary.
Physical properties for a phase fluid or solid within a region are now read
from the 'constant/<region>/physicalProperties.<phase>' dictionary.
This replaces the previous inconsistent naming convention of
'transportProperties' for incompressible solvers and
'thermophysicalProperties' for compressible solvers.
Backward-compatibility is provided by the solvers reading
'thermophysicalProperties' or 'transportProperties' if the
'physicalProperties' dictionary does not exist.
* phaseProperties
All multi-phase solvers (VoF and Euler-Euler) now read the list of phases and
interfacial models and coefficients from the
'constant/<region>/phaseProperties' dictionary.
Backward-compatibility is provided by the solvers reading
'thermophysicalProperties' or 'transportProperties' if the 'phaseProperties'
dictionary does not exist. For incompressible VoF solvers the
'transportProperties' is automatically upgraded to 'phaseProperties' and the
two 'physicalProperties.<phase>' dictionary for the phase properties.
* viscosity
Abstract base-class (interface) for all fluids.
Having a single interface for the viscosity of all types of fluids facilitated
a substantial simplification of the 'momentumTransport' library, avoiding the
need for a layer of templating and providing total consistency between
incompressible/compressible and single-phase/multi-phase laminar, RAS and LES
momentum transport models. This allows the generalised Newtonian viscosity
models to be used in the same form within laminar as well as RAS and LES
momentum transport closures in any solver. Strain-rate dependent viscosity
modelling is particularly useful with low-Reynolds number turbulence closures
for non-Newtonian fluids where the effect of bulk shear near the walls on the
viscosity is a dominant effect. Within this framework it would also be
possible to implement generalised Newtonian models dependent on turbulent as
well as mean strain-rate if suitable model formulations are available.
* visosityModel
Run-time selectable Newtonian viscosity model for incompressible fluids
providing the 'viscosity' interface for 'momentumTransport' models.
Currently a 'constant' Newtonian viscosity model is provided but the structure
supports more complex functions of time, space and fields registered to the
region database.
Strain-rate dependent non-Newtonian viscosity models have been removed from
this level and handled in a more general way within the 'momentumTransport'
library, see section 'viscosity' above.
The 'constant' viscosity model is selected in the 'physicalProperties'
dictionary by
viscosityModel constant;
which is equivalent to the previous entry in the 'transportProperties'
dictionary
transportModel Newtonian;
but backward-compatibility is provided for both the keyword and model
type.
* thermophysicalModels
To avoid propagating the unnecessary constructors from 'dictionary' into the
new 'physicalProperties' abstract base-class this entire structure has been
removed from the 'thermophysicalModels' library. The only use for this
constructor was in 'thermalBaffle' which now reads the 'physicalProperties'
dictionary from the baffle region directory which is far simpler and more
consistent and significantly reduces the amount of constructor code in the
'thermophysicalModels' library.
* compressibleInterFoam
The creation of the 'viscosity' interface for the 'momentumTransport' models
allows the complex 'twoPhaseMixtureThermo' derived from 'rhoThermo' to be
replaced with the much simpler 'compressibleTwoPhaseMixture' derived from the
'viscosity' interface, avoiding the myriad of unused thermodynamic functions
required by 'rhoThermo' to be defined for the mixture.
Same for 'compressibleMultiphaseMixture' in 'compressibleMultiphaseInterFoam'.
This is a significant improvement in code and input consistency, simplifying
maintenance and further development as well as enhancing usability.
Henry G. Weller
CFD Direct Ltd.
For a set to zone conversion the name of the zone is now specified with the
'zone' keyword.
For a patch to set conversion the name of the patch is now specified with the
'patch' keyword.
Backward-compatibility is supported for both these changes.
Additionally the file name of a searchableSurface file is specified with the
'file' keyword. This should be 'surface' but that keyword is currently and
confusingly used for the surface type rather than name and this cannot be
changed conveniently while maintaining backward compatibility.
and only needed if there is a name clash between entries in the source
specification and the set specification, e.g. "name":
{
name rotorCells;
type cellSet;
action new;
source zoneToCell;
sourceInfo
{
name cylinder;
}
}
topoSet is a more flexible and extensible replacement for setSet using standard
OpenFOAM dictionary input format rather than the limited command-line input
format developed specifically for setSet. This replacement allows for the
removal of a significant amount of code simplifying maintenance and the addition
of more topoSet sources.
A number of changes have been made to the surfaceFieldValue and
volFieldValue function objects to improve their usability and
performance, and to extend them so that similar duplicate functionality
elsewhere in OpenFOAM can be removed.
Weighted operations have been removed. Weighting for averages and sums
is now triggered simply by the existence of the "weightField" or
"weightFields" entry. Multiple weight fields are now supported in both
functions.
The distinction between oriented and non-oriented fields has been
removed from surfaceFieldValue. There is now just a single list of
fields which are operated on. Instead of oriented fields, an
"orientedSum" operation has been added, which should be used for
flowRate calculations and other similar operations on fluxes.
Operations minMag and maxMag have been added to both functions, to
calculate the minimum and maximum field magnitudes respectively. The min
and max operations are performed component-wise, as was the case
previously.
In volFieldValue, minMag and maxMag (and min and mag operations when
applied to scalar fields) will report the location, cell and processor
of the maximum or minimum value. There is also a "writeLocation" option
which if set will write this location information into the output file.
The fieldMinMax function has been made obsolete by this change, and has
therefore been removed.
surfaceFieldValue now operates in parallel without accumulating the
entire surface on the master processor for calculation of the operation.
Collecting the entire surface on the master processor is now only done
if the surface itself is to be written out.
With this change both
blockMesh -dict fineBlockMeshDict
blockMesh -dict system/fineBlockMeshDict
are supported, if the system/ path is not specified it is assumed
splitBaffles identifies baffle faces; i.e., faces on the mesh boundary
which share the exact same set of points as another boundary face. It
then splits the points to convert these faces into completely separate
boundary patches. This functionality was previously provided by calling
mergeOrSplitBaffles with the "-split" option.
mergeBaffles also identifes the duplicate baffle faces, but then merges
them, converting them into a single set of internal faces. This
functionality was previously provided by calling mergeOrSplitBaffles
without the "-split" option.
When using 'simple' or 'hierarchical' decomposition it is useful to slightly rotate a
coordinate-aligned block-mesh to improve the processor boundaries by avoiding
irregular cell distribution at those boundaries. The degree of slight rotation
is controlled by the 'delta' coefficient and a value of 0.001 is generally
suitable so to avoid unnecessary clutter in 'decomposeParDict' 'delta' now
defaults to this value.
The FOAM file format has not changed from version 2.0 in many years and so there
is no longer a need for the 'version' entry in the FoamFile header to be
required and to reduce unnecessary clutter it is now optional, defaulting to the
current file format 2.0.
Solving for enthalpy provides better convergence and stability than internal
energy. Also correctPhi is now off pending the addition of compressibility
effects to the pcorr equation.
the previous naming tan1, tan2, normal was non-intuitive and very confusing.
It was not practical to maintain backward compatibility but all tutorials and
example refineMeshDict files have been updated to provide examples of the
change.
The inside or outside region refinement level is now specified using the simple
"level <level>" entry in refinementRegions e.g.
refinementRegions
{
refinementBox
{
mode inside;
level 5;
}
}
rather than
refinementRegions
{
refinementBox
{
mode inside;
levels ((1E15 5));
}
}
where the spurious "1E15" number is not used and the '((...))' is unnecessary clutter.
The pressure work term for total internal energy is div(U p) which can be
discretised is various ways, given a mass flux field phi it seems logical to
implement it in the form div(phi/interpolate(rho), p) but this is not exactly
consistent with the relationship between enthalpy and internal energy (h = e +
p/rho) and the transport of enthalpy, it would be more consistent to implement
it in the form div(phi, p/rho). A further improvement in consistency can be
gained by using the same convection scheme for this work term and the convection
term div(phi, e) and for reacting solvers this is easily achieved by using the
multi-variate limiter mvConvection provided for energy and specie convection.
This more consistent total internal energy work term has now been implemented in
all the compressible and reacting flow solvers and provides more accurate
solutions when running with internal energy, particularly for variable density
mixing cases with small pressure variation.
For non-reacting compressible solvers this improvement requires a change to the
corresponding divScheme in fvSchemes:
"div\(alphaPhi.*,p\)" -> "div\(alphaRhoPhi.*,\(p\|thermo:rho.*\)\)"
and all the tutorials have been updated accordingly.
The themo tables used in wallBoiling have had their Cp/Cv values
corrected, and have been coarsened and reduced in size to bound only the
operating point of the wallBoiling tutorials. They have also been moved
to $FOAM_TUTORIALS/resources/thermoData.
The correction to thermophysical properties has improved the stability
of these cases. As a result it has been possible to reduce the amount of
under-relaxation used in the wall modelling.
The phase-fraction filtering of the compressibility terms is present to avoid
spurious phase-change due to numerical noise. The fvModels contribution may
cause physical phase-change due to cavitation, boiling, transfer from film or
VoF even where none of the phase is present and hence must be added after the
compressibility filtering.
With VoFClouds and VoFSurfaceFilm compressibleInterFoam supports Lagrangian
clouds which can impinge on walls forming a film which in turn can transfer to
the VoF when the film is thick enough to resolve. The new tutorial case
tutorials/multiphase/compressibleInterFoam/laminar/cylinder
is provided to demonstrate this functionality.
Direct transfer of droplets to the VoF phase is not yet supported but will be
added later.
Now the VoFSurfaceFilm library is optionally loaded at run-time for cases that
require surface film by adding the optional "libs" entry in controlDict:
libs ("libVoFSurfaceFilm.so");
See tutorials/multiphase/compressibleInterFoam/laminar/plateFilm
To provide more flexibility, extensibility, run-time modifiability and
consistency the handling of optional pressure limits has been moved from
pressureControl (settings in system/fvSolution) to the new limitPressure
fvConstraint (settings in system/fvConstraints).
All tutorials have been updated which provides guidance when upgrading cases but
also helpful error messages are generated for cases using the old settings
providing specific details as to how the case should be updated, e.g. for the
tutorials/compressible/rhoSimpleFoam/squareBend case which has the pressure
limit specification:
SIMPLE
{
...
pMinFactor 0.1;
pMaxFactor 2;
...
generates the error message
--> FOAM FATAL IO ERROR:
Pressure limits should now be specified in fvConstraints:
limitp
{
type limitPressure;
minFactor 0.1;
maxFactor 2;
}
file: /home/dm2/henry/OpenFOAM/OpenFOAM-dev/tutorials/compressible/rhoSimpleFoam/squareBend/system/fvSolution/SIMPLE from line 41 to line 54.
so that they operate in the conventional manner in a right-handed coordinate
system:
//- Rotational transformation tensor about the x-axis by omega radians
// The rotation is defined in a right-handed coordinate system
// i.e. clockwise with respect to the axis from -ve to +ve
// (looking along the axis).
inline tensor Rx(const scalar& omega)
//- Rotational transformation tensor about the y-axis by omega radians
// The rotation is defined in a right-handed coordinate system
// i.e. clockwise with respect to the axis from -ve to +ve
// (looking along the axis).
inline tensor Ry(const scalar& omega)
//- Rotational transformation tensor about the z-axis by omega radians
// The rotation is defined in a right-handed coordinate system
// i.e. clockwise with respect to the axis from -ve to +ve
// (looking along the axis).
inline tensor Rz(const scalar& omega)
//- Rotational transformation tensor about axis a by omega radians
// The rotation is defined in a right-handed coordinate system
// i.e. clockwise with respect to the axis from -ve to +ve
// (looking along the axis).
inline tensor Ra(const vector& a, const scalar omega)
Description
Transform (translate, rotate, scale) a surface.
Usage
\b surfaceTransformPoints "\<transformations\>" \<input\> \<output\>
Supported transformations:
- \par translate=<translation vector>
Translational transformation by given vector
- \par rotate=(\<n1 vector\> \<n2 vector\>)
Rotational transformation from unit vector n1 to n2
- \par Rx=\<angle [deg] about x-axis\>
Rotational transformation by given angle about x-axis
- \par Ry=\<angle [deg] about y-axis\>
Rotational transformation by given angle about y-axis
- \par Rz=\<angle [deg] about z-axis\>
Rotational transformation by given angle about z-axis
- \par Ra=\<axis vector\> \<angle [deg] about axis\>
Rotational transformation by given angle about given axis
- \par scale=\<x-y-z scaling vector\>
Anisotropic scaling by the given vector in the x, y, z
coordinate directions
Example usage:
surfaceTransformPoints \
"translate=(-0.586 0 -0.156), \
Ry=3.485, \
translate=(0.586 0 0.156)" \
constant/geometry/w3_orig.stl constant/geometry/w3.stl
The transformation sequence is specified like a substitution string used by
Description
Transform (translate, rotate, scale) a surface.
The rollPitchYaw option takes three angles (degrees):
- roll (rotation about x) followed by
- pitch (rotation about y) followed by
- yaw (rotation about z)
The yawPitchRoll does yaw followed by pitch followed by roll.
Usage
\b surfaceTransformPoints "\<transformations\>" \<input\> \<output\>
Example usage:
surfaceTransformPoints \
"translate=(-0.586 0 -0.156), \
rollPitchYaw=(0 -3.485 0), \
translate=(0.586 0 0.156)" \
constant/geometry/w3_orig.stl constant/geometry/w3.stl
The constant heat capacity hacked thermo in surfaceFilmModels and the
corresponding transfer terms in Lagrangian have been replaced by the standard
OpenFOAM rhoThermo which provides a general handling of thermo-physical
properties, in particular non-constant heat capacity. Further rationalisation
of liquid and solid properties has also been undertaken in support of this work
to provide a completely consistent interface to sensible and absolute enthalpy.
Now for surfaceFilmModels the thermo-physical model and properties are specified
in a constant/<region>/thermophysicalProperties dictionary consistent with all
other types of continuum simulation.
This significantly rationalises, simplifies and generalises the handling of
thermo-physical properties for film simulations and is a start at doing the same
for Lagrangian.
pMin and pMax settings are now available in multiphaseEulerFoam in the
PIMPLE section of the system/fvOptions file. This is consistent with
other compressible solvers. The pMin setting in system/phaseProperties
is no longer read, and it's presence will result in a warning.
SLGThermo has been moved to lagrangian, which still depends on it, pending
complete removal and replacement with a more rational interface to the carrier
phase thermodynamics.
The new fvModels is a general interface to optional physical models in the
finite volume framework, providing sources to the governing conservation
equations, thus ensuring consistency and conservation. This structure is used
not only for simple sources and forces but also provides a general run-time
selection interface for more complex models such as radiation and film, in the
future this will be extended to Lagrangian, reaction, combustion etc. For such
complex models the 'correct()' function is provided to update the state of these
models at the beginning of the PIMPLE loop.
fvModels are specified in the optional constant/fvModels dictionary and
backward-compatibility with fvOption is provided by reading the
constant/fvOptions or system/fvOptions dictionary if present.
The new fvConstraints is a general interface to optional numerical constraints
applied to the matrices of the governing equations after construction and/or to
the resulting field after solution. This system allows arbitrary changes to
either the matrix or solution to ensure numerical or other constraints and hence
violates consistency with the governing equations and conservation but it often
useful to ensure numerical stability, particularly during the initial start-up
period of a run. Complex manipulations can be achieved with fvConstraints, for
example 'meanVelocityForce' used to maintain a specified mean velocity in a
cyclic channel by manipulating the momentum matrix and the velocity solution.
fvConstraints are specified in the optional system/fvConstraints dictionary and
backward-compatibility with fvOption is provided by reading the
constant/fvOptions or system/fvOptions dictionary if present.
The separation of fvOptions into fvModels and fvConstraints provides a rational
and consistent separation between physical and numerical models which is easier
to understand and reason about, avoids the confusing issue of location of the
controlling dictionary file, improves maintainability and easier to extend to
handle current and future requirements for optional complex physical models and
numerical constraints.
A population balance suffix after the phase suffix makes determining the
phase for a given name more complex. The additional suffix is also
unnecessary as a phase can only ever belong to one population balance,
so the phase name alone uniquely idetifies the grouping.
Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)