Now for transient simulations "Final" solver settings are required for ALL
equations providing consistency between the solution of velocity, energy,
composition and radiation properties.
However "Final" relaxation factors are no longer required for fields or
equations and if not present the standard value for the variable will be
applied. Given that relaxation factors other than 1 are rarely required for
transient runs and hence the same for all iterations including the final one
this approach provide simpler input while still providing the flexibility to
specify a different value for the final iteration if required. For steady cases
it is usual to execute just 1 outer iteration per time-step for which the
standard relaxation factors are appropriate, and if more than one iteration is
executed it is common to use the same factors for both. In the unlikely event
of requiring different relaxation factors for the final iteration this is still
possible to specify via the now optional "Final" specification.
to avoid the need to evaluate departure functions and simplify evaluation of the
temperature. In general it makes more sense to use and e/Cv based
thermodynamics when solving for internal energy rather than h/Cp and have
convert between the energy forms.
All related tutorials and test cases have also been updated.
This provides more flexibility in specifying the allowed internal and boundary
extrema.
For driftFluxFoam and other settling problems it is beneficial to set the
boundaryExtremaCoeff to 1 to allow rapid accumulation of the partials on the
bottom wall (which was the previous default behaviour) but this is not suitable
for many Euler-Euler cases for which a uniform etrema coefficient is preferable,
either 0 or a small value.
Now by default boundaryExtremaCoeff is set to extremaCoeff which defaults to 0
which provides the behaviour before
OpenFOAM-dev commit cb2bc60fa5
and the driftFluxFoam tutorials have been updated adding
boundaryExtremaCoeff 1;
to the MULES controls in fvSolution so reproduce the previous behaviour.
The LBend was set to run for 2 s, but at about 1.95 s the packed region
builds up to the inlet and the simulation diverges. The end time has
been reduced to 1.9 s so that this does not occur.
snappyHexMesh now generates a face-zone for the AMI-s, and createBaffles
and mergeOrSplitPoints -split are used to create the patches. Before,
snappy generated AMI patches directly, which were then converted to
AMI-s with createPatch.
This way, the AMI-s match exactly at the start of the simulation. For
more complicated cases that may be derived from this tutorial, this
could be important.
With the -noFields option the mesh is subset but the fields are not changed.
This is useful when the field fields have been created to correspond to the mesh
after the mesh subset.
including third-body and pressure dependent derivatives, and derivative of the
temperature term. The complete Jacobian is more robust than the incomplete and
partially approximate form used previously and improves the efficiency of the
stiff ODE solvers which rely on the Jacobian.
Reaction rate evaluation moved from the chemistryModel to specie library to
simplfy support for alternative reaction rate expressions and associated
Jacobian terms.
Temperature clipping included in the Reaction class. This is inactive by default
but for most cases it is advised to provide temperature limits (high and
low). These are provided in the foamChemistryFile with the keywords Thigh and
Tlow. When using chemkinToFoam these values are set to the limits of the Janaf
thermodynamic data. With the new Jacobian this temperature clipping has proved
very beneficial for stability and for some cases essential.
Improvement of the TDAC MRU list better integrated in add and grow functions.
To get the most out of this significant development it is important to re-tune
the ODE integration tolerances, in particular the absTol in the odeCoeffs
sub-dictionary of the chemistryProperties dictionary:
odeCoeffs
{
solver seulex;
absTol 1e-12;
relTol 0.01;
}
Typically absTol can now be set to 1e-8 and relTol to 0.1 except for ignition
time problems, and with theses settings the integration is still robust but for
many cases a lot faster than previously.
Code development and integration undertaken by
Francesco Contino
Henry G. Weller, CFD Direct
The nonRandomTwoLiquid and Roult interface composition models have been
instantiated (and updated so that they compile), and a fuller set of
multi-component liquids and multi-component and reacting gases have been
used.
The selection name of the saturated and nonRandomTwoLiquid models have
also been changed to remove the capitalisation from the first letter, as
is consistent with other sub-models that are not proper nouns.
An additional layer has been added into the phase system hierarchy which
facilitates the application of phase transfer modelling. These are
models which exchange mass between phases without the thermal coupling
that would be required to represent phase change. They can be thought of
as representation changes; e.g., between two phases representing
different droplet sizes of the same physical fluid.
To facilitate this, the heat transfer phase systems have been modified
and renamed and now both support mass transfer. The two sided version
is only required for derivations which support phase change.
The following changes to case settings have been made:
- The simplest instantiated phase systems have been renamed to
basicTwoPhaseSystem and basicMultiphaseSystem. The
heatAndMomentumTransfer*System entries in constant/phaseProperties files
will need updating accordingly.
- A phaseTransfer sub-model entry will be required in the
constant/phaseProperties file. This can be an empty list.
- The massTransfer switch in thermal phase change cases has been renamed
phaseTransfer, so as not to be confused with the mass transfer models
used by interface composition cases.
This work was supported by Georg Skillas and Zhen Li, at Evonik
The implementation of the porousBafflePressure BC was incorrect in OpenFOAM-2.4
and earlier and corrected during the turbulence modeling rewrite for
OpenFOAM-3.0. This update introduced the density scaling required for the
definition of pressure in interFoam which requires the porosity coefficients to
be reduced.
Resolves bug-report https://bugs.openfoam.org/view.php?id=2890
Also added tutorial case demonstrating usage. Note that the new drag
models are symmetric and should be used without any blending.
This work was supported by Georg Skillas and Zhen Li, at Evonik
Sub-model blending should be set such that the sum of all the blending
coefficients equals one. If there are three models specified for a phase
pair (e.g., (air in water), (water in air) and (air and water)), then
the sum-to-one constraint is guaranteed by the blending functions.
Frequently, however, the symmetric model ((air and water) in this
example) is omitted. In that case, the blending coefficients should be
selected so that the sum of just the two non-symmetric coefficients
equal one.
In the case of linear blending, this means setting the minimum partially
continuous alpha to one-minus the fully continuous value of the opposite
phase. For example:
blending
{
default
{
type linear;
minFullyContinuousAlpha.air 0.7;
minPartlyContinuousAlpha.air 0.3;
minFullyContinuousAlpha.water 0.7;
minPartlyContinuousAlpha.water 0.3;
}
}
The reactingTwoPhaseEulerFoam and reactingMultiPhaseEulerFoam tutorials
have been modified to adhere to this principle.
Two new phase models have been added as selectable options for
reactingMultiphaseEulerFoam; pureStationaryPhaseModel and
pureStationaryIsothermalPhaseModel. These phases do not store a
velocity and their phase fractions remain constant throughout the
simulation. They are intended for use in modelling static particle beds
and other forms of porous media by means of the existing Euler-Euler
transfer models (drag, heat transfer, etc...).
Note that this functionality has not been extended to
reactingTwoPhaseEulerFoam, or the non-reacting *EulerFoam solvers.
Additional maintenance work has been carried out on the phase model
and phase system structure. The system can now loop over subsets of
phases with specific functionality (moving, multi-component, etc...) in
order to avoid testing for the existence of equations or variables in
the top level solver. The mass transfer handling and it's effect on
per-phase source terms has been refactored to reduce duplication. Const
and non-const access to phase properties has been formalised by renaming
non-const accessors with a "Ref" suffix, which is consistent with other
recent developments to classes including tmp and GeometricField, among
others. More sub-modelling details have been made private in order to
reduce the size of interfaces and improve abstraction.
This work was supported by Zhen Li, at Evonik
The initial set of cases in the test directory are aimed at testing the
reactingEulerFoam populationBalance functionality.
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum
Dresden - Rossendorf (HZDR) and VTT Technical Research Centre of Finland Ltd.
Integrated with the "tutorials" functionality by CFD Direct Ltd.
Partial elimination has been implemented for the multiphase Euler-Euler
solver. This does a linear solution of the drag system when calculating
flux and velocity corrections after the solution of the pressure
equation. This can improve the behaviour of the solution in the event
that the drag coupling is high. It is controlled by means of a
"partialElimination" switch within the PIMPLE control dictionary in
fvSolution.
A re-organisation has also been done in order to remove the exposure of
the sub-modelling from the top-level solver. Rather than looping the
drag, virtual mass, lift, etc..., models directly, the solver now calls
a set of phase-system methods which group the different force terms.
These new methods are documented in MomentumTransferPhaseSystem.H. Many
other accessors have been removed as a consequence of this grouping.
A bug was also fixed whereby the face-based algorithm was not
transferring the momentum associated with a given interfacial mass
transfer.
This change means that getApplication still works if we have a
controlDict.orig, rather than a controlDict. This allows us to simplify
the scripting of tutorials in which the controlDict is modified.