This is a simple function that provides a convenient way for a user to
call fvc::reconstruct for the purposes of post-processing flux fields;
e.g., to construct a cell velocity from a face flux.
It can be used to generate output during a run by adding the following
settings to a case's controlDict:
functions
{
#includeFunc reconstruct(phi)
}
Or it can be executed as a postProcessing step by calling:
postProcess -func "reconstruct(phi)"
This function calculates integral (integer moments) or mean properties
(mean, variance, standard deviation) of a size distribution computed with
multiphaseEulerFoam. It has to be run with multiphaseEulerFoam, either
at run-time or with -postProcess. It will not work with the postProcess
utility.
The following function object specification for example returns the first
moment of the volume-based number density function which is equivalent to
the phase fraction of the particulate phase:
moments
{
type moments;
libs ("libmultiphaseEulerFoamFunctionObjects.so");
executeControl timeStep;
writeControl writeTime;
populationBalance bubbles;
momentType integerMoment;
coordinateType volume;
order 1;
}
The same can be achieved using a packaged function:
#includeFunc moments
(
populationBalance=bubbles,
momentType=integerMoment,
coordinateType=volume,
order=1,
funcName=moments
)
Or on the command line:
multiphaseEulerFoam -postProcess -func "
moments
(
populationBalance=bubbles,
momentType=integerMoment,
coordinateType=volume,
order=1,
funcName=moments
)"
Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
The surfaceInterpolate function object is now a field expression. This
means it works in the same way as mag, grad, etc... It also now has a
packaged configuration and has been included into the postProcessing
test case.
It can be used in the following ways. On the command line:
postProcess -func "surfaceInterpolate(rho, result=rhof)"
rhoPimpleFoam -postProcess -func "surfaceInterpolate(thermo:rho, result=rhof)"
In the controlDict:
functions
{
#includeFunc surfaceInterpolate(rho, result=rhof)
}
By running:
foamGet surfaceInterpolate
Then editing the resulting system/surfaceInterpolate file and then
running postProcess or adding an #includeFunc entry without arguments.
Packaged function objects can now be deployed equally effectively by
(a) using a locally edited copy of the configuration file, or by
(b) passing parameters as arguments to the global configuration file.
For example, to post-process the pressure field "p" at a single location
"(1 2 3)", the user could first copy the "probes" packaged function
object file to their system directory by calling "foamGet probes". They
could then edit the file to contain the following entries:
points ((1 2 3));
field p;
The function object can then be executed by the postProcess application:
postProcess -func probes
Or it can be called at run-time, by including from within the functions
section of the system/controlDict file:
#includeFunc probes
Alternatively, the field and points parameters could be passed as
arguments either to the postProcess application by calling:
postProcess -func "probes(points=((1 2 3)), p)"
Or by using the #includeFunc directive:
#includeFunc probes(points=((1 2 3)), p)
In both cases, mandatory parameters that must be either edited or
provided as arguments are denoted in the configuration files with
angle-brackets, e.g.:
points (<points>);
Many of the packaged function objects have been split up to make them
more specific to a particular use-case. For example, the "surfaces"
function has been split up into separate functions for each surface
type; "cutPlaneSurface", "isoSurface", and "patchSurface". This
splitting means that the packaged functions now only contain one set of
relevant parameters so, unlike previously, they now work effectively
with their parameters passed as arguments. To ensure correct usage, all
case-dependent parameters are considered mandatory.
For example, the "streamlines" packaged function object has been split
into specific versions; "streamlinesSphere", "streamlinesLine",
"streamlinesPatch" and "streamlinesPoints". The name ending denotes the
seeding method. So, the following command creates ten streamlines with
starting points randomly seeded within a sphere with a specified centre
and radius:
postProcess -func "streamlinesSphere(nPoints=10, centre=(0 0 0), radius=1)"
The equivalent #includeFunc approach would be:
#includeFunc streamlinesSphere(nPoints=10, centre=(0 0 0), radius=1)
When passing parameters as arguments, error messages report accurately
which mandatory parameters are missing and provide instructions to
correct the format of the input. For example, if "postProcess -func
graphUniform" is called, then the code prints the following error message:
--> FOAM FATAL IO ERROR:
Essential value for keyword 'start' not set
Essential value for keyword 'end' not set
Essential value for keyword 'nPoints' not set
Essential value for keyword 'fields' not set
In function entry:
graphUniform
In command:
postProcess -func graphUniform
The function entry should be:
graphUniform(start = <point>, end = <point>, nPoints = <number>, fields = (<fieldNames>))
file: controlDict/functions/graphUniform from line 15 to line 25.
As always, a full list of all packaged function objects can be obtained
by running "postProcess -list", and a description of each function can
be obtained by calling "foamInfo <functionName>". An example case has
been added at "test/postProcessing/channel" which executes almost all
packaged function objects using both postProcess and #includeFunc. This
serves both as an example of syntax and as a unit test for maintenance.
The fieldsExpression function has been generalised to work with a
general operator. Existing functions "add" and "subtract" have been made
to use this system, and two new operations, "multiply" and "divide",
have been added.
The functions can now handle multiple types in both input and output. A
multiply (outer product) operation on two vectors and a scalar will
result in a tensor. If the operation chain is not supported (e.g.,
division by a vector) then a warning will be generated.
In addition, a "uniform" function has been added, which will create a
uniform geometric field of a given type with specified dimensions and
calculated boundary conditions. This is mostly useful for testing
purposes and for conveniently creating simple input fields for the
operation functions described above. The function can be called by
postProcess as follows:
postProcess -func "uniform(fieldType=volScalarField, name=length, dimensions=[m], value=2)"
The new multiphaseEulerFoam is based on reactingMultiphaseEulerFoam with some
improvements and rationalisation to assist maintenance and further development.
The phase system solution has been enhanced to handle two phases more
effectively and all two-phase specific models updated for compatibility so that
multiphaseEulerFoam can also replace reactingTwoPhaseEulerFoam.
When running multiphaseEulerFoam with only two-phases the default behaviour is
to solve for both phase-fractions but optionally a reference phase can be
specified so that only the other phase-fraction is solved, providing better
compatibility with the behaviour of reactingTwoPhaseEulerFoam.
All reactingMultiphaseEulerFoam and reactingTwoPhaseEulerFoam tutorials have
been updated for multiphaseEulerFoam.
Description
This functionObject writes the phase-fraction map field alpha.map with
incremental value ranges for each phase
e.g., with values 0-1 for water, 1-2 for air, 2-3 for oil etc.
Example of function object specification:
\verbatim
phaseMap
{
type phaseMap;
libs ("libreactingEulerFoamFunctionObjects.so");
writeControl writeTime;
}
\endverbatim
Usage
\table
Property | Description | Required | Default value
type | type name: phaseMap | yes |
\endtable
This replaces the alphas functionality previously built-in to
reactingMultiphaseEulerFoam so that the storage, calculation and writing of the
phase map field is now under user control.
Rather than specifying the controls per field it is simpler to use a single set
of controls for all the fields in the list and use separate instances of the
fieldAverage functionObject for different control sets:
Example of function object specification setting all the optional parameters:
fieldAverage1
{
type fieldAverage;
libs ("libfieldFunctionObjects.so");
writeControl writeTime;
restartOnRestart false;
restartOnOutput false;
periodicRestart false;
restartPeriod 0.002;
base time;
window 10.0;
windowName w1;
mean yes;
prime2Mean yes;
fields (U p);
}
This allows for a simple specification with the optional prime2Mean entry using
#includeFunc fieldAverage(U, p, prime2Mean = yes)
or if the prime2Mean is not needed just
#includeFunc fieldAverage(U, p)
to support the more convenient #includeFunc specification in both
#includeFunc fieldAverage(U.air, U.water, alpha.air, p)
and
#includeFunc fieldAverage(fields = (U.air, U.water, alpha.air, p))
forms.
The mean, prime2Mean and base now have default values:
{
mean on; // (default = on)
prime2Mean on; // (default = off)
base time; // time or iteration (default = time)
window 200; // optional averaging window
windowName w1; // optional window name (default = "")
}
so for the majority of cases for which these defaults are appropriate the
fieldAverage functionObject can now be specified in the functions entry in
controlDict thus:
functions
{
fieldAverage1
{
#includeEtc "caseDicts/postProcessing/fields/fieldAverage.cfg"
fields
(
U.air
U.water
alpha.air
p
);
}
}
also utilising the new fieldAverage.cfg file.
For cases in which these defaults are not appropriate, e.g. the prime2Mean is
also required the optional entries can be specified within sub-dictionaries for
each field, e.g.
fieldAverage1
{
#includeEtc "caseDicts/postProcessing/fields/fieldAverage.cfg"
fields
(
U
{
prime2Mean yes;
}
p
{
prime2Mean yes;
}
);
}
The total enthalpy is calculated as
Ha = ha + K
where
ha is absolute enthalpy
K is the kinetic energy: 1/2*magSqr(U)
The total enthalpy or a particular phase can be calculated by specifying the
optional "phase" name, e.g.
#includeFunc totalEnthalpy(phase = liquid)
Both the functionObject call context (the command line for postProcess, and the
controlDict path for run-time post-precessing) and the configuration file
context where the arguments are substituted are now printed in the error
message, e.g.
postProcess -func 'patchAverage(name=inlet, ields=(p U))'
generates the message
--> FOAM FATAL IO ERROR:
Essential value for keyword 'fields' not set in function entry
patchAverage(name=inlet, ields=(p U))
in command line postProcess -func patchAverage(name=inlet, ields=(p U))
Placeholder value is <field_names>
file: /home/dm2/henry/OpenFOAM/OpenFOAM-dev/etc/caseDicts/postProcessing/surfaceFieldValue/patchAverage from line 13 to line 17.
and with the following in controlDict
functions
{
#includeFunc patchAverage(name=inlet, ields=(p U))
}
generates the message
--> FOAM FATAL IO ERROR:
Essential value for keyword 'fields' not set in function entry
patchAverage(name=inlet, ields=(p U))
in file /home/dm2/henry/OpenFOAM/OpenFOAM-dev/tutorials/incompressible/pimpleFoam/RAS/pitzDaily/system/controlDict at line 55
Placeholder value is <field_names>
file: /home/dm2/henry/OpenFOAM/OpenFOAM-dev/etc/caseDicts/postProcessing/surfaceFieldValue/patchAverage from line 13 to line 17.
This object calculates a field of the age of fluid in the domain; i.e.,
the time taken for a fluid particle to travel to a location from an
inlet. It outputs a field, named age, with dimensions of time, and
requires a solver and a div(phi,age) scheme to be specified. A number of
corrections for the solution procedure can be set, as well as the name
of the flux and density fields.
Example specification:
age1
{
type age;
libs ("libfieldFunctionObjects.so");
nCorr 10;
phi phi;
rho rho;
}
Example usage:
postProcess -func age -fields "(phi)" -latestTime
This work was supported by Robert Secor and Lori Holmes, at 3M
Description
Calculates the natural logarithm of the specified scalar field.
Performs \f$ln(max(x, a))\f$ where \f$x\f$ is the field and \f$a\f$ an
optional clip to handle 0 or negative \f$x\f$.
The etc/caseDicts/postProcessing/fields/log configuration file is provided so
that the simple #includeFunc can be used to execute this functionObject during
the run, e.g. for some dimensionless field x
functions
{
#includeFunc log(x)
}
or if x might be 0 or negative in some regions the optional clip may be applied:
functions
{
#includeFunc log(p,clip=1e-6)
}
Description
Evaluates and writes the turbulence intensity field 'I'.
The turbulence intensity field 'I' is the root-mean-square of the turbulent
velocity fluctuations normalised by the local velocity magnitude:
\f[
I \equiv \frac{\sqrt{\frac{2}{3}\, k}}{U}
\f]
To avoid spurious extrema and division by 0 I is limited to 1 where the
velocity magnitude is less than the turbulent velocity fluctuations.
Example of function object specification:
\verbatim
functions
{
.
.
.
turbulenceIntensity
{
type turbulenceIntensity;
libs ("libfieldFunctionObjects.so");
}
.
.
.
}
\endverbatim
or using the standard configuration file:
\verbatim
functions
{
.
.
.
#includeFunc turbulenceIntensity
.
.
.
}
\endverbatim
with the more general and flexible 'postProcess' utility and '-postProcess' solver option
Rationale
---------
Both the 'postProcess' utility and '-postProcess' solver option use the
same extensive set of functionObjects available for data-processing
during the run avoiding the substantial code duplication necessary for
the 'foamCalc' and 'postCalc' utilities and simplifying maintenance.
Additionally consistency is guaranteed between solver data processing
and post-processing.
The functionObjects have been substantially re-written and generalized
to simplify development and encourage contribution.
Configuration
-------------
An extensive set of simple functionObject configuration files are
provided in
OpenFOAM-dev/etc/caseDicts/postProcessing
and more will be added in the future. These can either be copied into
'<case>/system' directory and included into the 'controlDict.functions'
sub-dictionary or included directly from 'etc/caseDicts/postProcessing'
using the '#includeEtc' directive or the new and more convenient
'#includeFunc' directive which searches the
'<etc>/caseDicts/postProcessing' directories for the selected
functionObject, e.g.
functions
{
#includeFunc Q
#includeFunc Lambda2
}
'#includeFunc' first searches the '<case>/system' directory in case
there is a local configuration.
Description of #includeFunc
---------------------------
Specify a functionObject dictionary file to include, expects the
functionObject name to follow (without quotes).
Search for functionObject dictionary file in
user/group/shipped directories.
The search scheme allows for version-specific and
version-independent files using the following hierarchy:
- \b user settings:
- ~/.OpenFOAM/\<VERSION\>/caseDicts/postProcessing
- ~/.OpenFOAM/caseDicts/postProcessing
- \b group (site) settings (when $WM_PROJECT_SITE is set):
- $WM_PROJECT_SITE/\<VERSION\>/caseDicts/postProcessing
- $WM_PROJECT_SITE/caseDicts/postProcessing
- \b group (site) settings (when $WM_PROJECT_SITE is not set):
- $WM_PROJECT_INST_DIR/site/\<VERSION\>/caseDicts/postProcessing
- $WM_PROJECT_INST_DIR/site/caseDicts/postProcessing
- \b other (shipped) settings:
- $WM_PROJECT_DIR/etc/caseDicts/postProcessing
An example of the \c \#includeFunc directive:
\verbatim
#includeFunc <funcName>
\endverbatim
postProcess
-----------
The 'postProcess' utility and '-postProcess' solver option provide the
same set of controls to execute functionObjects after the run either by
reading a specified set of fields to process in the case of
'postProcess' or by reading all fields and models required to start the
run in the case of '-postProcess' for each selected time:
postProcess -help
Usage: postProcess [OPTIONS]
options:
-case <dir> specify alternate case directory, default is the cwd
-constant include the 'constant/' dir in the times list
-dict <file> read control dictionary from specified location
-field <name> specify the name of the field to be processed, e.g. U
-fields <list> specify a list of fields to be processed, e.g. '(U T p)' -
regular expressions not currently supported
-func <name> specify the name of the functionObject to execute, e.g. Q
-funcs <list> specify the names of the functionObjects to execute, e.g.
'(Q div(U))'
-latestTime select the latest time
-newTimes select the new times
-noFunctionObjects
do not execute functionObjects
-noZero exclude the '0/' dir from the times list, has precedence
over the -withZero option
-parallel run in parallel
-region <name> specify alternative mesh region
-roots <(dir1 .. dirN)>
slave root directories for distributed running
-time <ranges> comma-separated time ranges - eg, ':10,20,40:70,1000:'
-srcDoc display source code in browser
-doc display application documentation in browser
-help print the usage
pimpleFoam -postProcess -help
Usage: pimpleFoam [OPTIONS]
options:
-case <dir> specify alternate case directory, default is the cwd
-constant include the 'constant/' dir in the times list
-dict <file> read control dictionary from specified location
-field <name> specify the name of the field to be processed, e.g. U
-fields <list> specify a list of fields to be processed, e.g. '(U T p)' -
regular expressions not currently supported
-func <name> specify the name of the functionObject to execute, e.g. Q
-funcs <list> specify the names of the functionObjects to execute, e.g.
'(Q div(U))'
-latestTime select the latest time
-newTimes select the new times
-noFunctionObjects
do not execute functionObjects
-noZero exclude the '0/' dir from the times list, has precedence
over the -withZero option
-parallel run in parallel
-postProcess Execute functionObjects only
-region <name> specify alternative mesh region
-roots <(dir1 .. dirN)>
slave root directories for distributed running
-time <ranges> comma-separated time ranges - eg, ':10,20,40:70,1000:'
-srcDoc display source code in browser
-doc display application documentation in browser
-help print the usage
The functionObjects to execute may be specified on the command-line
using the '-func' option for a single functionObject or '-funcs' for a
list, e.g.
postProcess -func Q
postProcess -funcs '(div(U) div(phi))'
In the case of 'Q' the default field to process is 'U' which is
specified in and read from the configuration file but this may be
overridden thus:
postProcess -func 'Q(Ua)'
as is done in the example above to calculate the two forms of the divergence of
the velocity field. Additional fields which the functionObjects may depend on
can be specified using the '-field' or '-fields' options.
The 'postProcess' utility can only be used to execute functionObjects which
process fields present in the time directories. However, functionObjects which
depend on fields obtained from models, e.g. properties derived from turbulence
models can be executed using the '-postProcess' of the appropriate solver, e.g.
pisoFoam -postProcess -func PecletNo
or
sonicFoam -postProcess -func MachNo
In this case all required fields will have already been read so the '-field' or
'-fields' options are not be needed.
Henry G. Weller
CFD Direct Ltd.
This changes simplifies the specification of functionObjects in
controlDict and is consistent with the 'libs' option in controlDict to
load special solver libraries.
Support for the old 'functionObjectLibs' name is supported for backward compatibility.
to have the prefix 'write' rather than 'output'
So outputTime() -> writeTime()
but 'outputTime()' is still supported for backward-compatibility.
Also removed the redundant secondary-writing functionality from Time
which has been superseded by the 'writeRegisteredObject' functionObject.
for consistency with the time controls in controlDict and to avoid
unnecessary confusion. All code and tutorials have been updated.
The old names 'outputControl' and 'outputInterval' are but supported for
backward compatibility but deprecated.