The timeName() function simply returns the dimensionedScalar::name() which holds
the user-time name of the current time and now that timeName() is no longer
virtual the dimensionedScalar::name() can be called directly. The timeName()
function implementation is maintained for backward-compatibility.
This adds cavitation modelling to the multiphaseEuler solver module as a
phaseTransfer model. The underlying cavitation modelling is the same as
for the compressibleVoF module.
An example specification in constant/phaseProperties is shown below:
phaseTransfer
{
gas_liquid
{
type cavitation;
model Kunz;
liquid water;
pSat 80000;
UInf 5.33;
tInf 0.028142589;
Cc 100;
Cv 100;
}
}
Based on code contributed by Petteri Peltonen, VTT.
The cavitation models used by the compressibleVoF module can now have a
temperature-dependent saturation pressure model specified. For example,
in the constant/fvModels file of a compressibleVoF case:
VoFCavitation
{
type VoFCavitation;
libs ("libcompressibleVoFCavitation.so");
model SchnerrSauer;
liquid water;
// Constant saturation pressure
//pSat 2300;
// Antoine equation for temperature-dependent saturation pressure
pSat
{
type Antoine;
A 22;
B -3000;
C -500;
}
n 1.6e+13;
dNuc 2.0e-06;
Cc 1;
Cv 1;
}
The cavitation models used by the interFoam solver and the
compressibleVoF solver module can now be applied regardless of the
ordering of the liquid and vapour phases. A "liquid" keyword is now
required in the model specification in order to control which phase is
considered to be the condensed liquid state. Previously the liquid phase
was assumed to be the first of the two phases.
Replacing the specific twoPhaseChangeModel with a consistent and general fvModel
interface will support not just cavitation using the new compressible
VoFCavitation fvModel but also other phase-change and interface manipulation
models in the future and is easier to use for case-specific and other user
customisation.
Class
Foam::fv::compressible::VoFCavitation
Description
Cavitation fvModel
Usage
Example usage:
\verbatim
VoFCavitation
{
type VoFCavitation;
libs ("libcompressibleVoFCavitation.so");
model SchnerrSauer;
KunzCoeffs
{
pSat 2300; // Saturation pressure
UInf 20.0;
tInf 0.005; // L = 0.1 m
Cc 1000;
Cv 1000;
}
MerkleCoeffs
{
pSat 2300; // Saturation pressure
UInf 20.0;
tInf 0.005; // L = 0.1 m
Cc 80;
Cv 1e-03;
}
SchnerrSauerCoeffs
{
pSat 2300; // Saturation pressure
n 1.6e+13;
dNuc 2.0e-06;
Cc 1;
Cv 1;
}
}
\endverbatim
The cavitating ballValve tutorial has been updated to use the new VoFCavitation
fvModel.
Replacing the specific twoPhaseChangeModel with a consistent and general fvModel
interface will support not just cavitation using the new VoFCavitation fvModel
but also other phase-change and interface manipulation models in the future and
is easier to use for case-specific and other user customisation.
executed with foamRun for single region simulations of foamMultiRun for
multi-region simulations. Replaces compressibleInterFoam and all the
corresponding tutorials have been updated and moved to
tutorials/modules/compressibleVoF.
Class
Foam::solvers::compressibleVoF
Description
Solver module for for 2 compressible, non-isothermal immiscible fluids
using a VOF (volume of fluid) phase-fraction based interface capturing
approach, with optional mesh motion and mesh topology changes including
adaptive re-meshing.
The momentum and other fluid properties are of the "mixture" and a single
momentum equation is solved.
Either mixture or two-phase transport modelling may be selected. In the
mixture approach a single laminar, RAS or LES model is selected to model the
momentum stress. In the Euler-Euler two-phase approach separate laminar,
RAS or LES selected models are selected for each of the phases.
Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
pseudo-transient and steady simulations.
Optional fvModels and fvConstraints are provided to enhance the simulation
in many ways including adding various sources, Lagrangian
particles, surface film etc. and constraining or limiting the solution.
SourceFiles
compressibleVoF.C
See also
Foam::solvers::fluidSolver
The typedName functions prepend the typeName to the object/field name to make a
unique name within the context of model or type.
Within a type which includes a typeName the typedName function can be called
with just the name of the object, e.g. within the kEpsilon model
typeName("G")
generates the name
kEpsilon:G
To create a typed name within another context the type name can be obtained from
the type specified in the function instantiation, e.g.
Foam::typedName<viscosityModel>("nu")
generates the name
viscosityModel:nu
This supersedes the modelName functionality provided in IOobject which could
only be used for IOobjects which provide the typeName, whereas typedName can be
used for any type providing a typeName.
If the sequence of meshes are decomposed independently the number, order and
potentially type of processor patches is likely to change. Thus the processor
patches and patch fields must be replaced with those of the new mesh.
fvMesh is no longer derived from fvSchemes and fvSolution, these are now
demand-driven and accessed by the member functions schemes() and solution()
respectively. This means that the system/fvSchemes and system/fvSolution files
are no longer required during fvMesh constructions simplifying the mesh
generation and manipulation phase; theses files are read on the first call of
their access functions.
The fvSchemes member function names have also been simplified taking advantage
of the context in which they are called, for example
mesh.ddtScheme(fieldName) -> mesh.schemes().ddt(fieldName)
For some cases, in particular those with very small cells created by snapping in
corners for example, it may be beneficial to convergence rate to limit the
minimum LTS time-step, the new minDeltaT control provides this.
Description
Evolves a passive scalar transport equation.
- To specify the field name set the \c field entry
- To employ the same numerical schemes as another field set
the \c schemesField entry,
- The \c diffusivity entry can be set to \c none, \c constant, \c viscosity
- A constant diffusivity is specified with the \c D entry,
- If a momentum transport model is available and the \c viscosity
diffusivety option specified an effective diffusivity may be constructed
from the laminar and turbulent viscosities using the diffusivity
coefficients \c alphal and \c alphat:
\verbatim
D = alphal*nu + alphat*nut
\endverbatim
Example:
\verbatim
#includeFunc scalarTransport(T, alphaD=1, alphaDt=1)
\endverbatim
For incompressible flow the passive scalar may optionally be solved with the
MULES limiter and sub-cycling or semi-implicit in order to maintain
boundedness, particularly if a compressive, PLIC or MPLIC convection
scheme is used.
Example:
\verbatim
#includeFunc scalarTransport(tracer, diffusion=none)
with scheme specification:
div(phi,tracer) Gauss interfaceCompression vanLeer 1;
and solver specification:
tracer
{
nCorr 1;
nSubCycles 3;
MULESCorr no;
nLimiterIter 5;
applyPrevCorr yes;
solver smoothSolver;
smoother symGaussSeidel;
tolerance 1e-8;
relTol 0;
diffusion
{
solver smoothSolver;
smoother symGaussSeidel;
tolerance 1e-8;
relTol 0;
}
}
\endverbatim
used to check the existence of and open an object file, read and check the
header without constructing the object.
'typeIOobject' operates in an equivalent and consistent manner to 'regIOobject'
but the type information is provided by the template argument rather than via
virtual functions for which the derived object would need to be constructed,
which is the case for 'regIOobject'.
'typeIOobject' replaces the previous separate functions 'typeHeaderOk' and
'typeFilePath' with a single consistent interface.
to provide a single consistent code and user interface to the specification of
physical properties in both single-phase and multi-phase solvers. This redesign
simplifies usage and reduces code duplication in run-time selectable solver
options such as 'functionObjects' and 'fvModels'.
* physicalProperties
Single abstract base-class for all fluid and solid physical property classes.
Physical properties for a single fluid or solid within a region are now read
from the 'constant/<region>/physicalProperties' dictionary.
Physical properties for a phase fluid or solid within a region are now read
from the 'constant/<region>/physicalProperties.<phase>' dictionary.
This replaces the previous inconsistent naming convention of
'transportProperties' for incompressible solvers and
'thermophysicalProperties' for compressible solvers.
Backward-compatibility is provided by the solvers reading
'thermophysicalProperties' or 'transportProperties' if the
'physicalProperties' dictionary does not exist.
* phaseProperties
All multi-phase solvers (VoF and Euler-Euler) now read the list of phases and
interfacial models and coefficients from the
'constant/<region>/phaseProperties' dictionary.
Backward-compatibility is provided by the solvers reading
'thermophysicalProperties' or 'transportProperties' if the 'phaseProperties'
dictionary does not exist. For incompressible VoF solvers the
'transportProperties' is automatically upgraded to 'phaseProperties' and the
two 'physicalProperties.<phase>' dictionary for the phase properties.
* viscosity
Abstract base-class (interface) for all fluids.
Having a single interface for the viscosity of all types of fluids facilitated
a substantial simplification of the 'momentumTransport' library, avoiding the
need for a layer of templating and providing total consistency between
incompressible/compressible and single-phase/multi-phase laminar, RAS and LES
momentum transport models. This allows the generalised Newtonian viscosity
models to be used in the same form within laminar as well as RAS and LES
momentum transport closures in any solver. Strain-rate dependent viscosity
modelling is particularly useful with low-Reynolds number turbulence closures
for non-Newtonian fluids where the effect of bulk shear near the walls on the
viscosity is a dominant effect. Within this framework it would also be
possible to implement generalised Newtonian models dependent on turbulent as
well as mean strain-rate if suitable model formulations are available.
* visosityModel
Run-time selectable Newtonian viscosity model for incompressible fluids
providing the 'viscosity' interface for 'momentumTransport' models.
Currently a 'constant' Newtonian viscosity model is provided but the structure
supports more complex functions of time, space and fields registered to the
region database.
Strain-rate dependent non-Newtonian viscosity models have been removed from
this level and handled in a more general way within the 'momentumTransport'
library, see section 'viscosity' above.
The 'constant' viscosity model is selected in the 'physicalProperties'
dictionary by
viscosityModel constant;
which is equivalent to the previous entry in the 'transportProperties'
dictionary
transportModel Newtonian;
but backward-compatibility is provided for both the keyword and model
type.
* thermophysicalModels
To avoid propagating the unnecessary constructors from 'dictionary' into the
new 'physicalProperties' abstract base-class this entire structure has been
removed from the 'thermophysicalModels' library. The only use for this
constructor was in 'thermalBaffle' which now reads the 'physicalProperties'
dictionary from the baffle region directory which is far simpler and more
consistent and significantly reduces the amount of constructor code in the
'thermophysicalModels' library.
* compressibleInterFoam
The creation of the 'viscosity' interface for the 'momentumTransport' models
allows the complex 'twoPhaseMixtureThermo' derived from 'rhoThermo' to be
replaced with the much simpler 'compressibleTwoPhaseMixture' derived from the
'viscosity' interface, avoiding the myriad of unused thermodynamic functions
required by 'rhoThermo' to be defined for the mixture.
Same for 'compressibleMultiphaseMixture' in 'compressibleMultiphaseInterFoam'.
This is a significant improvement in code and input consistency, simplifying
maintenance and further development as well as enhancing usability.
Henry G. Weller
CFD Direct Ltd.
The MomentumTransportModels library now builds of a standard set of
phase-incompressible and phase-compressible models. This replaces most
solver-specific builds of these models.
This has been made possible by the addition of a new
"dynamicTransportModel" interface, from which all transport classes used
by the momentum transport models now derive. For the purpose of
disambiguation, the old "transportModel" has also been renamed
"kinematicTransportModel".
This change has been made in order to create a consistent definition of
phase-incompressible and phase-compressible MomentumTransportModels,
which can then be looked up by functionObjects, fvModels, and similar.
Some solvers still build specific momentum transport models, but these
are now in addition to the standard set. The solver does not build all
the models it uses.
There are also corresponding centralised builds of phase dependent
ThermophysicalTransportModels.
The phase-change functionality in interPhaseChangeFoam has been generalised and
moved into the run-time selectable twoPhaseChange library included into
interFoam providing optional phase-change. The three cavitation models provided
in interPhaseChangeFoam are now included in the twoPhaseChange library and the
two interPhaseChangeFoam cavitation tutorials updated for interFoam.
interPhaseChangeFoam has been replaced by a user redirection script which prints
the following message:
The interPhaseChangeFoam solver has solver has been replaced by the more general
interFoam solver, which now supports phase-change using the new twoPhaseChange
models library.
To run with with phase-change create a constant/phaseChangeProperties dictionary
containing the phase-change model specification, e.g.
phaseChangeModel SchnerrSauer;
pSat 2300; // Saturation pressure
See the following cases for an example converted from interPhaseChangeFoam:
$FOAM_TUTORIALS/multiphase/interFoam/laminar/cavitatingBullet
$FOAM_TUTORIALS/multiphase/interFoam/RAS/propeller
A new family of interface compression interpolation schemes based on
piecewise-linear interface calculation (PLIC). PLIC represents an interface by
surface-cuts which split each cell to match the volume fraction of the phase in
that cell. The surface-cuts are oriented according to the point field of the
local phase fraction. The phase fraction on each cell face — the interpolated
value — is then calculated from the amount submerged below the surface-cut.
The basic PLIC method generates a single cut so cannot handle cells in which
there are multiple interfaces or where the interface is not fully resolved. In
those cells, the interpolation reverts to an alternative scheme, typically
standard interface compression. PLIC, with a fallback to interface compression,
produces robust solutions for real engineering cases. It can run with large time
steps so can solve problems like hydrodynamics of a planing hull, with rigid
body motion of the hull (above). The user selects PLIC by the following setting
in fvSchemes:
div(phi,alpha) Gauss PLIC interfaceCompression vanLeer 1;
The multicut PLIC (MPLIC) scheme extends PLIC to handle multiple
surface-cuts. Where a single cut is insufficient, MPLIC performs a topological
face-edge-face walk to produce multiple splits of a cell. If that is still
insufficient, MPLIC decomposes the cell into tetrahedrons on which the cuts are
applied. The extra cutting carries an additional computational cost but requires
no fallback. The user selects MPLIC by the following setting in the fvSchemes
file:
div(phi,alpha) Gauss MPLIC;
Variants of the PLIC and MPLIC schemes are also available which use velocities
at the face points to calculate the face flux. These PLICU and MPLICU schemes
are likely to be more accurate in regions of interface under high shear.
More details can be found here:
https://cfd.direct/openfoam/free-software/multiphase-interface-capturing
Jakub Knir
CFD Direct Ltd.
A new run-time selectable interface compression scheme framework has been added
to the two-phase VoF solvers to provide greater flexibility, extensibility and
more consistent user-interface. The previously built-in interface compression
is now in the standard run-time selectable surfaceInterpolationScheme
interfaceCompression:
Class
Foam::interfaceCompression
Description
Interface compression corrected scheme, based on counter-gradient
transport, to maintain sharp interfaces during VoF simulations.
The interface compression is applied to the face interpolated field from a
suitable 2nd-order shape-preserving NVD or TVD scheme, e.g. vanLeer or
vanAlbada. A coefficient is supplied to control the degree of compression,
with a value of 1 suitable for most VoF cases to ensure interface integrity.
A value larger than 1 can be used but the additional compression can bias
the interface to follow the mesh more closely while a value smaller than 1
can lead to interface smearing.
Example:
\verbatim
divSchemes
{
.
.
div(phi,alpha) Gauss interfaceCompression vanLeer 1;
.
.
}
\endverbatim
The separate scheme for the interface compression term "div(phirb,alpha)" is no
longer required or used nor is the compression coefficient cAlpha in fvSolution
as this is now part of the "div(phi,alpha)" scheme specification as shown above.
Backward-compatibility is provided by checking the specified "div(phi,alpha)"
scheme against the known interface compression schemes and if it is not one of
those the new interfaceCompression scheme is used with the cAlpha value
specified in fvSolution.
More details can be found here:
https://cfd.direct/openfoam/free-software/multiphase-interface-capturing
Henry G. Weller
CFD Direct Ltd.
providing the shear-stress term in the momentum equation for incompressible and
compressible Newtonian, non-Newtonian and visco-elastic laminar flow as well as
Reynolds averaged and large-eddy simulation of turbulent flow.
The general deviatoric shear-stress term provided by the MomentumTransportModels
library is named divDevTau for compressible flow and divDevSigma (sigma =
tau/rho) for incompressible flow, the spherical part of the shear-stress is
assumed to be either included in the pressure or handled separately. The
corresponding stress function sigma is also provided which in the case of
Reynolds stress closure returns the effective Reynolds stress (including the
laminar contribution) or for other Reynolds averaged or large-eddy turbulence
closures returns the modelled Reynolds stress or sub-grid stress respectively.
For visco-elastic flow the sigma function returns the effective total stress
including the visco-elastic and Newtonian contributions.
For thermal flow the heat-flux generated by thermal diffusion is now handled by
the separate ThermophysicalTransportModels library allowing independent run-time
selection of the heat-flux model.
During the development of the MomentumTransportModels library significant effort
has been put into rationalising the components and supporting libraries,
removing redundant code, updating names to provide a more logical, consistent
and extensible interface and aid further development and maintenance. All
solvers and tutorials have been updated correspondingly and backward
compatibility of the input dictionaries provided.
Henry G. Weller
CFD Direct Ltd.