Warnings about initialisation of particles with locations outside of the
mesh and about the positional inaccuracy of NCC transfers are now
accumulated and printed once per time-step. This way, the log isn't
obscured by hundreds of such warnings.
Also, the pattern in which warnings are silenced after some arbitrary
number (typically 100) have been issued has been removed. This pattern
means that user viewing the log later in the run may be unaware that a
problem is still present. Accumulated warnings are concise enough that
they do not need to be silenced. They are generated every time-step, and
so remain visible throughout the log.
setFormat no longer defaults to the value of graphFormat optionally set in
controlDict and must be set in the functionObject dictionary.
boundaryFoam, financialFoam and pdfPlot still require a graphFormat entry in
controlDict but this is now read directly rather than by Time.
Support for mesh sub-cycling has been removed from Lagrangian. Various
Lagrangian processes already support sub-dividing the time-step. It is
easier and more efficient to extend that support all the way to the
high-level cloud objects, rather than to sub-cycle the mesh.
This has additional benefits. The cloud now no longer needs to reset the
step fraction at the start of every sub-motion. Injection can take
advantage of this by modifying particles' step fractions in order to
distribute them uniformly through the time-step. This is a simple and
efficient method. Previously, injection would track the particles some
distance after injection. This was more expensive to do, it resulted in
spatial artefacts in the injected Lagrangian field, and it did not
correctly handle interactions with patches or parallel transfers.
The lack of injection tracking also means that particles injected
through patches now start their simulation topologically connected to
the face on which they are created. This means that they correctly
trigger cloud functions associated with that face and/or patch.
The injection models now also return barycentric coordinates directly,
rather than the global position of injected particles. For methods that
initially generate locations naturally in terms of barycentric
coordinates, this prevents unnecessary and potentially fragile
conversion from barycentric to Cartesian and back again. These are
typically the methods that "fill" some sort of space; e.g., patch or
cell-zone injections.
The timeName() function simply returns the dimensionedScalar::name() which holds
the user-time name of the current time and now that timeName() is no longer
virtual the dimensionedScalar::name() can be called directly. The timeName()
function implementation is maintained for backward-compatibility.
A set of routines for cutting polyhedra have been added. These can cut
polyhedral cells based on the adjacent point values and an iso-value
which defines the surface. The method operates directly on the
polyhedral cells; it does not decompose them into tetrahedra at any
point. The routines can compute the cut topology as well as integrals of
properties above and below the cut surface.
An iso-surface algorithm has been added based on these polyhedral
cutting routines. It is significantly more robust than the previous
algorithm, and produces compact surfaces equivalent to the previous
algorithm's maximum filtering level. It is also approximately 3 times
faster than the previous algorithm, and 10 times faster when run
repeatedly on the same set of cells (this is because some addressing is
cached and reused).
This algorithm is used by the 'isoSurface', 'distanceSurface' and
'cutPlane' sampled surfaces.
The 'cutPlane' sampled surface is a renaming of 'cuttingPlane' to make
it consistent with the corresponding packaged function. The name
'cuttingPlane' has been retained for backwards compatibility and can
still be used to select a 'cutPlane' surface. The legacy 'plane' surface
has been removed.
The 'average' keyword has been removed from specification of these
sampled surfaces as cell-centred values are no longer used in the
generation of or interpolation to an iso-surface. The 'filtering'
keyword has also been removed as it relates to options within the
previous algorithm. Zone support has been reinstated into the
'isoSurface' sampled surface. Interpolation to all these sampled
surfaces has been corrected to exactly match the user-selected
interpolation scheme, and the interpolation procedure no longer
unnecessarily re-generates data that is already available.
Lagrangian is now compatible with the meshToMesh topology changer. If a
cloud is being simulated and this topology changer is active, then the
cloud data will be automatically mapped between the specified sequence
of meshes in the same way as the finite volume data. This works both for
serial and parallel simulations.
In addition, mapFieldsPar now also supports mapping of Lagrangian data
when run in parallel.
Function objects now write to the following path when applied to a
non-default region of a multi-region case:
postProcessing/<regionName>/<functionName>/<time>/
Previously the order of <regionName> and <functionName> was not
consistent between the various function objects.
Resolves bug report https://bugs.openfoam.org/view.php?id=3907
The mesh-to-mesh methods have been reorganised so that
cell-volume-weight specific functionality is not implemented in the base
method class. Normalisation has been delegated to the methods so that it
can be performed in a method-appropriate way. The public and protected
interface of the methods has been minimised and unused code has been
removed.
This reference represents unnecessary storage. The mesh can be obtained
from tracking data or passed to the particle evolution functions by
argument.
In addition, removing the mesh reference makes it possible to construct
as particle from an Istream without the need for an iNew class. This
simplifies stream-based transfer, and makes it possible for particles to
be communicated by a polyDistributionMap.
The mappedPatchBase has been separated into a type which maps from
another patch (still called mappedPatchBase) and one that maps from
internal cell values (mappedInternalPatchBase). This prevents the user
needing to specify settings for mapping procedures that are not being
used, and potentially don't even make sense given the context in which
they are being applied. It also removes a lot of fragile logic and error
states in the mapping engine and its derivatives regarding the mode of
operation. Mapping from any face in the boundary is no longer supported.
Most region-coupling mapping patches are generated automatically by
utilities like splitMeshRegions and extrudeToRegionMesh. Cases which
create region-coupling mapped patches in this way will likely require no
modification.
Explicitly user-specified mapping will need modifying, however. For
example, where an inlet boundary is mapped to a downstream position in
order to evolve a developed profile. Or if a multi-region simulation is
constructed manually, without using one of the region-generating
utilities.
The available mapped patch types are now as follows:
- mapped: Maps values from one patch to another. Typically used for
inlets and outlets; to map values from an outlet patch to an inlet
patch in order to evolve a developed inlet profile, or to permit
flow between regions. Example specification in blockMesh:
inlet
{
type mapped;
neighbourRegion region0; // Optional. Defaults to the same
// region as the patch.
neighbourPatch outlet;
faces ( ... );
}
Note that any transformation between the patches is now determined
automatically. Alternatively, it can be explicitly specified using
the same syntax as for cyclic patches. The "offset" and "distance"
keywords are no longer used.
- mappedWall: As mapped, but treated as a wall for the purposes of
modelling (wall distance). No transformation. Typically used for
thermally coupling different regions. Usually created automatically
by meshing utilities. Example:
fluid_to_solid
{
type mappedWall;
neighbourRegion solid;
neighbourPatch solid_to_fluid;
method intersection; // The patchToPatch method. See
// below.
faces ( ... );
}
- mappedExtrudedWall: As mapped wall, but with corrections to account
for the thickness of an extruded mesh. Used for region coupling
involving film and thermal baffle models. Almost always generated
automatically by extrudeToRegionMesh (so no example given).
- mappedInternal: Map values from internal cells to a patch. Typically
used for inlets; to map values from internal cells to the inlet in
order to evolve a developed inlet profile. Example:
inlet
{
type mappedInternal;
distance 0.05; // Normal distance from the patch
// from which to map cell values
//offset (0.05 0 0); // Offset from the patch from
// which to map cell values
faces ( ... );
}
Note that an "offsetMode" entry is no longer necessary. The mode
will be inferred from the presence of the distance or offset
entries. If both are provided, then offsetMode will also be required
to choose which setting applies.
The mapped, mappedWall and mappedExtrudedWall patches now permit
specification of a "method". This selects a patchToPatch object and
therefore determines how values are transferred or interpolated between
the patches. Valid options are:
- nearest: Copy the value from the nearest face in the neighbouring
patch.
- matching: As nearest, but with checking to make sure that the
mapping is one-to-one. This is appropriate for patches that are
identically meshed.
- inverseDistance: Inverse distance weighting from a small stencil of
nearby faces in the neighbouring patch.
- intersection: Weighting based on the overlapping areas with faces in
the neighbouring patch. Equivalent to the previous AMI-based mapping
mode.
If a method is not specfied, then the pre-existing approach will apply.
This should be equivalent to the "nearest" method (though in most such
cases, "matching" is probably more appropriate). This fallback may be
removed in the future once the patchToPatch methods have been proven
robust.
The important mapped boundary conditions are now as follows:
- mappedValue: Maps values from one patch to another, and optionally
modify the mapped values to recover a specified average. Example:
inlet
{
type mappedValue;
field U; // Optional. Defaults to the same
// as this field.
average (10 0 0); // The presence of this entry now
// enables setting of the average,
// so "setAverage" is not needed
value uniform 0.1;
}
- mappedInternalValue: Map values from cells to a patch, and
optionally specify the average as in mappedValue. Example:
inlet
{
type mappedValue;
field k; // Optional. Defaults to the same
// as this field.
interpolationScheme cell;
value uniform 0.1;
}
- mappedFlowRateVelocity: Maps the flow rate from one patch to
another, and use this to set a patch-normal velocity. Example:
inlet
{
type mappedFlowRate;
value uniform (0 0 0);
}
Of these, mappedValue and mappedInternalValue can override the
underlying mapped patch's settings by additionally specifying mapping
information (i.e., the neighbourPatch, offset, etc... settings usually
supplied for the patch). This also means these boundary condtions can be
applied to non-mapped patches. This functionality used to be provided
with a separate "mappedField" boundary condition, which has been removed
as it is no longer necessary.
Other mapped boundary conditions are either extremely niche (e.g.,
mappedVelocityFlux), are always automatically generated (e.g.,
mappedValueAndPatchInternalValue), or their usage has not changed (e.g.,
compressible::turbulentTemperatureCoupledBaffleMixed and
compressible::turbulentTemperatureRadCoupledMixed). Use foamInfo to
obtain further details about these conditions.
Poly patches should not hold non-uniform physical data that needs
mapping on mesh changes (decomposition, reconstruction, topology change,
etc ...). They should only hold uniform data that can be user-specified,
or non-uniform data that can be constructed on the fly from the poly
mesh.
With the recent changes to mappedPatchBase and extrudeToRegionMesh, this
has now been consistenly enforced, and a number of incomplete
implementations of poly patch mapping have therefore been removed.
The typedName functions prepend the typeName to the object/field name to make a
unique name within the context of model or type.
Within a type which includes a typeName the typedName function can be called
with just the name of the object, e.g. within the kEpsilon model
typeName("G")
generates the name
kEpsilon:G
To create a typed name within another context the type name can be obtained from
the type specified in the function instantiation, e.g.
Foam::typedName<viscosityModel>("nu")
generates the name
viscosityModel:nu
This supersedes the modelName functionality provided in IOobject which could
only be used for IOobjects which provide the typeName, whereas typedName can be
used for any type providing a typeName.
Mapping with interpolation now behaves correctly when a single cell maps
to multiple faces. In addition, the mapping structure is more compact
and no longer results in copies being made of entire internal fields.
This has been achieved by rewriting the mapping strategy in
mappedPatchBase so that it maps from a reduced set of sampling locations
to the patch faces, rather than directly from the cells/faces to the
patch faces. This is more efficient, but it also permits multiple
sampling locations to be sent to a single cell/face. Values can then be
interpolated to these points before being sent back to the patch faces.
Previously a single cell/face could only be sent a single location onto
which to interpolate; typically that of the first associated patch face.
The resulting interpolated value was then sent back to all associated
patch faces. This meant that some (potentially most) patch faces did
receive a value interpolated to the correct position.
The functionality provided by 'cyclicACMI' and 'cyclicRepeatAMI' has
been entirely superseded by non-conformal coupled (NCC). All references
to 'cyclicACMI' and 'cyclicRepeatAMI' have therefore been removed.
See previous commits 569fa31d and 420866cf for more explanation,
instructions on updating, and relevant tutorial cases.
This major development provides coupling of patches which are
non-conformal, i.e. where the faces of one patch do not match the faces
of the other. The coupling is fully conservative and second order
accurate in space, unlike the Arbitrary Mesh Interface (AMI) and
associated ACMI and Repeat AMI methods which NCC replaces.
Description:
A non-conformal couple is a connection between a pair of boundary
patches formed by projecting one patch onto the other in a way that
fills the space between them. The intersection between the projected
surface and patch forms new faces that are incorporated into the finite
volume mesh. These new faces are created identically on both sides of
the couple, and therefore become equivalent to internal faces within the
mesh. The affected cells remain closed, meaning that the area vectors
sum to zero for all the faces of each cell. Consequently, the main
benefits of the finite volume method, i.e. conservation and accuracy,
are not undermined by the coupling.
A couple connects parts of mesh that are otherwise disconnected and can
be used in the following ways:
+ to simulate rotating geometries, e.g. a propeller or stirrer, in which
a part of the mesh rotates with the geometry and connects to a
surrounding mesh which is not moving;
+ to connect meshes that are generated separately, which do not conform
at their boundaries;
+ to connect patches which only partially overlap, in which the
non-overlapped section forms another boundary, e.g. a wall;
+ to simulate a case with a geometry which is periodically repeating by
creating multiple couples with different transformations between
patches.
The capability for simulating partial overlaps replaces the ACMI
functionality, currently provided by the 'cyclicACMI' patch type, and
which is unreliable unless the couple is perfectly flat. The capability
for simulating periodically repeating geometry replaces the Repeat AMI
functionality currently provided by the 'cyclicRepeatAMI' patch type.
Usage:
The process of meshing for NCC is very similar to existing processes for
meshing for AMI. Typically, a mesh is generated with an identifiable set
of internal faces which coincide with the surface through which the mesh
will be coupled. These faces are then duplicated by running the
'createBaffles' utility to create two boundary patches. The points are
then split using 'splitBaffles' in order to permit independent motion of
the patches.
In AMI, these patches are assigned the 'cyclicAMI' patch type, which
couples them using AMI interpolation methods.
With NCC, the patches remain non-coupled, e.g. a 'wall' type. Coupling
is instead achieved by running the new 'createNonConformalCouples'
utility, which creates additional coupled patches of type
'nonConformalCyclic'. These appear in the 'constant/polyMesh/boundary'
file with zero faces; they are populated with faces in the finite volume
mesh during the connection process in NCC.
For a single couple, such as that which separates the rotating and
stationary sections of a mesh, the utility can be called using the
non-coupled patch names as arguments, e.g.
createNonConformalCouples -overwrite rotatingZoneInner rotatingZoneOuter
where 'rotatingZoneInner' and 'rotatingZoneOuter' are the names of the
patches.
For multiple couples, and/or couples with transformations,
'createNonConformalCouples' should be run without arguments. Settings
will then be read from a configuration file named
'system/createNonConformalCouplesDict'. See
'$FOAM_ETC/caseDicts/annotated/createNonConformalCouplesDict' for
examples.
Boundary conditions must be specified for the non-coupled patches. For a
couple where the patches fully overlap, boundary conditions
corresponding to a slip wall are typically applied to fields, i.e
'movingWallSlipVelocity' (or 'slip' if the mesh is stationary) for
velocity U, 'zeroGradient' or 'fixedFluxPressure' for pressure p, and
'zeroGradient' for other fields. For a couple with
partially-overlapping patches, boundary conditions are applied which
physically represent the non-overlapped region, e.g. a no-slip wall.
Boundary conditions also need to be specified for the
'nonConformalCyclic' patches created by 'createNonConformalCouples'. It
is generally recommended that this is done by including the
'$FOAM_ETC/caseDicts/setConstraintTypes' file in the 'boundaryField'
section of each of the field files, e.g.
boundaryField
{
#includeEtc "caseDicts/setConstraintTypes"
inlet
{
...
}
...
}
For moving mesh cases, it may be necessary to correct the mesh fluxes
that are changed as a result of the connection procedure. If the
connected patches do not conform perfectly to the mesh motion, then
failure to correct the fluxes can result in noise in the pressure
solution.
Correction for the mesh fluxes is enabled by the 'correctMeshPhi' switch
in the 'PIMPLE' (or equivalent) section of 'system/fvSolution'. When it
is enabled, solver settings are required for 'MeshPhi'. The solution
just needs to distribute the error enough to dissipate the noise. A
smooth solver with a loose tolerance is typically sufficient, e.g. the
settings in 'system/fvSolution' shown below:
solvers
{
MeshPhi
{
solver smoothSolver;
smoother symGaussSeidel;
tolerance 1e-2;
relTol 0;
}
...
}
PIMPLE
{
correctMeshPhi yes;
...
}
The solution of 'MeshPhi' is an inexpensive computation since it is
applied only to a small subset of the mesh adjacent to the
couple. Conservation is maintained whether or not the mesh flux
correction is enabled, and regardless of the solution tolerance for
'MeshPhi'.
Advantages of NCC:
+ NCC maintains conservation which is required for many numerical
schemes and algorithms to operate effectively, in particular those
designed to maintain boundedness of a solution.
+ Closed-volume systems no longer suffer from accumulation or loss of
mass, poor convergence of the pressure equation, and/or concentration
of error in the reference cell.
+ Partially overlapped simulations are now possible on surfaces that are
not perfectly flat. The projection fills space so no overlaps or
spaces are generated inside contiguously overlapping sections, even if
those sections have sharp angles.
+ The finite volume faces created by NCC have geometrically accurate
centres. This makes the method second order accurate in space.
+ The polyhedral mesh no longer requires duplicate boundary faces to be
generated in order to run a partially overlapped simulation.
+ Lagrangian elements can now transfer across non-conformal couplings in
parallel.
+ Once the intersection has been computed and applied to the finite
volume mesh, it can use standard cyclic or processor cyclic finite
volume boundary conditions, with no need for additional patch types or
matrix interfaces.
+ Parallel communication is done using the standard
processor-patch-field system. This is more efficient than alternative
systems since it has been carefully optimised for use within the
linear solvers.
+ Coupled patches are disconnected prior to mesh motion and topology
change and reconnected afterwards. This simplifies the boundary
condition specification for mesh motion fields.
Resolved Bug Reports:
+ https://bugs.openfoam.org/view.php?id=663
+ https://bugs.openfoam.org/view.php?id=883
+ https://bugs.openfoam.org/view.php?id=887
+ https://bugs.openfoam.org/view.php?id=1337
+ https://bugs.openfoam.org/view.php?id=1388
+ https://bugs.openfoam.org/view.php?id=1422
+ https://bugs.openfoam.org/view.php?id=1829
+ https://bugs.openfoam.org/view.php?id=1841
+ https://bugs.openfoam.org/view.php?id=2274
+ https://bugs.openfoam.org/view.php?id=2561
+ https://bugs.openfoam.org/view.php?id=3817
Deprecation:
NCC replaces the functionality provided by AMI, ACMI and Repeat AMI.
ACMI and Repeat AMI are insufficiently reliable to warrant further
maintenance so are removed in an accompanying commit to OpenFOAM-dev.
AMI is more widely used so will be retained alongside NCC for the next
version release of OpenFOAM and then subsequently removed from
OpenFOAM-dev.
This control forces writing of surfaces, even when they have no faces.
This can be useful for smoothly animating isoSurfaces that do not exist
at all write times.
It can be used to force writing of an isoSurface in the following way,
in system/controlDict:
functions
{
#includeFunc isoSurface
(
isoField=alpha.water,
isoValue=0.5,
writeEmpty=yes
)
}
With fvMeshTopoChangers::meshToMesh it is now possible to map the solution to a
specified sequence of pre-generated meshes at run-time to support arbitrary mesh
changes, refinements, un-refinements, changes in region topology, geometry,
etc. Additionally mesh-motion between the sequence of meshes is supported to
allow for e.g. piston and valve motion in engines.
The tutorials/incompressible/pimpleFoam/laminar/movingCone case has been updated
to provide a demonstration of the advantages of this run-time mesh-mapping by
mapping to meshes that are finer behind the cone and coarser in front of the
cone as the cone approaches the end of the domain, thus maintaining good
resolution while avoiding excessive cell aspect ratio as the mesh is squeezed.
The dynamicMeshDict for the movingCone case is;
mover
{
type motionSolver;
libs ("libfvMeshMovers.so" "libfvMotionSolvers.so");
motionSolver velocityComponentLaplacian;
component x;
diffusivity directional (1 200 0);
}
topoChanger
{
type meshToMesh;
libs ("libmeshToMeshTopoChanger.so");
times (0.0015 0.003);
timeDelta 1e-6;
}
which lists the mesh mapping times 0.0015s 0.003s and meshes for these times in
directories constant/meshToMesh_0.0015 and constant/meshToMesh_0.003 are
generated in the Allrun script before the pimpleFoam run:
runApplication -a blockMesh -dict blockMeshDict.2
rm -rf constant/meshToMesh_0.0015
mkdir constant/meshToMesh_0.0015
mv constant/polyMesh constant/meshToMesh_0.0015
runApplication -a blockMesh -dict blockMeshDict.3
rm -rf constant/meshToMesh_0.003
mkdir constant/meshToMesh_0.003
mv constant/polyMesh constant/meshToMesh_0.003
runApplication -a blockMesh -dict blockMeshDict.1
runApplication $application
Note: This functionality is experimental and has only undergone basic testing.
It is likely that it does not yet work with all functionObject, fvModels
etc. which will need updating to support this form of mesh topology change.
This new mapping structure is designed to support run-time mesh-to-mesh mapping
to allow arbitrary changes to the mesh structure, for example during extreme
motion requiring significant topology change including region disconnection etc.
The polyTopoChangeMap is the map specifically relating to polyMesh topological
changes generated by polyTopoChange and used to update and map mesh related
types and fields following the topo-change.
This is a map data structure rather than a class or function which performs the
mapping operation so polyMeshDistributionMap is more logical and comprehensible
than mapDistributePolyMesh.
The template parameters were only ever polyBoundaryMesh and
processorPolyPatch. Un-templating makes mainteance and bug-fixing
quicker as it means minor modifications no longer cause a full rebuild
of OpenFOAM.
The subtract option in mapFieldsPar was not implemented correctly and the
significant complexity in meshToMesh required to support it creates an
unwarranted maintenance overhead. The equivalent functionality is now provided
by the more flexible, convenient and simpler subtract functionObject.