Now that Cp and Cv are cached it is more convenient and consistent and slightly
more efficient to cache thermal conductivity kappa rather than thermal
diffusivity alpha which is not a fundamental property, the appropriate form
depending on the energy solved for. kappa is converted into the appropriate
thermal diffusivity for the energy form solved for by dividing by the
corresponding cached heat capacity when required, which is efficient.
Following the addition of the new moments functionObject, all related
functionality was removed from sizeDistribution.
In its revised version, sizeDistribution allows for different kinds of
weighted region averaging in case of field-dependent representative
particle properties.
A packaged function has also been added to allow for command line solver
post-processing.
For example, the following function object specification returns the
volume-based number density function:
numberDensity
{
type sizeDistribution;
libs ("libmultiphaseEulerFoamFunctionObjects.so");
writeControl writeTime;
populationBalance bubbles;
functionType numberDensity;
coordinateType volume;
setFormat raw;
}
The same can be achieved using a packaged function:
#includeFunc sizeDistribution
(
populationBalance=bubbles,
functionType=numberDensity,
coordinateType=volume,
funcName=numberDensity
)
Or on the command line:
multiphaseEulerFoam -postProcess -func "
sizeDistribution
(
populationBalance=bubbles,
functionType=numberDensity,
coordinateType=volume,
funcName=numberDensity
)"
Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
Zoltan only work in parallel so zoltanDecomp can only be used for redistribution
but is much more flexible than ptscotch and provides a range of geometric, graph
and hypergraph methods which can operate in either "partition" or "repartition",
the latter being particularly useful for dynamic load-balancing by migrating
cells between processors rather than creating a completely different
decomposition, thus reducing communication.
Class
Foam::zoltanDecomp
Description
Zoltan redistribution in parallel
Note: Zoltan methods do not support serial operation.
Parameters
- lb_method : The load-balancing algorithm
- block : block partitioning
- random : random partitioning
- rcb : recursive coordinate bisection
- rib : ecursive inertial bisection
- hsfc : Hilbert space-filling curve partitioning
- reftree : refinement tree based partitioning
- graph : choose from collection of methods for graphs
- hypergraph : choose from a collection of methods for hypergraphs
- lb_approach The desired load balancing approach. Only lb_method =
hypergraph or graph uses the lb_approach parameter. Valid values are
- partition : Partition without reference to the current distribution,
recommended for static load balancing.
- repartition : Partition starting from the current data distribution
to keep data migration low, recommended for dynamic load balancing.
- refine : Quickly improve the current data distribution
Default values
- debug_level 0
- imbalance_tol 1.05
- lb_method graph
- lb_approach repartition
Usage
To select the Zoltan graph repartition method add the following entries to
decomposeParDict:
distributor zoltan;
libs ("libzoltanRenumber.so");
The Zoltan lb_method and lb_approach can be changed by adding the
corresponding entries to the optional zoltanCeoffs sub-dictionary, e.g.:
zoltanCoeffs
{
lb_method hypergraph;
lb_approach partition;
}
An example of using Zoltan for redistribution during snappyHexMesh is provided
commented out in
tutorials/incompressible/simpleFoam/motorBike/system/decomposeParDict
and fordynamic load-balancing in
tutorials/multiphase/interFoam/RAS/floatingObject/system/decomposeParDict.
Note that Zoltan must first be compiled in ThirdParty-dev by downloading from
the link in the README file and running Allwmake and then compiling zoltanDecomp
by running Allwmake in src/parallel/decompose.
There is no longer any need for the surfaceFilmModel abstract base class and
"New" selection method as surface films are now handled within the fvModel
framework. This makes the surfaceFilmModel entry in the surfaceFilmProperties
dictionary redundant.
The surfaceFilm and VoFSurfaceFilm fvModels now instantiate a thermoSingleLayer
providing direct access to all the film functions, simplifying the
implementation better ensuring consistency between the film and primary region
equations.
When snappyHexMesh is run in parallel it re-balances the mesh during refinement
and layer addition by redistribution which requires a decomposition method
that operates in parallel, e.g. hierachical or ptscotch. decomposePar uses a
decomposition method which operates in serial e.g. hierachical but NOT
ptscotch. In order to run decomposePar followed by snappyHexMesh in parallel it
has been necessary to change the method specified in decomposeParDict but now
this is avoided by separately specifying the decomposition and distribution
methods, e.g. in the incompressible/simpleFoam/motorBike case:
numberOfSubdomains 6;
decomposer hierarchical;
distributor ptscotch;
hierarchicalCoeffs
{
n (3 2 1);
order xyz;
}
The distributor entry is also used for run-time mesh redistribution, e.g. in the
multiphase/interFoam/RAS/floatingObject case re-distribution for load-balancing
is enabled in constant/dynamicMeshDict:
distributor
{
type distributor;
libs ("libfvMeshDistributors.so");
redistributionInterval 10;
}
which uses the distributor specified in system/decomposeParDict:
distributor hierarchical;
This rationalisation provides the structure for development of mesh
redistribution and load-balancing.
These models are quite configuration specific. It makes sense to make
them sub-models of the force (drag or lift) models that use them, rather
than making them fundamental properties of the phase system.
Basic support is now provided for dynamic mesh redistribution, particularly for
load-balancing. The mesh distributor is selected in the optional 'distributor'
entry in dynamicMeshDict, for example in the
multiphase/interFoam/RAS/floatingObject tutorial case when run in parallel using
the new Allrun-parallel script
distributor
{
type decomposer;
libs ("libfvMeshDistributors.so");
redistributionInterval 10;
}
in which the 'decomposer' form of redistribution is selected to call the mesh
decomposition method specified in decomposeParDict to re-decompose the mesh for
redistribution. The redistributionInterval entry specifies how frequently mesh
redistribution takes place, in the above every 10th time-step. An optional
maxImbalance entry is also provided to control redistribution based on the cell
distribution imbalance:
Class
Foam::fvMeshDistributor::decomposer
Description
Dynamic mesh redistribution using the decomposer
Usage
Example of single field based refinement in all cells:
\verbatim
distributor
{
type decomposer;
libs ("libfvMeshDistributors.so");
// How often to redistribute
redistributionInterval 10;
// Maximum fractional cell distribution imbalance
// before rebalancing
maxImbalance 0.1;
}
\endverbatim
Currently mesh refinement/unrefinement and motion with redistribution is
supported but many aspects of OpenFOAM are not yet and will require further
development, in particular fvModels and Lagrangian.
Also only the geometry-based simple and hierarchical decomposition method are
well behaved for redistribution, scotch and ptScotch cause dramatic changes in
mesh distribution with a corresponding heavy communications overhead limiting
their usefulness or at least the frequency with which they should be called to
redistribute the mesh.
Sampled sets and streamlines now write all their fields to the same
file. This prevents excessive duplication of the geometry and makes
post-processing tasks more convenient.
"axis" entries are now optional in sampled sets and streamlines. When
omitted, a default entry will be used, which is chosen appropriately for
the coordinate set and the write format. Some combinations are not
supported. For example, a scalar ("x", "y", "z" or "distance") axis
cannot be used to write in the vtk format, as vtk requires 3D locations
with which to associate data. Similarly, a point ("xyz") axis cannot be
used with the gnuplot format, as gnuplot needs a single scalar to
associate with the x-axis.
Streamlines can now write out fields of any type, not just scalars and
vectors, and there is no longer a strict requirement for velocity to be
one of the fields.
Streamlines now output to postProcessing/<functionName>/time/<file> in
the same way as other functions. The additional "sets" subdirectory has
been removed.
The raw set writer now aligns columns correctly.
The handling of segments in coordSet and sampledSet has been
fixed/completed. Segments mean that a coordinate set can represent a
number of contiguous lines, disconnected points, or some combination
thereof. This works in parallel; segments remain contiguous across
processor boundaries. Set writers now only need one write method, as the
previous "writeTracks" functionality is now handled by streamlines
providing the writer with the appropriate segment structure.
Coordinate sets and set writers now have a convenient programmatic
interface. To write a graph of A and B against some coordinate X, in
gnuplot format, we can call the following:
setWriter::New("gnuplot")->write
(
directoryName,
graphName,
coordSet(true, "X", X), // <-- "true" indicates a contiguous
"A", // line, "false" would mean
A, // disconnected points
"B",
B
);
This write function is variadic. It supports any number of
field-name-field pairs, and they can be of any primitive type.
Support for Jplot and Xmgrace formats has been removed. Raw, CSV,
Gnuplot, VTK and Ensight formats are all still available.
The old "graph" functionality has been removed from the code, with the
exception of the randomProcesses library and associated applications
(noise, DNSFoam and boxTurb). The intention is that these should also
eventually be converted to use the setWriters. For now, so that it is
clear that the "graph" functionality is not to be used elsewhere, it has
been moved into a subdirectory of the randomProcesses library.
The surfaceVectorField Uf is used instead of the flux field phi for ddtPhiCorr
in moving mesh cases to handle linear and rotating motion and must mapped from
the volVectorField U to new faces created by cell splitting or merging in mesh
refinement/unrefinement.
The floatingObject tutorial has been update to demonstrate this functionality by
adding the following topoChanger entry to dynamicMeshDict:
topoChanger
{
type refiner;
libs ("libfvMeshTopoChangers.so");
// How often to refine
refineInterval 1;
// Field to be refinement on
field alpha.water;
// Refine field in between lower..upper
lowerRefineLevel 0.001;
upperRefineLevel 0.999;
// Have slower than 2:1 refinement
nBufferLayers 1;
// Refine cells only up to maxRefinement levels
maxRefinement 1;
// Stop refinement if maxCells reached
maxCells 200000;
// Flux field and corresponding velocity field. Fluxes on changed
// faces get recalculated by interpolating the velocity. Use 'none'
// on surfaceScalarFields that do not need to be reinterpolated.
correctFluxes
(
(phi none)
(nHatf none)
(rhoPhi none)
(alphaPhi.water none)
(meshPhi none)
(ghf none)
);
// Write the refinement level as a volScalarField
dumpLevel true;
}
Note that currently only single rigid body motion is supported (but multi-body
support will be added shortly) and the Crank-Nicolson scheme is not supported.
Mesh motion and topology change are now combinable run-time selectable options
within fvMesh, replacing the restrictive dynamicFvMesh which supported only
motion OR topology change.
All solvers which instantiated a dynamicFvMesh now instantiate an fvMesh which
reads the optional constant/dynamicFvMeshDict to construct an fvMeshMover and/or
an fvMeshTopoChanger. These two are specified within the optional mover and
topoChanger sub-dictionaries of dynamicFvMeshDict.
When the fvMesh is updated the fvMeshTopoChanger is first executed which can
change the mesh topology in anyway, adding or removing points as required, for
example for automatic mesh refinement/unrefinement, and all registered fields
are mapped onto the updated mesh. The fvMeshMover is then executed which moved
the points only and calculates the cell volume change and corresponding
mesh-fluxes for conservative moving mesh transport. If multiple topological
changes or movements are required these would be combined into special
fvMeshMovers and fvMeshTopoChangers which handle the processing of a list of
changes, e.g. solidBodyMotionFunctions:multiMotion.
The tutorials/multiphase/interFoam/laminar/sloshingTank3D3DoF case has been
updated to demonstrate this new functionality by combining solid-body motion
with mesh refinement/unrefinement:
/*--------------------------------*- C++ -*----------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Version: dev
\\/ M anipulation |
\*---------------------------------------------------------------------------*/
FoamFile
{
format ascii;
class dictionary;
location "constant";
object dynamicMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
mover
{
type motionSolver;
libs ("libfvMeshMovers.so" "libfvMotionSolvers.so");
motionSolver solidBody;
solidBodyMotionFunction SDA;
CofG (0 0 0);
lamda 50;
rollAmax 0.2;
rollAmin 0.1;
heaveA 4;
swayA 2.4;
Q 2;
Tp 14;
Tpn 12;
dTi 0.06;
dTp -0.001;
}
topoChanger
{
type refiner;
libs ("libfvMeshTopoChangers.so");
// How often to refine
refineInterval 1;
// Field to be refinement on
field alpha.water;
// Refine field in between lower..upper
lowerRefineLevel 0.001;
upperRefineLevel 0.999;
// Have slower than 2:1 refinement
nBufferLayers 1;
// Refine cells only up to maxRefinement levels
maxRefinement 1;
// Stop refinement if maxCells reached
maxCells 200000;
// Flux field and corresponding velocity field. Fluxes on changed
// faces get recalculated by interpolating the velocity. Use 'none'
// on surfaceScalarFields that do not need to be reinterpolated.
correctFluxes
(
(phi none)
(nHatf none)
(rhoPhi none)
(alphaPhi.water none)
(meshPhi none)
(meshPhi_0 none)
(ghf none)
);
// Write the refinement level as a volScalarField
dumpLevel true;
}
// ************************************************************************* //
Note that currently this is the only working combination of mesh-motion with
topology change within the new framework and further development is required to
update the set of topology changers so that topology changes with mapping are
separated from the mesh-motion so that they can be combined with any of the
other movements or topology changes in any manner.
All of the solvers and tutorials have been updated to use the new form of
dynamicMeshDict but backward-compatibility was not practical due to the complete
reorganisation of the mesh change structure.
for consistency with the regionToCell topo set source and splitMeshRegions and
provides more logical extension to the multiple and outside point variants insidePoints,
outsidePoint and outsidePoints.
To simplify maintenance and further development of chemistry solution the
standardChemistryModel and TDACChemistryModel have been merged into the single
chemistryModel class. Now the TDAC mechanism reduction and tabulation
components can be individually selected or set to "none" or the corresponding
entries in the chemistryProperties dictionary omitted to switch them off thus
reproducing the behaviour of the standardChemistryModel.
For example the following chemistryProperties includes TDAC:
#includeEtc "caseDicts/solvers/chemistry/TDAC/chemistryProperties.cfg"
chemistryType
{
solver ode;
}
chemistry on;
initialChemicalTimeStep 1e-7;
odeCoeffs
{
solver seulex;
absTol 1e-8;
relTol 1e-1;
}
reduction
{
tolerance 1e-4;
}
tabulation
{
tolerance 3e-3;
}
#include "reactionsGRI"
and to run without TDAC the following is sufficient:
chemistryType
{
solver ode;
}
chemistry on;
initialChemicalTimeStep 1e-7;
odeCoeffs
{
solver seulex;
absTol 1e-8;
relTol 1e-1;
}
#include "reactionsGRI"
or the "reduction" and "tabulation" entries can be disabled explicitly:
#includeEtc "caseDicts/solvers/chemistry/TDAC/chemistryProperties.cfg"
chemistryType
{
solver ode;
}
chemistry on;
initialChemicalTimeStep 1e-7;
odeCoeffs
{
solver seulex;
absTol 1e-8;
relTol 1e-1;
}
reduction
{
method none;
tolerance 1e-4;
}
tabulation
{
method none;
tolerance 3e-3;
}
#include "reactionsGRI"
The mesh in the upstream region of this case has been refined back to
its original density. This restores the wave propagation behaviour
through this region.
It is now possible to use waveVelocity and waveAlpha boundary conditions
in cases in which the waves generate localised flow reversals along the
boundary. This means waves can be speficied at arbitrary directions and
with zero mean flow. Previously and integral approach, similar to
flowRateOutlet, was used, which was only correct when the direction of
wave propagation was aligned with the boundary normal.
This improvement has been achieved by reformulating the waveVelocity and
waveAlpha boundary conditions in terms of a new fixedValueInletOutlet
boundary condition type. This condition enforces a fixed value in all
cases except that of advection terms in the presence of outflow. In this
configuration a gradient condition is applied that will relax towards
the desired fixed value.
The wavePressure boundary condition has been removed, as it is no longer
necessary or advisable to locally switch between velocity and pressure
formulations along a wave boundary. Wave boundaries should now have the
general fixedFluxPressure or fixedFluxExtrapolatedPressure conditions
applied to the pressure field.
Two new tutorial cases have been created to demonstrate the new
functionality. The multiphase/interFoam/laminar/wave3D case demonstrates
wave generation with zero mean flow and at arbitrary angles to the
boundaries, and incompressible/pimpleFoam/RAS/waveSubSurface
demonstrates usage for sub-surface problems.
to the <case>/<time>/uniform or <case>/<processor>/<time>/uniform directory.
Adding a new form of IOdictionary for this purpose allows significant
simplification and rationalisation of regIOobject::writeObject, removing the
need for explicit treatment of different file types.
to provide a single consistent code and user interface to the specification of
physical properties in both single-phase and multi-phase solvers. This redesign
simplifies usage and reduces code duplication in run-time selectable solver
options such as 'functionObjects' and 'fvModels'.
* physicalProperties
Single abstract base-class for all fluid and solid physical property classes.
Physical properties for a single fluid or solid within a region are now read
from the 'constant/<region>/physicalProperties' dictionary.
Physical properties for a phase fluid or solid within a region are now read
from the 'constant/<region>/physicalProperties.<phase>' dictionary.
This replaces the previous inconsistent naming convention of
'transportProperties' for incompressible solvers and
'thermophysicalProperties' for compressible solvers.
Backward-compatibility is provided by the solvers reading
'thermophysicalProperties' or 'transportProperties' if the
'physicalProperties' dictionary does not exist.
* phaseProperties
All multi-phase solvers (VoF and Euler-Euler) now read the list of phases and
interfacial models and coefficients from the
'constant/<region>/phaseProperties' dictionary.
Backward-compatibility is provided by the solvers reading
'thermophysicalProperties' or 'transportProperties' if the 'phaseProperties'
dictionary does not exist. For incompressible VoF solvers the
'transportProperties' is automatically upgraded to 'phaseProperties' and the
two 'physicalProperties.<phase>' dictionary for the phase properties.
* viscosity
Abstract base-class (interface) for all fluids.
Having a single interface for the viscosity of all types of fluids facilitated
a substantial simplification of the 'momentumTransport' library, avoiding the
need for a layer of templating and providing total consistency between
incompressible/compressible and single-phase/multi-phase laminar, RAS and LES
momentum transport models. This allows the generalised Newtonian viscosity
models to be used in the same form within laminar as well as RAS and LES
momentum transport closures in any solver. Strain-rate dependent viscosity
modelling is particularly useful with low-Reynolds number turbulence closures
for non-Newtonian fluids where the effect of bulk shear near the walls on the
viscosity is a dominant effect. Within this framework it would also be
possible to implement generalised Newtonian models dependent on turbulent as
well as mean strain-rate if suitable model formulations are available.
* visosityModel
Run-time selectable Newtonian viscosity model for incompressible fluids
providing the 'viscosity' interface for 'momentumTransport' models.
Currently a 'constant' Newtonian viscosity model is provided but the structure
supports more complex functions of time, space and fields registered to the
region database.
Strain-rate dependent non-Newtonian viscosity models have been removed from
this level and handled in a more general way within the 'momentumTransport'
library, see section 'viscosity' above.
The 'constant' viscosity model is selected in the 'physicalProperties'
dictionary by
viscosityModel constant;
which is equivalent to the previous entry in the 'transportProperties'
dictionary
transportModel Newtonian;
but backward-compatibility is provided for both the keyword and model
type.
* thermophysicalModels
To avoid propagating the unnecessary constructors from 'dictionary' into the
new 'physicalProperties' abstract base-class this entire structure has been
removed from the 'thermophysicalModels' library. The only use for this
constructor was in 'thermalBaffle' which now reads the 'physicalProperties'
dictionary from the baffle region directory which is far simpler and more
consistent and significantly reduces the amount of constructor code in the
'thermophysicalModels' library.
* compressibleInterFoam
The creation of the 'viscosity' interface for the 'momentumTransport' models
allows the complex 'twoPhaseMixtureThermo' derived from 'rhoThermo' to be
replaced with the much simpler 'compressibleTwoPhaseMixture' derived from the
'viscosity' interface, avoiding the myriad of unused thermodynamic functions
required by 'rhoThermo' to be defined for the mixture.
Same for 'compressibleMultiphaseMixture' in 'compressibleMultiphaseInterFoam'.
This is a significant improvement in code and input consistency, simplifying
maintenance and further development as well as enhancing usability.
Henry G. Weller
CFD Direct Ltd.
For a set to zone conversion the name of the zone is now specified with the
'zone' keyword.
For a patch to set conversion the name of the patch is now specified with the
'patch' keyword.
Backward-compatibility is supported for both these changes.
Additionally the file name of a searchableSurface file is specified with the
'file' keyword. This should be 'surface' but that keyword is currently and
confusingly used for the surface type rather than name and this cannot be
changed conveniently while maintaining backward compatibility.
and only needed if there is a name clash between entries in the source
specification and the set specification, e.g. "name":
{
name rotorCells;
type cellSet;
action new;
source zoneToCell;
sourceInfo
{
name cylinder;
}
}
topoSet is a more flexible and extensible replacement for setSet using standard
OpenFOAM dictionary input format rather than the limited command-line input
format developed specifically for setSet. This replacement allows for the
removal of a significant amount of code simplifying maintenance and the addition
of more topoSet sources.
A number of changes have been made to the surfaceFieldValue and
volFieldValue function objects to improve their usability and
performance, and to extend them so that similar duplicate functionality
elsewhere in OpenFOAM can be removed.
Weighted operations have been removed. Weighting for averages and sums
is now triggered simply by the existence of the "weightField" or
"weightFields" entry. Multiple weight fields are now supported in both
functions.
The distinction between oriented and non-oriented fields has been
removed from surfaceFieldValue. There is now just a single list of
fields which are operated on. Instead of oriented fields, an
"orientedSum" operation has been added, which should be used for
flowRate calculations and other similar operations on fluxes.
Operations minMag and maxMag have been added to both functions, to
calculate the minimum and maximum field magnitudes respectively. The min
and max operations are performed component-wise, as was the case
previously.
In volFieldValue, minMag and maxMag (and min and mag operations when
applied to scalar fields) will report the location, cell and processor
of the maximum or minimum value. There is also a "writeLocation" option
which if set will write this location information into the output file.
The fieldMinMax function has been made obsolete by this change, and has
therefore been removed.
surfaceFieldValue now operates in parallel without accumulating the
entire surface on the master processor for calculation of the operation.
Collecting the entire surface on the master processor is now only done
if the surface itself is to be written out.
With this change both
blockMesh -dict fineBlockMeshDict
blockMesh -dict system/fineBlockMeshDict
are supported, if the system/ path is not specified it is assumed
splitBaffles identifies baffle faces; i.e., faces on the mesh boundary
which share the exact same set of points as another boundary face. It
then splits the points to convert these faces into completely separate
boundary patches. This functionality was previously provided by calling
mergeOrSplitBaffles with the "-split" option.
mergeBaffles also identifes the duplicate baffle faces, but then merges
them, converting them into a single set of internal faces. This
functionality was previously provided by calling mergeOrSplitBaffles
without the "-split" option.
When using 'simple' or 'hierarchical' decomposition it is useful to slightly rotate a
coordinate-aligned block-mesh to improve the processor boundaries by avoiding
irregular cell distribution at those boundaries. The degree of slight rotation
is controlled by the 'delta' coefficient and a value of 0.001 is generally
suitable so to avoid unnecessary clutter in 'decomposeParDict' 'delta' now
defaults to this value.
The FOAM file format has not changed from version 2.0 in many years and so there
is no longer a need for the 'version' entry in the FoamFile header to be
required and to reduce unnecessary clutter it is now optional, defaulting to the
current file format 2.0.
Solving for enthalpy provides better convergence and stability than internal
energy. Also correctPhi is now off pending the addition of compressibility
effects to the pcorr equation.
the previous naming tan1, tan2, normal was non-intuitive and very confusing.
It was not practical to maintain backward compatibility but all tutorials and
example refineMeshDict files have been updated to provide examples of the
change.
The inside or outside region refinement level is now specified using the simple
"level <level>" entry in refinementRegions e.g.
refinementRegions
{
refinementBox
{
mode inside;
level 5;
}
}
rather than
refinementRegions
{
refinementBox
{
mode inside;
levels ((1E15 5));
}
}
where the spurious "1E15" number is not used and the '((...))' is unnecessary clutter.
The pressure work term for total internal energy is div(U p) which can be
discretised is various ways, given a mass flux field phi it seems logical to
implement it in the form div(phi/interpolate(rho), p) but this is not exactly
consistent with the relationship between enthalpy and internal energy (h = e +
p/rho) and the transport of enthalpy, it would be more consistent to implement
it in the form div(phi, p/rho). A further improvement in consistency can be
gained by using the same convection scheme for this work term and the convection
term div(phi, e) and for reacting solvers this is easily achieved by using the
multi-variate limiter mvConvection provided for energy and specie convection.
This more consistent total internal energy work term has now been implemented in
all the compressible and reacting flow solvers and provides more accurate
solutions when running with internal energy, particularly for variable density
mixing cases with small pressure variation.
For non-reacting compressible solvers this improvement requires a change to the
corresponding divScheme in fvSchemes:
"div\(alphaPhi.*,p\)" -> "div\(alphaRhoPhi.*,\(p\|thermo:rho.*\)\)"
and all the tutorials have been updated accordingly.
The themo tables used in wallBoiling have had their Cp/Cv values
corrected, and have been coarsened and reduced in size to bound only the
operating point of the wallBoiling tutorials. They have also been moved
to $FOAM_TUTORIALS/resources/thermoData.
The correction to thermophysical properties has improved the stability
of these cases. As a result it has been possible to reduce the amount of
under-relaxation used in the wall modelling.
The phase-fraction filtering of the compressibility terms is present to avoid
spurious phase-change due to numerical noise. The fvModels contribution may
cause physical phase-change due to cavitation, boiling, transfer from film or
VoF even where none of the phase is present and hence must be added after the
compressibility filtering.