and moveDynamicMesh renamed to moveMesh
Description
Mesh motion and topological mesh change utility.
Executes the mover, topoChanger and distributor specified in the
dynamicMeshDict in a time-loop.
so that the input is now dictionary rather than list of dictionaries which
provides support for dictionary substitutions within the motionSolver
sub-dictionaries and also simplifies lookup of specific motionSolvers within the
list. For example the dynamicMeshDict for the floatingObject case with a second
floating object would be:
mover
{
type motionSolver;
libs ("libfvMeshMovers.so" "librigidBodyMeshMotion.so");
motionSolver motionSolverList;
solvers
{
floatingObject
{
motionSolver rigidBodyMotion;
report on;
solver
{
type Newmark;
}
accelerationRelaxation 0.7;
bodies
{
floatingObject
{
type cuboid;
parent root;
// Cuboid dimensions
Lx 0.3;
Ly 0.2;
Lz 0.5;
// Density of the cuboid
rho 500;
// Cuboid mass
mass #calc "$rho*$Lx*$Ly*$Lz";
L ($Lx $Ly $Lz);
centreOfMass (0 0 0.25);
transform (1 0 0 0 1 0 0 0 1) (0.5 0.45 0.1);
joint
{
type composite;
joints
(
{
type Py;
}
{
type Ry;
}
);
}
patches (floatingObject);
innerDistance 0.05;
outerDistance 0.35;
}
}
}
anotherFloatingObject
{
.
.
.
}
}
}
replacing the virtual functions overridden in engineTime.
Now the userTime conversion function in Time is specified in system/controlDict
such that the solver as well as all pre- and post-processing tools also operate
correctly with the chosen user-time.
For example the user-time and rpm in the tutorials/combustion/XiEngineFoam/kivaTest case are
now specified in system/controlDict:
userTime
{
type engine;
rpm 1500;
}
The default specification is real-time:
userTime
{
type real;
}
but this entry can be omitted as the real-time class is instantiated
automatically if the userTime entry is not present in system/controlDict.
Mesh motion and topology change are now combinable run-time selectable options
within fvMesh, replacing the restrictive dynamicFvMesh which supported only
motion OR topology change.
All solvers which instantiated a dynamicFvMesh now instantiate an fvMesh which
reads the optional constant/dynamicFvMeshDict to construct an fvMeshMover and/or
an fvMeshTopoChanger. These two are specified within the optional mover and
topoChanger sub-dictionaries of dynamicFvMeshDict.
When the fvMesh is updated the fvMeshTopoChanger is first executed which can
change the mesh topology in anyway, adding or removing points as required, for
example for automatic mesh refinement/unrefinement, and all registered fields
are mapped onto the updated mesh. The fvMeshMover is then executed which moved
the points only and calculates the cell volume change and corresponding
mesh-fluxes for conservative moving mesh transport. If multiple topological
changes or movements are required these would be combined into special
fvMeshMovers and fvMeshTopoChangers which handle the processing of a list of
changes, e.g. solidBodyMotionFunctions:multiMotion.
The tutorials/multiphase/interFoam/laminar/sloshingTank3D3DoF case has been
updated to demonstrate this new functionality by combining solid-body motion
with mesh refinement/unrefinement:
/*--------------------------------*- C++ -*----------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Version: dev
\\/ M anipulation |
\*---------------------------------------------------------------------------*/
FoamFile
{
format ascii;
class dictionary;
location "constant";
object dynamicMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
mover
{
type motionSolver;
libs ("libfvMeshMovers.so" "libfvMotionSolvers.so");
motionSolver solidBody;
solidBodyMotionFunction SDA;
CofG (0 0 0);
lamda 50;
rollAmax 0.2;
rollAmin 0.1;
heaveA 4;
swayA 2.4;
Q 2;
Tp 14;
Tpn 12;
dTi 0.06;
dTp -0.001;
}
topoChanger
{
type refiner;
libs ("libfvMeshTopoChangers.so");
// How often to refine
refineInterval 1;
// Field to be refinement on
field alpha.water;
// Refine field in between lower..upper
lowerRefineLevel 0.001;
upperRefineLevel 0.999;
// Have slower than 2:1 refinement
nBufferLayers 1;
// Refine cells only up to maxRefinement levels
maxRefinement 1;
// Stop refinement if maxCells reached
maxCells 200000;
// Flux field and corresponding velocity field. Fluxes on changed
// faces get recalculated by interpolating the velocity. Use 'none'
// on surfaceScalarFields that do not need to be reinterpolated.
correctFluxes
(
(phi none)
(nHatf none)
(rhoPhi none)
(alphaPhi.water none)
(meshPhi none)
(meshPhi_0 none)
(ghf none)
);
// Write the refinement level as a volScalarField
dumpLevel true;
}
// ************************************************************************* //
Note that currently this is the only working combination of mesh-motion with
topology change within the new framework and further development is required to
update the set of topology changers so that topology changes with mapping are
separated from the mesh-motion so that they can be combined with any of the
other movements or topology changes in any manner.
All of the solvers and tutorials have been updated to use the new form of
dynamicMeshDict but backward-compatibility was not practical due to the complete
reorganisation of the mesh change structure.
The base dynamicFvMesh now reads and stores the dynamicMeshDict and motion
solver receive it as a constructor argument.
Also rationalised the motionSolver diffusivity classes in which storing the
faceDiffusivity field provided no advantage; now it is created and returned on
demand.