used in the alphaContactAngleFvPatchScalarField boundary condition to replace
the need to derive specialised versions for different contact angle evaluation
methods. This simplifies the code and provides a reusable system which could be
applied to other multiphase contact angle boundary conditions.
Solver modules have replaced code that was previously shared between
solvers by means of #include-ing header files. Some of these headers are
now unused and have been removed. Others are only now used in a single
solver and have been moved into that solver.
This change applies to diameter models within the multiphaseEuler
module, heat transfer fvModels, and the LopesdaCosta porosity and
turbulence models.
User input changes have been made backwards-compatible, so existing
AoV/a/Sigma/... entries and fields should continue to work.
Latent heat evaluation has been changed to calculate both sides' heats
similarly using the interface temperature, rather than using bulk
quantities on the "upwind" side of the mass transfer process
(latentHeatScheme::symmetric vs latentHeatScheme::upwind).
The transfer of heat has been changed so that it is calculated from the
mass transfer rate rather than the heat transfer coefficients and
temperatures (latentHeatTransfer::mass vs latentHeatTransfer::heat).
These changes were found to improve stability characteristics in some
boiling cases, and in general should be more energy conservative and
less dependent on the accuracy of the interfacial temeprature solution.
Patch contributed by Juho Peltola, VTT.
The method to update phi in PDRFoamAutoRefine has been superseded by rhoUf in
all other compressible solvers and PDRFoam needs to be updated, requiring
funding. PDRFoamAutoRefine is no longer maintained.
The patch field 'autoMap' and 'rmap' functions have been replaced with a
single 'map' function that can used to do any form of in-place
patch-to-patch mapping. The exact form of mapping is now controlled
entirely by the mapper object.
An example 'map' function is shown below:
void nutkRoughWallFunctionFvPatchScalarField::map
(
const fvPatchScalarField& ptf,
const fvPatchFieldMapper& mapper
)
{
nutkWallFunctionFvPatchScalarField::map(ptf, mapper);
const nutkRoughWallFunctionFvPatchScalarField& nrwfpsf =
refCast<const nutkRoughWallFunctionFvPatchScalarField>(ptf);
mapper(Ks_, nrwfpsf.Ks_);
mapper(Cs_, nrwfpsf.Cs_);
}
This single function replaces these two previous functions:
void nutkRoughWallFunctionFvPatchScalarField::autoMap
(
const fvPatchFieldMapper& m
)
{
nutkWallFunctionFvPatchScalarField::autoMap(m);
m(Ks_, Ks_);
m(Cs_, Cs_);
}
void nutkRoughWallFunctionFvPatchScalarField::rmap
(
const fvPatchScalarField& ptf,
const labelList& addr
)
{
nutkWallFunctionFvPatchScalarField::rmap(ptf, addr);
const nutkRoughWallFunctionFvPatchScalarField& nrwfpsf =
refCast<const nutkRoughWallFunctionFvPatchScalarField>(ptf);
Ks_.rmap(nrwfpsf.Ks_, addr);
Cs_.rmap(nrwfpsf.Cs_, addr);
}
Calls to 'autoMap' should be replaced with calls to 'map' with the same
mapper object and the patch field itself provided as the source. Calls
to 'rmap' should be replaced with calls to 'map' by wrapping the
addressing in a 'reverseFvPatchFieldMapper' (or
'reversePointPatchFieldMapper') object.
This change simplifies the creation of new patch fields and hence
improves extensibility. It also provides more options regarding general
mapping strategies between patches. Previously, general abstracted
mapping was only possible in 'autoMap'; i.e., from a patch to itself.
Now, general mapping is possible between different patches.
Replacing volRegion removes unnecessary functionality duplication and ensures
cell set selection is consistent between functionObjects, fvModels and
fvConstraints for user convenience and reducing the code maintenance overhead.
Description
General cell set selection class for models that apply to sub-sets
of the mesh.
Currently supports cell selection from a set of points, a specified cellSet
or cellZone or all of the cells. The selection method can either be
specified explicitly using the \c select entry or inferred from the
presence of either a \c cellSet, \c cellZone or \c points entry. The \c
select entry is required to select \c all cells.
Usage
Examples:
\verbatim
// Apply everywhere
select all;
// Apply within a given cellSet
select cellSet; // Optional
cellSet rotor;
// Apply within a given cellZone
select cellZone; // Optional
cellZone rotor;
// Apply in cells containing a list of points
select points; // Optional
points
(
(2.25 0.5 0)
(2.75 0.5 0)
);
\endverbatim
Mesh motion is now supported in solid regions, but with the restriction
that it must be a solid-body-type motion. The mesh must not deform; all
cell volumes and face area magnitudes must remain constant. An error
will be generated if a motion strategy is selected that does not obey
this constraint.
The keyword 'select' is now used to specify the cell, face or point set
selection method consistently across all classes requiring this functionality.
'select' replaces the inconsistently named 'regionType' and 'selectionMode'
keywords used previously but backwards-compatibility is provided for user
convenience. All configuration files and tutorials have been updated.
Examples of 'select' from the tutorial cases:
functionObjects:
cellZoneAverage
{
type volFieldValue;
libs ("libfieldFunctionObjects.so");
writeControl writeTime;
writeInterval 1;
fields (p);
select cellZone;
cellZone injection;
operation volAverage;
writeFields false;
}
#includeFunc populationBalanceSizeDistribution
(
name=numberDensity,
populationBalance=aggregates,
select=cellZone,
cellZone=outlet,
functionType=numberDensity,
coordinateType=projectedAreaDiameter,
allCoordinates=yes,
normalise=yes,
logTransform=yes
)
fvModel:
cylinderHeat
{
type heatSource;
select all;
q 5e7;
}
fvConstraint:
momentumForce
{
type meanVelocityForce;
select all;
Ubar (0.1335 0 0);
}
particleFoam has been superseded and replaced by the more general functions
solver module executed by the foamRun application:
foamRun -solver functions
The incompressibleFluid solver specified by either the subSolver or if not
present the solver entry in the controlDict is instantiated to provide the
physical fields needed by fvModel functionObject in which the clouds fvModel is
selected to evolve the Lagrangian particles. See:
tutorials/modules/incompressibleFluid/hopperParticles
tutorials/modules/incompressibleFluid/mixerVessel2DParticles
rhoParticleFoam has been superseded and replaced by the more general functions
solver module executed by the foamRun application:
foamRun -solver functions
The isothermalFluid solver specified by either the subSolver or if not present
the solver entry in the controlDict is instantiated to provide the physical
fields needed by fvModel functionObject in which the clouds fvModel is selected
to evolve the Lagrangian particles.
Description
Solver module to execute the \c functionObjects for a specified solver
The solver specified by either the \c subSolver or if not present the \c
solver entry in the \c controlDict is instantiated to provide the physical
fields needed by the \c functionObjects. The \c functionObjects are then
instantiated from the specifications are read from the \c functions entry in
the \c controlDict and executed in a time-loop also controlled by entries in
\c controlDict and the \c maxDeltaT() returned by the sub-solver.
The fields and other objects registered by the sub-solver are set to
NO_WRITE as they are not changed by the execution of the functionObjects and
should not be written out each write-time. Fields and other objects created
and changed by the execution of the functionObjects are written out.
solvers::functions in conjunction with the scalarTransport functionObject
replaces scalarTransportFoam and provide more general handling of the scalar
diffusivity.
This change means that even if the Courant number is zero, the time step
is adjusted based on maximum time step settings and/or constraints
specified by active fvModels. If none of these additional constraints
are present then adjustment is deactivated.
This change lets the solver be looked up from the region database, so
that aspects of the solution algorithm can be accessed by
functionObjects and fvModels and similar. For example, a fluid solver
could be looked up as follows:
const solvers::fluid& s =
mesh().lookupObject<solvers::fluid>(solver::typeName);
By solving for U and e rather than rhoU and rhoE the convection and stress
matrices can be combined and solved together avoiding the need for Strang
splitting. Conservation of rho*U and rho*E is ensured by constructing and
solving the three equations in sequence, constructing each using the results of
the solution of the previous equations.
Wall boiling properties and state have been named consistently through
the wall boiling boundary conditions and all of its related sub-models.
All changes are backwards compatible. Changes to tutorials will follow
in a separate commit.
A small SuSp stabilisation has been added to the dilation error term to
prevent edge-cases in which the dilation correction exactly cancels out
all implicit transport terms and sources.
This boundary condition now solves for the wall temperature by interval
bisection, which should be significantly more robust than the previous
fixed-point iteration procedure. There is a new non-dimensional
"tolerance" setting that controls how tightly this solution procedure
solves the wall temperature. The "relax" setting is no longer used.
The boundary condition no longer triggers re-evaluation of the
temperature condition in order to re-calculate the heat flux within the
solution iteration. Instead, it extracts physical coefficients from the
form of the boundary condition and uses these to form a linearised
approximation of the heat flux. This is a more general approach, and
will not trigger side-effects associated with re-evaluating the
temperature condition.
The fixedMultiphaseHeatFlux condition has been replaced by a
uniformFixedMultiphaseHeatFlux condition, which constructs a mixed
constraint which portions a specified heat flux between the phases in
such a way as to keep the boundary temperature uniform across all
phases. This can be applied to all phases. It is no longer necessary to
apply a heat flux model to one "master" phase, then map the resulting
temperature to the others. An example specification of this boundary
condition is as follows:
wall
{
type uniformFixedMultiphaseHeatFlux;
q 1000;
relax 0.3;
value $internalField;
}
The wall boiling tutorials have been updated to use these new functions,
and time-varying heat input has been used to replace the
stop-modify-restart pattern present in the single-region cases.
executed with foamRun for single region simulations of foamMultiRun for
multi-region simulations. Replaces rhoCentralFoam and all the corresponding
tutorials have been updated and moved to tutorials/modules/shockFluid.
Unlike rhoCentralFoam shockFluid supports mesh refinement/unrefinement, topology
change, run-time mesh-to-mesh mapping, load-balancing in addition to general
mesh-motion.
The tutorials/modules/shockFluid/movingCone case has been updated to demonstrate
run-time mesh-to-mesh mapping mesh topology change based on the
tutorials/modules/incompressibleFluid/movingCone. shockFluid s
Description
Solver module for density-based solution of compressible flow
Based on central-upwind schemes of Kurganov and Tadmor with support for
mesh-motion and topology change.
Reference:
\verbatim
Greenshields, C. J., Weller, H. G., Gasparini, L.,
& Reese, J. M. (2010).
Implementation of semi‐discrete, non‐staggered central schemes
in a colocated, polyhedral, finite volume framework,
for high‐speed viscous flows.
International journal for numerical methods in fluids, 63(1), 1-21.
\endverbatim
SourceFiles
shockFluid.C
See also
Foam::solvers::fluidSolver
Foam::solvers::incompressibleFluid
The fixedDmdt phase change boundary condition has been removed as this
is not a physical model and was only ever needed for testing.
The phase change wall function interface has been simplified and made a
mix-in, rather than a derivation from a fixed value patch field. This
reduces forwarding and mapping code and permits wall functions to derive
from patch fields other than fixed value.
Minor style and consisteny improvements have been made to the wall
boiling wall function.
This change introduces a more physical limiter for the logarithmic
liquid temperature extrapolation employed in the model. It also adds an
operation to turn off extrapolation alltogether for cases with very low
y+ in which the extrapolation behaviour becomes unreliable.
Patch contributed by Juho Peltola, VTT.
executed with foamRun for single region simulations of foamMultiRun for
multi-region simulations. Replaces compressibleMultiphaseInterFoam and all the
corresponding tutorials have been updated and moved to
tutorials/modules/compressibleMultiphaseVoF.
compressibleMultiphaseVoF is derived from the multiphaseVoFSolver which adds
compressible multiphase capability to the VoFSolver base-class used as the basis
of all two-phase and multiphase VoF solvers.
Class
Foam::solvers::compressibleMultiphaseVoF
Description
Solver module for the solution of multiple compressible, isothermal
immiscible fluids using a VOF (volume of fluid) phase-fraction based
interface capturing approach, with optional mesh motion and mesh topology
changes including adaptive re-meshing.
The momentum and other fluid properties are of the "mixture" and a single
momentum equation is solved.
A mixture approach for momentum transport is provided in which a single
laminar, RAS or LES model is selected to model the momentum stress.
Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
pseudo-transient and steady simulations.
SourceFiles
compressibleMultiphaseVoF.C
See also
Foam::solvers::VoFSolver
Foam::solvers::multiphaseVoFSolver
executed with foamRun for single region simulations of foamMultiRun for
multi-region simulations. Replaces multiphaseInterFoam and all the
corresponding tutorials have been updated and moved to
tutorials/modules/incompressibleMultiphaseVoF.
incompressibleMultiphaseVoF is derived from the multiphaseVoFSolver which adds
multiphase capability to the VoFSolver base-class used as the basis of all
two-phase and multiphase VoF solvers.
Class
Foam::solvers::incompressibleMultiphaseVoF
Description
Solver module for the solution of multiple incompressible, isothermal
immiscible fluids using a VOF (volume of fluid) phase-fraction based
interface capturing approach, with optional mesh motion and mesh topology
changes including adaptive re-meshing.
The momentum and other fluid properties are of the "mixture" and a single
momentum equation is solved.
A mixture approach for momentum transport is provided in which a single
laminar, RAS or LES model is selected to model the momentum stress.
Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
pseudo-transient and steady simulations.
SourceFiles
incompressibleMultiphaseVoF.C
See also
Foam::solvers::VoFSolver
Foam::solvers::multiphaseVoFSolver