Description
Merges meshes without stitching.
Usage
\b mergeMeshes [OPTION]
Options:
- \par -doc
Display the documentation in browser
- \par -srcDoc
Display the source documentation in browser
- \par -help
Print the usage
- \par -case \<dir\>
Select a case directory instead of the current working directory
- \par -region \<name\>
Specify an alternative mesh region.
- \par -addRegions "'(region1 region2 ... regionN)'"
Specify list of region meshes to merge.
- \par -addCases "'(\"casePath1\" \"casePath2\" ... \"casePathN\")'"
Specify list of case meshes to merge.
- \par -addCaseRegions "'((\"casePath1\" region1) (\"casePath2\" region2)"
Specify list of case region meshes to merge.
The mergePatchPairs functionality in blockMesh also now uses patchIntersection.
The new mergePatchPairs and patchIntersection replaces the old, fragile and
practically unusable polyTopoChanger::slidingInterface functionality the removal
of which has allowed the deletion of a lot of other ancient and otherwise unused
clutter including polyTopoChanger, polyMeshModifier, polyTopoChange::setAction
and associated addObject/*, modifyObject/* and removeObject/*. This
rationalisation paves the way for the completion of the update of zone handling
allowing mesh points, faces and cells to exist in multiple zones which is
currently not supported with mesh topology change.
Application
stitchMesh
Description
Utility to stitch or conform pairs of patches,
converting the patch faces either into internal faces
or conformal faces or another patch.
Usage
\b stitchMesh (\<list of patch pairs\>)
E.g. to stitch patches \c top1 to \c top2 and \c bottom1 to \c bottom2
stitchMesh "((top1 top2) (bottom1 bottom2))"
Options:
- \par -overwrite \n
Replace the old mesh with the new one, rather than writing the new one
into a separate time directory
- \par -region \<name\>
Specify an alternative mesh region.
- \par -fields
Update vol and point fields
- \par -tol
Merge tolerance relative to local edge length (default 1e-4)
See also
Foam::mergePatchPairs
The legacy fvMeshTopoChangersMovingCone removed, replaced by the more general
mesh mapping approach, see tutorials incompressibleFluid/movingCone and
shockFluid/movingCone.
The timeName() function simply returns the dimensionedScalar::name() which holds
the user-time name of the current time and now that timeName() is no longer
virtual the dimensionedScalar::name() can be called directly. The timeName()
function implementation is maintained for backward-compatibility.
The polyTopoChangeMap is the map specifically relating to polyMesh topological
changes generated by polyTopoChange and used to update and map mesh related
types and fields following the topo-change.
When an OpenFOAM simulation runs in parallel, the data for decomposed fields and
mesh(es) has historically been stored in multiple files within separate
directories for each processor. Processor directories are named 'processorN',
where N is the processor number.
This commit introduces an alternative "collated" file format where the data for
each decomposed field (and mesh) is collated into a single file, which is
written and read on the master processor. The files are stored in a single
directory named 'processors'.
The new format produces significantly fewer files - one per field, instead of N
per field. For large parallel cases, this avoids the restriction on the number
of open files imposed by the operating system limits.
The file writing can be threaded allowing the simulation to continue running
while the data is being written to file. NFS (Network File System) is not
needed when using the the collated format and additionally, there is an option
to run without NFS with the original uncollated approach, known as
"masterUncollated".
The controls for the file handling are in the OptimisationSwitches of
etc/controlDict:
OptimisationSwitches
{
...
//- Parallel IO file handler
// uncollated (default), collated or masterUncollated
fileHandler uncollated;
//- collated: thread buffer size for queued file writes.
// If set to 0 or not sufficient for the file size threading is not used.
// Default: 2e9
maxThreadFileBufferSize 2e9;
//- masterUncollated: non-blocking buffer size.
// If the file exceeds this buffer size scheduled transfer is used.
// Default: 2e9
maxMasterFileBufferSize 2e9;
}
When using the collated file handling, memory is allocated for the data in the
thread. maxThreadFileBufferSize sets the maximum size of memory in bytes that
is allocated. If the data exceeds this size, the write does not use threading.
When using the masterUncollated file handling, non-blocking MPI communication
requires a sufficiently large memory buffer on the master node.
maxMasterFileBufferSize sets the maximum size in bytes of the buffer. If the
data exceeds this size, the system uses scheduled communication.
The installation defaults for the fileHandler choice, maxThreadFileBufferSize
and maxMasterFileBufferSize (set in etc/controlDict) can be over-ridden within
the case controlDict file, like other parameters. Additionally the fileHandler
can be set by:
- the "-fileHandler" command line argument;
- a FOAM_FILEHANDLER environment variable.
A foamFormatConvert utility allows users to convert files between the collated
and uncollated formats, e.g.
mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated
An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/IO/fileHandling
The work was undertaken by Mattijs Janssens, in collaboration with Henry Weller.
to have the prefix 'write' rather than 'output'
So outputTime() -> writeTime()
but 'outputTime()' is still supported for backward-compatibility.
Also removed the redundant secondary-writing functionality from Time
which has been superseded by the 'writeRegisteredObject' functionObject.